ON LAPLACE TRANSFORM

B. KWEE

(Received 22 November 1968, revised 9 June 1969) Communicated by G. Strzelecki

1. Introduction

In this paper we suppose that the function s(x) is integrable in the Lebesgue sense for every finite interval of $x \ge 0$. If

$$\lim_{A\to\infty}\int_0^A f(x)dx$$

exists, we say that the integral

$$\int_0^\infty f(x)dx$$

exists.

The function s(x) is said to be summable by the Laplace method (L, γ) to s for some $\gamma > -1$ if

(1)
$$L(y) = L^{(\gamma)}(y) = \frac{y^{-\gamma-1}}{\Gamma(\gamma+1)} \int_0^\infty s(u) u^{\gamma} e^{-u/y} du$$

exists for all y > 0 and $\lim_{y \to \infty} L^{(y)}(y) = s$.

Let $\phi(u)$ and $\psi(u)$ be defined and continuous for $u \ge 0$, positive for u > 0and bounded in each finite interval [0, R], R > 0. If

(2)
$$g(y) = \int_0^\infty s(yu)\phi(u)du$$

exists for y > 0 and $\lim_{y \to \infty} g(y) = s$, we say that s(u) is summable (ϕ) to s. Suppose that s(u) is bounded in every finite interval of $u \ge 0$. Then from Theorem 6 in [1] a sufficient condition for the regularity of (ϕ) is

(3)
$$\int_0^\infty \phi(u) du = 1.$$

If we assume that, for each $\lambda > 0$,

(4) $\lim_{u \to \infty} \frac{\phi(\lambda u)}{\psi(u)}$

exists and is not zero,

(5)
$$\int_{1}^{\infty} \left| \frac{du}{du} \left(\frac{\dot{y}(\lambda u)}{\psi(u)} \right) \right| du < \infty,$$

and

(6)
$$\int_{1}^{\infty} \left| \frac{d}{du} \left(\frac{\psi(u)}{\phi(\lambda u)} \right) \right| du < \infty,$$

then, by partial integration, a necessary and sufficient condition for the convergence of (2) is that

(7)
$$\int_{1}^{\infty} s(u)\psi(u)du$$

should converge.

We shall prove

THEOREM 1. Suppose that s(u) is summable (L, γ) $(\gamma > -1)$ and bounded in every finite interval of $u \ge 0$, and that, in addition to (3), (4), (5) and (6), the functions $\phi(u)$ and $\psi(u)$ satisfy the conditions

(8)
$$u^{\gamma-1}e^{-u/\omega}\int_1^\infty \left|\frac{d}{dx}\left(\frac{\phi(x)}{\psi(ux)}\right)\right| dx \in L_1(0,\infty).$$

(9)
$$\frac{u^{\gamma-1}e^{-u/\omega}\phi(A)}{\psi(Au)} \leq F(u) \in L_1(0,\infty),$$

for $A \ge A_0 > 0$ then

$$\frac{\omega^{-\gamma-1}}{\Gamma(\gamma+1)}\int_0^\infty u^{\gamma}e^{-u/\omega}g(u)du = \int_0^\infty L(\omega x)\phi(x)dx,$$

where L(x) and g(u) are defined by (1) and (2) and further g(u) is summable (L, γ) to s.

By taking

$$\phi(u) = \frac{\Gamma(\alpha+\beta+1)u^{\alpha-1}}{\Gamma(\alpha)\Gamma(\beta+1)(1+u)^{\alpha+\beta+1}},$$

$$\psi(u) = u^{\beta+2},$$

summability (ϕ) reduces to summability (C_t , α , β) defined by taking in (2)

(10)
$$g(y) = \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha)\Gamma(\beta+1)} y^{\beta+1} \int_0^\infty \frac{u^{\alpha-1}s(u)}{(u+y)^{\alpha+\beta+1}} du,$$

and Theorem 1 reduces to

THEOREM 2. Let $\alpha > 0$, $\beta > -1$, $\gamma > -1$. Suppose that s(u) is summable (L, γ) to s and bounded in every finite interval of $u \ge 0$, and that

$$\int_{1}^{\infty} \frac{s(u)}{u^{\beta+2}} \, du$$

converges. Then

$$\frac{\omega^{-\gamma-1}}{\Gamma(\gamma+1)}\int_0^\infty u^{\gamma}e^{-u/\omega}g(u)du = \frac{\Gamma(\alpha+\beta+1)\omega^{\beta+1}}{\Gamma(\alpha)\Gamma(\beta+1)}\int_0^\infty \frac{x^{\alpha-1}L(x)}{(x+\omega)^{\alpha+\beta+1}}dx,$$

where L(x) and g(u) are defined by (1) and (10), and further g(u) is summable (L, γ) to s.

Summability $(C_t, \alpha, 0)$ has been considered by Kuttner [3] and $(C_t, 1, \beta+1)$ by me [4].

2. A lemma

LEMMA. Let s(u) = 0 for $0 \le u \le 1$, bounded in every finite interval of $u \ge 0$, and summable (L, γ) to s for some $\gamma > -1$. Then, for every fixed $\omega > 0$,

$$(\omega x)^{-\gamma-1}\int_{Bx}^{\infty} s(u)u^{\gamma}e^{-u/\omega x}du$$

tends to zero as $B \to \infty$ uniformly in $0 < u \leq 1$.

This lemma has been proved in [2].

PROOF OF THEOREM 1. Let

$$s_1(u) = s(u),$$
 $s_2(u) = 0$ for $0 \le u \le 1$,
 $s_1(u) = 0,$ $s_2(u) = s(u)$ for $u > 1$,

and let $g_1(x)$ and $M_1(x)$ be the (ϕ) and (L, γ) transformations of $s_1(u)$ and let $g_2(x)$ and $M_2(x)$ be those of $s_2(u)$.

By Fubini's theorem, since $s_1(u)$ is bounded,

(11)

$$\int_{0}^{\infty} M_{1}(\omega x)\phi(x)dx = \frac{\omega^{-\gamma-1}}{\Gamma(\gamma+1)} \int_{0}^{\infty} x^{-\gamma-1}\phi(x) \int_{0}^{\infty} u^{\gamma}e^{-u/\omega}s_{1}(u)du \, dx$$

$$= \frac{\omega^{-\gamma-1}}{\Gamma(\gamma+1)} \int_{0}^{\infty}\phi(x) \int_{0}^{\infty} u^{\gamma}e^{-u/\omega}s_{1}(ux)du \, dx$$

$$= \frac{\omega^{-\gamma-1}}{\Gamma(\gamma+1)} \int_{0}^{\infty} u^{\gamma}e^{-u/\omega} \int_{0}^{\infty}s_{1}(ux)\phi(x) \, dx \, du$$

$$= \frac{\omega^{-\gamma-1}}{\Gamma(\gamma+1)} \int_{0}^{\infty} u^{\gamma}e^{-u/\omega}g_{1}(u)du.$$

Let A > 1, and write

$$\int_0^\infty M_2(\omega x)\phi(x)dx = \frac{1}{\omega} \int_0^\infty M_2(x)\phi(x/\omega)dx$$

= $\frac{1}{\Gamma(\gamma+1)\omega} \int_0^{A\omega} x^{-\gamma-1}\phi(x/\omega) \int_1^{Bx/\omega} u^{\gamma}e^{-u/x}s_2(u)du\,dx$
+ $\frac{1}{\Gamma(\gamma+1)\omega} \int_{A\omega}^\infty x^{-\gamma-1}\phi(x/\omega) \int_1^\infty u^{\gamma}e^{-u/x}s_2(u)du\,dx$
+ $\frac{1}{\Gamma(\gamma+1)\omega} \int_0^{A\omega} x^{-\gamma-1}\phi(x/\omega) \int_{Bx/\omega}^\infty u^{\gamma}e^{-u/x}s_2(u)du\,dx$
= $I_1 + I_2 + I_3$.

Since s(u) is summable (L, γ) and (ϕ) is regular,

$$\lim_{A \to \infty} I_2 = 0$$

By changing the variable,

$$I_{3} = \frac{\omega^{-\gamma-1}}{\Gamma(\gamma+1)} \int_{0}^{1} x^{-\gamma-1} \phi(x) \int_{Bx}^{\infty} u^{\gamma} e^{-u/\omega x} s_{2}(u) du dx$$

+ $\frac{\omega^{-\gamma-1}}{\Gamma(\gamma+1)} \int_{1}^{A} x^{-\gamma-1} \phi(x) \int_{Bx}^{\infty} u^{\gamma} e^{-u/\omega x} s_{2}(u) du dx$
= $J_{1} + J_{2}$.

By Lemma 1,

$$\lim_{B\to\infty}J_1=0.$$

We have, by changing the variable,

$$J_2 = \frac{A^{-\gamma}\omega^{-\gamma-1}}{\Gamma(\gamma+1)} \int_{1/A}^1 x^{-\gamma-1} \phi(Ax) \int_{ABx}^\infty u^{\gamma} e^{-u/A\omega x} s_2(u) du dx.$$

Hence, for any fixed $\omega > 0$, A > 1, all sufficiently large B, and $1/A \leq x \leq 1$, we have, by Lemma 1,

$$\left|(A\omega x)^{-\gamma-1}\int_{ABx}^{\infty}u^{\gamma}e^{-u/A\omega x}s_{2}(u)du\right|<\varepsilon.$$

It follows from (3) that

$$|J_2| < \varepsilon A \int_{1/A}^1 \phi(Ax) dx$$
$$< \varepsilon \int_0^\infty \phi(x) dx$$
$$= \varepsilon$$

for A > 1 and all sufficiently large B. Therefore

$$\lim_{B\to\infty}J_2=0.$$

Hence

$$\int_{0}^{\infty} M_{2}(\omega x)\phi(x)dx = \lim_{B \to \infty} (I_{1} + I_{2} + I_{3})$$

$$= \lim_{B \to \infty} \frac{\omega^{-\gamma - 1}}{\Gamma(\gamma + 1)} \int_{0}^{A} \phi(x) \int_{0}^{B} u^{\gamma} e^{-u/\omega} s_{2}(xu) du \, dx + I_{2}$$

$$= \lim_{B \to \infty} \frac{\omega^{-\gamma - 1}}{\Gamma(\gamma + 1)} \int_{0}^{B} u^{\gamma} e^{-u/\omega} \int_{0}^{A} s_{2}(xu) \phi(x) dx \, du + I_{2}$$

$$= \frac{\omega^{-\gamma - 1}}{\Gamma(\gamma + 1)} \int_{0}^{\infty} u^{\gamma} e^{-u/\omega} \int_{0}^{A} s_{2}(xu) \phi(x) dx \, du + I_{2}$$

$$= \frac{\omega^{-\gamma - 1}}{\Gamma(\gamma + 1)} \int_{0}^{\infty} u^{\gamma} e^{-u/\omega} g_{2}(u) du + \frac{\omega^{-\gamma - 1}}{\Gamma(\gamma + 1)} \int_{0}^{\infty} u^{\gamma} e^{-u/\omega} \times \int_{A}^{\infty} s_{2}(xu) \phi(x) dx \, du + I_{2}.$$

By an obvious change of variable, the inner integral of the second integral is

$$H = \frac{1}{u} \int_{Au}^{\infty} s_2(x) \phi(x/u) dx.$$

Let

$$G(t) = \int_t^\infty s_2(v)\psi(v)dv$$

for $t \ge 1$. Then, since (7) converges, $G(t) \to 0$ as $t \to \infty$. By partial integration,

$$H = -\frac{1}{u} \int_{Au}^{\infty} \frac{\phi(x/u)}{\psi(x)} dG(x)$$
$$= \frac{\phi(A)G(Au)}{u\psi(Au)} + \frac{1}{u} \int_{Au}^{\infty} G(x) d\left(\frac{\phi(x/u)}{\psi(x)}\right)$$

Hence

$$|H| \leq K\left\{\left|\frac{\phi(A)}{u\psi(Au)}\right| + \frac{1}{u}\int_{1}^{\infty} \left|d\left(\frac{\phi(x)}{\psi(ux)}\right)\right| dx\right\},\$$

where K is independent of A as well as u. From (8) and (9) and dominated convergence, the second term of (12) tends to 0 as $A \to \infty$. Now let $A \to \infty$. We get

(13)
$$\int_0^\infty M_2(\omega x)\phi(x)dx = \frac{\omega^{-\gamma-1}}{\Gamma(\gamma+1)}\int_0^\infty u^{\gamma}e^{-u/\omega}g_2(u)du.$$

The theorem follows from (11) and (13).

B. Kwee

References

- [1] G. H. Hardy, Divergent series (Oxford).
- [2] A. Jakimovski, 'Some remarks on Tauberian theorems', Quart. J. Math. (Oxford) (2)9 (1958), 114-131.
- [3] B. Kuttner, On translated quasi-Cesáro summability', Proc. Camb. Phil. Soc. 62 (1966), 705-712.
- [4] B. Kwee, On Perron's method of summation', Proc. Camb. Phil. Soc. 63 (1967), 1033-1040.

Department of Mathematics University of Malaya

Kuala Lumpur, Malaysia