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Abstract

We are concerned with the variation of the supercritical nearest-neighbours contact
process such that first infection occurs at a lower rate; it is known that the process survives
with positive probability. Regarding the rightmost infected of the process started from
one site infected and conditioned to survive, we specify a sequence of space–time points
at which its behaviour regenerates and, thus, obtain the corresponding strong law and
central limit theorem. We also extend complete convergence in this case.
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1. Introduction and main results

We begin by defining a class of processes that includes the processes we are especially
interested in. The nearest-neighbours three-state contact process with parameters (λ, µ) is a
continuous-time Markov process ζt with state space {−1, 0, 1}Z, elements of which are called
configurations and can be thought of as functions from Z to {−1, 0, 1}. The evolution of ζt is
described locally as follows. Transitions at each site x, ζt (x), occur according to the rules

−1 → 1 at rate λ|{y = x − 1, x + 1 : ζt (y) = 1}|,
0 → 1 at rate µ|{y = x − 1, x + 1 : ζt (y) = 1}|,
1 → 0 at rate 1,

for all times t ≥ 0, where |B| denotes the cardinal of B ⊂ Z. Typically, the process started from
configuration η is denoted as ζ

η
t . For general information about interacting particle systems,

such as the fact that the above rates specify a well-defined process, we refer the reader to
Liggett [11]. We note that the cases λ = µ and µ = 0 correspond to the extensively studied
processes known as the contact process and the forest fire model, respectively; for an account
of various related results and proofs, see Chapters 4, 9, and 10 of Durrett [4] and Part I of
Liggett [12]. Furthermore, in the literature various survival aspects of the three-state contact
process on the d-dimensional lattice were studied by Durrett and Schinazi [7] and Stacey [13],
the latter also includes results for the process on homogeneous trees.

The process is thought of according to the following epidemiological interpretation. Given a
configuration ζ , each site x is regarded as infected if ζ(x) = 1, as susceptible and never infected
if ζ(x) = −1, and as susceptible and previously infected if ζ(x) = 0. The standard initial
configuration is such that the origin is infected while all other sites are susceptible and never
infected. We will use ζO

t to denote the nearest-neighbours three-state contact process started
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612 A. TZIOUFAS

from the standard initial configuration. We say that the three-state contact process survives if
P(ζO

t survives) > 0, where the event {for all t ≥ 0, there exists x : ζt (x) = 1} is abbreviated
as {ζt survives}.

For ζO
t , transitions −1 → 1, 0 → 1, and 1 → 0 respectively correspond to initial infections,

subsequent infections, and recoveries. Accordingly, the initial infection of a site induces a
permanent alternation of the parameter proportional to which it will be susceptible; hence,
the parameter either decreases, corresponding to (partial) immunization, or increases, i.e. the
reverse occurs. Our results concern the three-state contact process under the constraint that
µ ≥ λ (this explains the title of the paper). When modelling an epidemic, the µ ≤ λ case
could be a consequence of imperfect inoculation of individuals following their first exposure to
the disease, while the µ ≥ λ case could be a consequence of debilitation of individuals caused
by their first exposure to the disease. Specifically, tuberculosis and bronchitis are plausible
examples of a disease that captures the latter characteristic.

When (λ, µ) are such that λ = µ, the process is reduced to the well-known contact process.
In this case we will identify a configuration with the subset of Z that corresponds to the set of
its infected sites, since states −1 and 0 are effectively equivalent. Also, it is well known that the
contact process exhibits a phase transition phenomenon; µc will denote its (one-dimensional
nearest-neighbours) critical value, i.e. 0 < µc < ∞, and, if µ < µc, the process dies out, while
if µ > µc, the process survives.

It is known that the three-state contact process with parameters (λ, µ) such that µ > µc
and λ > 0 survives; see [7]. We are concerned with the behaviour of the process when
survival occurs, assuming additionally that µ ≥ λ. Theorem 1.1 below summarizes the main
results of this paper. In words, parts (i) and (ii) of Theorem 1.1 are respectively a law of
large numbers and the corresponding central limit theorem for the rightmost infected, while
parts (iii) and (iv) are respectively a law of large numbers and complete convergence for the
set of infected sites of the process. In order to demonstrate our results, we introduce some
notation. The standard normal distribution function is denoted by N(0, σ 2), σ 2 > 0, and
the weak convergence of random variables and of set-valued processes are denoted by ‘

w−→’
and by ‘⇒’, respectively. Furthermore, we denote by ν̄µ the upper invariant measure of the
contact process with parameter µ, and by δ∅ the probability measure that puts all mass on the
empty set. (For general information about the upper invariant measure and weak convergence
of set-valued processes, we refer the reader to [12, pp. 34–35].)

Theorem 1.1. Consider ζO
t with parameters (λ, µ), and let It = {x : ζO

t (x) = 1} and rt =
sup It . If (λ, µ) are such that µ ≥ λ > 0 and µ > µc, then there exists α > 0 such that,
conditional on {ζO

t survives},
(i) rt /t → α almost surely;

(ii) (rt − αt)/
√

t
w−→ N(0, σ 2) for some σ 2 > 0;

(iii) |It |/t → 2αθ almost surely, where θ = θ(µ) is the density of ν̄µ;

(iv) It ⇒ (1 − β)δ∅ + βν̄µ, where β = P(ζO
t survives) > 0.

We comment on the proof of Theorem 1.1. The cornerstone to proving parts (i) and (ii)
is to ascertain the existence of a sequence of space–time points, termed break points, strictly
increasing in both space and time, among which the behaviour of rt conditional on {ζO

t survives}
stochastically replicates; these type of arguments have been established by Kuczek; see [10].
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One-dimensional reverse immunization contact processes 613

We also note that the proofs of parts (iii) and (iv) are based on variations of the arguments for
the contact process case due to Durrett and Griffeath; see [2], [6], and [8].

In the next section we introduce the graphical construction, we also present monotonicity and
give some elementary coupling results. Section 3 is dedicated to the proof of two exponential
estimates that we need in Section 4, where we study break points and provide a proof of
Theorem 1.1.

2. Preliminaries

2.1. The graphical construction

The graphical construction will be used in order to visualize the construction of various
processes on the same probability space; we will repeatedly use it throughout this paper.

Consider parameters (λ, µ), and suppose that µ ≥ λ; the other case is similar. To carry out
our construction for all sites x and y = x − 1, x + 1, let (T

x,y
n )n≥1 and (U

x,y
n )n≥1 be the event

times of Poisson processes at rates λ and µ − λ, respectively; furthermore, let (Sx
n )n≥1 be the

event times of a Poisson process at rate 1. (All Poisson processes introduced are independent.)
Consider the space Z × [0, ∞), thought of as giving a time line to each site of Z; the

cartesian product is denoted by ‘×’. Given a realization of the aforementioned ensemble
of Poisson processes, we define the graphical construction and ζ

[η,s]
t , t ≥ s, the nearest-

neighbours three-state contact process with parameters (λ, µ) started from η at time s ≥ 0, i.e.
ζ

[η,s]
s = η, as follows. From each point x × T

x,y
n we place a directed λ-arrow to y × T

x,y
n ; this

indicates that at all times t = T
x,y
n , t ≥ s; if ζ

[η,s]
t− (x) = 1 and ζ

[η,s]
t− (y) = 0 or ζ

[η,s]
t− (y) = −1,

then we set ζ
[η,s]
t (y) = 1 (where ζt−(x) denotes the limit of ζt−ε(x) as ε → 0). From each

point x × U
x,y
n we place a directed (µ − λ)-arrow to y × U

x,y
n ; this indicates that at any time

t = U
x,y
n , t ≥ s; if ζ

[η,s]
t− (x) = 1 and ζ

[η,s]
t− (y) = 0, then we set ζ [η,s]

t (y) = 1. From each point
x ×Sx

n we place a recovery mark; this indicates that at any time t = Sx
n , t ≥ s; if ζ

[η,s]
t− (x) = 1

then we set ζ [η,s]
t (x) = 0. We introduce the special marks to make a connection with percolation

and, hence, the contact process. We define the contact process ξA
t with parameter µ started

from A ⊂ Z as follows. We write A × 0 → B × t, t ≥ 0, if there exists a connected oriented
path from x ×0 to y × t for some x ∈ A and y ∈ B that moves along the arrows (of either type),
in the direction of the arrow, and along time lines, in the direction of increasing time, without
passing through a recovery mark. Defining ξA

t := {x : A × 0 → x × t}, t ≥ 0, we find that
(ξA

t ) is a set-valued version of the contact process with parameter µ started from A infected.
It is important to emphasize that the graphical construction, for fixed (λ, µ), defines all

ζ
[η,s]
t , t ≥ s, for any configuration η and time s ≥ 0, and all ξA

t for any A ⊂ Z simultaneously
on the same probability space, i.e. it provides a coupling of all these processes.

Definition 2.1. We shall denote by � (ζ ) the set of infected sites of any given configuration ζ ,
i.e. � (ζ ) = {y ∈ Z : ζ(y) = 1}.

To simplify our notation, consistently with Section 1, ζ [η,0]
t is denoted as ζ

η
t , and, letting η0 be

the standard initial configuration, ζ [η0,0]
t is denoted as ζO

t . Additionally, the event {� (ζ
[η,s]
t ) 
=

∅ for all t ≥ s} will be abbreviated below as {ζ [η,s]
t survives}.

Finally, we note that we have produced a version of ζ
η
t via a countable collection of Poisson

processes, providing a well-defined process. Indeed, whenever it is assumed that |� (η)| < ∞,
this is a consequence of standard Markov chains having an almost-surely countable state space;
otherwise, this is provided by an argument due to Harris [9] (see also Theorem 2.1 of [5]).
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614 A. TZIOUFAS

2.2. Monotonicity and coupling results

To introduce monotonicity concepts, we endow the space of configurations {−1, 0, 1}Z with
the componentwise partial order, i.e. for any two configurations η1 and η2, we have η1 ≤ η2
whenever η1(x) ≤ η2(x) for all x ∈ Z. The following theorem is a known result; for a proof,
we refer the reader to Section 5 of [13].

Theorem 2.1. Let η and η′ be any two configurations such that η ≤ η′. Consider the respective

three-state contact processes ζ
η
t and ζ

η′
t with the same parameters (λ, µ) coupled by the

graphical construction. For all (λ, µ) such that µ ≥ λ > 0, ζ
η
t ≤ ζ

η′
t holds. We refer to

this property as monotonicity in the initial configuration.

For the remainder of this subsection, we give various coupling results concerning ζO
t , the

nearest-neighbours three-state contact process with parameters (λ, µ) started from the standard
initial configuration. Let It = � (ζO

t ), rt = sup It , and lt = inf It .
We note that both the nearest-neighbours assumption and the assumption that µ ≥ λ in all

three of the proofs in this subsection are crucial.
The next lemma will be used repeatedly throughout this paper; its proof given below is a

simple extension of a well-known result for the nearest-neighbours contact process on Z (see,
e.g. [2]).

Lemma 2.1. Let η′ be any configuration such that η′(0) = 1 and η′(x) = −1 for all x ≥ 1.
Consider ζ

η′
t with parameters (λ, µ), and let r ′

t = sup � (ζ
η′
t ). For (λ, µ) such that µ ≥ λ, if

ζO
t and ζ

η′
t are coupled by the graphical construction, then the following property holds: for

all t ≥ 0,
rt = r ′

t on {It 
= ∅}.
Proof. We prove the following stronger statement: for all t ≥ 0,

ζO
t (x) = ζ

η′
t (x) for all x ≥ lt , on {It 
= ∅}. (2.1)

Clearly, (2.1) holds for t = 0. We show that all possible transitions preserve (2.1). An increase
of lt (i.e. a recovery mark at lt × t), as well as any transition changing the state of any site
x such that x ≥ lt + 1, preserves (2.1). It remains to examine transitions that decrease lt .
By monotonicity in the initial configuration, the possible pairs of (ζO

t (lt − 1), ζ
η′
t (lt − 1)) are

(−1, 0), (−1, 1), (0, 0), and (0, 1). In the (−1, 0) case, (2.1) is preserved because λ-arrows
are used for transitions −1 → 1 as well as 0 → 1, while in the three remaining cases this is
obvious. This completes the proof of (2.1).

The next lemma will be used in the proof of the two final parts of Theorem 1.1; its proof is
a simple variant of that of Lemma 2.1 and is thus omitted.

Lemma 2.2. Let ξZ
t be the nearest-neighbours contact process with parameter µ started

from Z. For (λ, µ) such that µ ≥ λ > 0, if ζO
t and ξZ

t are coupled by the graphical construction,
the following property holds: for all t ≥ 0,

It = ξZ

t ∩ [lt , rt ] on {It 
= ∅}.

Definition 2.2. For all integers k, let ηk be the configuration such that ηk(k) = 1 and ηk(y) =
−1 for all y 
= k.
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Our final coupling result will be used in the definition of break points in Subsection 4.1. To
state the lemma, define the stopping times τk = inf{t : rt = k}, k ≥ 1, and let R = supt≥0 rt .

Lemma 2.3. Let (λ, µ) be such that µ ≥ λ > 0, and consider the graphical construction.
Consider also the processes ζ

[ηk,τk]
t , k ≥ 1, started at times τk from ηk (see Definition 2.2).

Then, for all k = 1, . . . , R, it holds that

ζO
t ≥ ζ

[ηk,τk]
t for all t ≥ τk.

Proof. We have ζO
τk

(k) = 1, because ηk is the least infectious configuration such that
ηk(k) = 1. We also have ζO

τk
≥ ηk for all k = 1, . . . , R. By monotonicity in the initial

configuration, the proof is completed.

3. Exponential estimates

In this section we establish and prove two exponential estimates for the three-state contact
process that will be used in Section 4. The proofs are based on a renormalization result of
Durrett and Schinazi [7] that is an extension of the well-known work of Bezuidenhout and
Grimmett [1].

Subsequent developments require understanding of oriented site percolation. Consider the
set of sites L = {(y, n) ∈ Z2 : n ≥ 0 and y + n is even}. For each site (y, n) ∈ L, we
associate an independent Bernoulli random variable w(y, n) ∈ {0, 1} with parameter p > 0;
if w(y, n) = 1, we say that (y, n) is open. We write (x, m) → (y, n) whenever there exists a
sequence of open sites (x, m) ≡ (y0, m), . . . , (yn−m, n) ≡ (y, n) such that |yi − yi−1| = 1 for
all i = 1, . . . , n − m. Define (An)n≥0 with parameter p as An = {y : (0, 0) → (y, n)}. We
write {An survives} as an abbreviation for {for all n ≥ 1 : An 
= ∅}.

The next proposition is the renormalization result. It is a consequence of Theorem 4.3
of [5], in which the comparison assumptions hold due to Proposition 4.8 of [7]. To state the
proposition, given constants L and T , we define the set of configurations Zy = {ζ : |� (ζ ) ∩
[−L + 2Ly, L + 2Ly]| ≥ L0.6} for all integers y.

Proposition 3.1. Let η be any configuration such that η ∈ Z0, and consider ζ
η
t with parameters

(λ, µ) such that µ > µc and λ > 0. For all p < 1, there exist constants L and T such that ζ
η
t

can be coupled to An with parameter p such that

y ∈ An ⇒ ζ
η
nT ∈ Zy, (y, n) ∈ L.

In particular, the process survives.

The first of the exponential estimates that we need for Section 4 is the following.

Proposition 3.2. Consider ζO
t with parameters (λ, µ). Let It = � (ζO

t ), rt = sup It , and
R = supt≥0 rt , and let ρ = inf{t : It = ∅}. If (λ, µ) are such that µ > µc and µ ≥ λ > 0,
then there exist constants C and γ > 0 such that

P(R ≥ n, ρ < ∞) ≤ Ce−γ n (3.1)

for all n ≥ 1.

Proof. Consider the graphical construction for (λ, µ) as in the statement. Recall the com-
ponentwise partial order on the space of configurations and the property of monotonicity in the

https://doi.org/10.1239/jap/1316796902 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1316796902


616 A. TZIOUFAS

initial configuration that were introduced in Subsection 2.2, and the configurations ηk given in
Definition 2.2. By Proposition 3.1, emulating the proof of Theorem 2.30(a) of [12], we have

P(t < ρ < ∞) ≤ Ce−γ t (3.2)

for all t ≥ 0. To see that the arguments given in [12] apply in this context, note that, by
monotonicity in the initial configuration, for any time s > 0 and any x ∈ Is , considering
the process ζ

[ηx,s]
t , we have ζO

t ≥ ζ
[ηx,s]
t for all t ≥ s; hence, the proof in [12] applies for

δ = P(ζO
1 ∈ Z0) > 0.

To prove (3.1), we note that by set theory we have, for all n ≥ 1,

P(R > n, ρ < ∞) ≤ P

(
n

λ
< ρ < ∞

)
+ P

(
ρ <

n

λ
, R > n

)
.

The first term on the right-hand side decays exponentially in n due to (3.2); thus, it remains to
prove that the probability of the event {supt≤n/λ rt > n} decays exponentially in n, which is
immediate because supt∈(0,u] rt is bounded above in distribution by the number of events until
time u in a Poisson process at rate λ and standard large deviation results for Poisson processes.

The following elementary result for independent site percolation and the subsequent geo-
metrical lemma are needed in the proof of Proposition 3.3 below.

Lemma 3.1. Consider (An) with parameter p, and define Rn = sup An, n ≥ 0. For p

sufficiently close to 1, there are strictly positive and finite constants a, γ , and C such that

P(Rn < an, An survives) ≤ Ce−γ n

for all n ≥ 1.

Proof. Define A′
n = {y : (x, 0) → (y, n) for some x ≤ 0}, and let R′

n = sup A′
n, n ≥ 1.

Because Rn = R′
n on {An survives}, it is sufficient to prove that p can be chosen sufficiently

close to 1 such that, for somea > 0, the probability of the eventR′
n < andecays exponentially in

n ≥ 0. Letting B ′
n be independent oriented bond percolation on L with supercritical parameter

p̃ < 1 started from {(x, 0) ∈ L : x ≤ 0}, the result follows from the corresponding large
deviations result for B ′

n (see [3, Equation (1), Section 11]), because, for p = p̃(2 − p̃), B ′
n can

be coupled to A′
n such that B ′

n ⊂ A′
n holds (see [12, p. 13]).

Lemma 3.2. Let b and c be strictly positive constants. For any a < c, we can choose a
sufficiently small φ ∈ (0, 1) that does not depend on t ∈ R ≥ 0 such that, for all x ∈
[−bφt, bφt],

[x − c(1 − φ)t, x + c(1 − φ)t] ⊇ [−at, at], t ≥ 0. (3.3)

Proof. Note that it is sufficient to consider x = brt ; then, simply choose φ such that
btr − c(1 − φ)t < −at , i.e. for φ < (c − a)/(c + b), φ > 0, (3.3) holds.

The other exponential estimate we will need in Section 4 is the following.

Proposition 3.3. Let η̄ be such that η̄(x) = 1 for all x ≤ 0, and η̄(x) = −1 otherwise.
Consider ζ

η̄
t with parameters (λ, µ), and let r̄t = sup � (ζ

η̄
t ). If (λ, µ) are such that µ > µc

and µ ≥ λ > 0, then there exist strictly positive and finite constants a, γ , and C such that

P(r̄t < at) ≤ Ce−γ t

for all t ≥ 0.
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Proof. Consider the graphical construction for (λ, µ) as in the statement. Let p be suf-
ficiently close to 1 so that Lemma 3.1 is satisfied. Recall the configurations ηx given in
Definition 2.2. By the proof of Theorem 2.30(a) of [12]—which applies for the reasons
explained in the first paragraph of the proof of Proposition 3.2—we find that the total time
σ until we get a percolation process An with parameter p that is coupled to ζ

[ηr̄σ ,σ ]
t , as

explained in Proposition 3.1 (for r̄σ × (σ + 1) being thought of as the origin), and conditioned
on {An survives}, is exponentially bounded. From this, because r̄t is bounded above in
distribution by a Poisson process, there exists a constant λ̃ such that the event {r̄σ × (σ + 1) ∈
[−λ̃td, λ̃td] × (0, td]} for all d ∈ (0, 1) occurs outside some exponentially small probability
in t . Finally, on this event, by Lemma 3.1 and the coupling in Lemma 2.1, there exists an ã > 0
such that r̄t ≥ ãt − r̄σ , again outside some exponentially small probability in t . Choosing
λ̃ = b and ã = c in Lemma 3.2 completes the proof.

4. Main results

This section is organized as follows. In Subsection 4.1 we prove Theorem 4.1 stated below;
based on this theorem, we prove Theorem 1.1 in Subsection 4.2.

Theorem 4.1. Consider ζO
t with parameters (λ, µ), and let rt = sup � (ζO

t ). Suppose that
(λ, µ) are such that µ > µc and µ ≥ λ > 0. On {ζO

t survives} there exist random (but not
stopping) times τ̃0 := 0 < τ̃1 < τ̃2 < · · · such that (rτ̃n

− rτ̃n−1 , τ̃n − τ̃n−1)n≥1 are independent
and identically distributed (i.i.d.) random vectors, where rτ̃1 ≥ 1 and rτ̃n

= supt≤τ̃n
rt . Further-

more, letting Mn = rτ̃n
− inf t∈[τ̃n,τ̃n+1) rt , n ≥ 0, we find that (Mn)n≥0 are i.i.d. random

variables, where Mn ≥ 0. Finally, rτ̃1 , τ̃1, and M0 are exponentially bounded.

4.1. Break points

For defining the break points below, consider the graphical construction for (λ, µ) such that
µ > µc and µ ≥ λ > 0. Consider ζO

t , define rt = sup � (ζO
t ), and also define the stopping

times τk = inf{t : rt = k}, k ≥ 0. Let ηk be as in Definition 2.2. The break points defined
below form a unique strictly increasing, in space and in time, subsequence of the space–time
points k × τk, k ≥ 1, such that ζ

[ηk,τk]
t survives. The origin 0 × 0 is a break point, i.e. our

subsequence is identified on {ζO
t survives}.

Definition 4.1. Define (K0, τK0) = (0, 0). For all n ≥ 0 and Kn < ∞, we inductively define

Kn+1 = inf{k ≥ Kn + 1 : ζ
[ηk,τk]
t survives},

and Xn+1 = Kn+1 − Kn. Furthermore, we define

�n+1 = τKn+1 − τKn and Mn = Kn − inf
τKn≤t<τKn+1

rt .

We refer to the space–time points Kn × τKn, n ≥ 0, as the break points.

Let τ̃n := τKn, n ≥ 0, in the definition of the break points given above. Then, to prove
Theorem 4.1, it is sufficient to prove the following two propositions.

Proposition 4.1. K1, τK1 , and M0 are exponentially bounded.

Proposition 4.2. (Xn, �n, Mn−1)n≥1 are i.i.d. vectors.

Definition 4.2. Given a configuration ζ and an integer y ≥ 1, we define the configuration ζ −y

by (ζ − y)(x) = ζ(y + x) for all x ∈ Z.
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618 A. TZIOUFAS

We shall denote by Ft the sigma-algebra associated to the ensemble of Poisson processes
used for producing the graphical construction up to time t .

The setting of the following lemma is important to what follows.

Lemma 4.1. Let η̄ be such that η̄(x) = 1 for all x ≤ 0, and η̄(x) = −1 otherwise. Consider ζ
η̄
t

with parameters (λ, µ). Define r̄t = sup � (ζ
η̄
t ), and define the stopping times Tn = inf{t : r̄t =

n}, n ≥ 0. Let (λ, µ) be such that µ ≥ λ > 0 and µ > µc, and consider the graphical
construction.

Let Y1 := 1, and consider ζ 1
t := ζ

[ηY1 ,T1]
t . We let ρ1 = inf{t ≥ T1 : � (ζ 1

t ) = ∅}. For all
n ≥ 1, proceed inductively. On the event {ρn < ∞}, let

Yn+1 = 1 + sup
t∈[TYn ,ρn)

r̄t ,

and consider ζ n+1
t := ζ

[ηYn+1 ,TYn+1 ]
t . We let ρn+1 = inf{t ≥ TYn+1 : � (ζ n+1

t ) = ∅}. On the
event that {ρn = ∞}, let ρl = ∞ for all l > n. Define the random variable N = inf{n ≥
1 : ρn = ∞}. We have

YN = inf{k ≥ 1 : ζ
[ηk,Tk]
t survives} (4.1)

and
r̄t = sup � (ζ n

t ) for all t ∈ [TYn, ρn) and n ≥ 1. (4.2)

Furthermore,

(ζ 1
t+T1

− 1)t≥0 is independent of FT1 and is equal in distribution to (ζO
t )t≥0 (4.3)

and

conditional on {ρn < ∞, Yn+1 = w}, w ≥ 1, (ζ n+1
t+TYn+1

− w)t≥0 is independent

of FTYn+1
and is equal in distribution to (ζO

t )t≥0. (4.4)

Proof. Equation (4.1) is a consequence of Lemma 2.3. To see this, note that Lemma 2.3
yields, for all n ≥ 1 on {ρn < ∞}, ρn ≥ inf{t ≥ Tk : � (ζ

[ηk,Tk]
t ) = ∅} for all k = Yn +

1, . . . , Yn+1 − 1. Equation (4.2) is immediate from Lemma 2.1.
Note that from Proposition 3.3 we have Tn < ∞ for all n ≥ 0 almost surely (a.s.). Then,

(4.3) follows from the strong Markov property at time T1 < ∞ and translation invariance.
Equation (4.4) immediately follows by applying the strong Markov property at time TYn+1 < ∞,
where TYn+1 < ∞, because from Proposition 3.2 we have, conditional on ρn < ∞, Yn+1 < ∞
a.s.

The connection between the break points and Lemma 4.1 is given by the following coupling
result.

Lemma 4.2. Let η′ be any configuration such that η′(0) = 1 and η′(x) = −1 for all x ≥ 1.
Consider ζ

η′
t with parameters (λ, µ), and let r ′

t = sup � (ζ
η′
t ) and τ ′

k = inf{t ≥ 0 : r ′
t = k},

k ≥ 1. Define the integers

K ′ = inf{k ≥ 1 : ζ
[ηk,τ

′
k]

t survives}
and M ′ = inf0≤t≤τ ′

K
rt

′. Consider further ζO
t with parameters (λ, µ). For (λ, µ) such that

µ ≥ λ > 0 and µ > µc, if ζO
t and ζ

η′
t are coupled by the graphical construction, it holds that

(K ′, τ ′
K ′ , M ′) = (K1, τK1 , M0) on {ζO

t survives},
where K1, τK1 , and M0 are as in Definition 4.1.
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The proof of Lemma 4.2 is an immediate consequence of Lemma 2.1.

Proof of Proposition 4.1. Consider the setting of Lemma 4.1. By the definition of the break
points, Definition 4.1, and Lemma 4.2, on {ζO

t survives}, we have K1 = YN , τK1 = TYN
,

and M0 = inf t≤TYN
r̄t . It is thus sufficient to prove that the random variables YN , TYN

, and
inf t≤TYN

r̄t are exponentially bounded, merely because an exponentially bounded random
variable is again exponentially bounded conditional on any set of positive probability.

We have

YN = 1 +
N∑

n=2

(Yk − Yk−1) on {N ≥ 2}, (4.5)

while Y1 := 1. Using this and Proposition 3.2, we will prove that YN is bounded above in
distribution by a geometric sum of i.i.d. exponentially bounded random variables and, hence,
is itself exponentially bounded.

Let ρ and R be as in Proposition 3.2. We define pR(w) = P(R + 1 = w, ρ < ∞) and
p̄R(w) = P(R + 1 = w | ρ < ∞) for all integers w ≥ 1. Also, define p = P(ρ = ∞) > 0
and q = 1 − p, where p > 0 by Proposition 3.1.

By (4.3) in the statement of Lemma 4.1, we have

P(Y2 − Y1 = w, ρ1 < ∞) = pR(w), w ≥ 1; (4.6)

similarly, from (4.4) in the same statement, we have, for all n ≥ 1,

P(ρn+1 = ∞ | ρn < ∞, Yn+1 = z, FTYn+1
) = p (4.7)

and
P(Yn+1 − Yn = w, ρn < ∞ | ρn−1 < ∞, Yn = z, FTYn

) = pR(w) (4.8)

for all w, z ≥ 1.
Clearly, {N = n} = {ρk < ∞ for all k = 1, . . . , n − 1 and ρn = ∞}, n ≥ 2, and, hence,{ m⋂
n=1

{Yn+1 − Yn = wn}, N = m + 1

}
=

{ m⋂
n=1

{Yn+1 − Yn = wn, ρn < ∞}, ρm+1 = ∞
}

for all m ≥ 1. Using this, from (4.7), m − 1 applications of (4.8), and (4.6), since pR(w) =
qp̄R(w), we have

P

( m⋂
n=1

{Yn+1 − Yn = wn}, N = m + 1

)
= pqm

m∏
n=1

p̄R(wn)

for all m ≥ 1 and wn ≥ 1. From the last display and (4.5), owing to Proposition 3.2, we
find that YN is exponentially bounded by the following elementary conditioning argument. Let
(ρ̃k, R̃k), k ≥ 1 be independent pairs of random variables, each of which is distributed as
(ρ, R), and define the geometric random variable Ñ := inf{n ≥ 1 : ρ̃n = ∞}. Then YN is

equal in distribution to
∑Ñ−1

k=0 R̃k, R̃0 := 1.
We proceed to prove that TYN

and inf t≤TYN
r̄t are exponentially bounded random variables.

By (4.1), letting x̄t = sups≤t r̄s , we have {TYN
> t} = {x̄t ≤ YN }; from this and set theory, we

have, for any a > 0,

P(TYN
> t) = P(x̄t ≤ YN)

≤ P(x̄t < at) + P(x̄t ≥ at, x̄t ≤ YN)

≤ P(x̄t < at) + P(YN ≥ �at�) for all t ≥ 0, (4.9)
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where �·� is the floor function. Choosing a > 0 as in Proposition 3.3, because x̄t ≥ r̄t , and
since YN is exponentially bounded, we deduce from (4.9) that TYN

is exponentially bounded as
well.

Finally, we prove that M := inf t≤TYN
r̄t is exponentially bounded. From set theory,

P(M < −x) ≤ P

(
TYN

≥ x

µ

)
+ P

(
TYN

<
x

µ
, {r̄s ≤ −x for some s ≤ TYN

}
)

,

because TYN
is exponentially bounded. It is sufficient to prove that the second term on the

right-hand side decays exponentially. However, recall that r̄
TYN

≥ 1; hence,

P

(
TYN

<
x

µ
, {r̄s ≤ −x for some s ≤ TYN

}
)

≤ P

(
(r̄t − r̄s ) > x for some s ≤ x

µ
and t ≤ x

µ

)
,

where the term on the right-hand side decays exponentially in x, because (r̄t − r̄s ), t > s, is
bounded above in distribution by �µ(s, t], the number of events of a Poisson process at rate µ

within the time interval (s, t], by use of standard large deviations for Poisson processes, because
�µ(s, t] ≤ �µ(0, x/µ] for any s, t ∈ (0, x/µ].

The next lemma is used in the proof of Proposition 4.2.

Lemma 4.3. Consider the setting of the definition of break points, Definition 4.1. For all n ≥ 1,
we have{ n⋂

l=1

{(Xl, �l, Ml−1) = (xl, tl, ml−1)}, ζO
t survives

}
= {ζ [ηzn ,wn]

t survives, τzn = wn, A}
(4.10)

for some event A ∈ Fwn , where zn = ∑n
l=1 xl and wn = ∑n

l=1 tl .

Proof. Considering the setting of Lemma 4.1, we trivially have{(
YN, TYN

, inf
t≤TYN

r̄t

)
= (x1, t1, m0)

}
= {ζ [ηx1 ,t1]

t survives, Tx1 = t1, B}

for some event B ∈ Ft1 ; from this and Lemma 4.2, we have

{(X1, �1, M0) = (x1, t1, m0), ζ
O
t survives} = {ζ [ηx1 ,t1]

t survives, τx1 = t1, B, ζO
t survives}

= {ζ [ηx1 ,t1]
t survives, τx1 = t1, B, It1 
= ∅}

for all x1 ≥ 1, t1 ∈ R+, and m0 ≥ 0. As {It1 
= ∅} ∈ Ft1 , we have thus proved (4.10) for
n = 1. For general n ≥ 1, the proof is derived by repeated applications of the above display.

Proof of Proposition 4.2. Consider the setting of the definition of break points, Defini-
tion 4.1. Assume that Kn, τKn , and Mn−1 are a.s. finite. We will prove that

P

(
(Xn+1, �n+1, Mn) = (x, t, m)

∣∣∣∣
n⋂

l=1

{(Xl, �l, Ml−1) = (xl, tl, ml−1)}, ζO
t survives

)

= P((X1, �1, M0) = (x, t, m) | ζO
t survives) (4.11)

for all (xl, tl, ml−1), xl ≥ 1, tl ∈ R+, ml−1 ≥ 0, and l = 1, . . . , n, and, hence, in particular
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that Kn+1, τKn+1 , and Mn are exponentially bounded. By induction, and since K1, τK1 , and M0
are exponentially bounded by Proposition 4.1, (4.11) completes the proof of Proposition 4.2 by
Bayes’s sequential formula.

It remains however to prove (4.11). Rewrite the conditioning event on the left-hand side of
(4.11) according to (4.10) and note that

{τzn = wn} ⊂ {ζO
wn

(zn) = 1 and ζO
wn

(y) = −1 for all y ≥ zn + 1}.
Applying Lemma 4.2 completes the proof by independence of the Poisson processes in disjoint

parts of the graphical construction, because (ζ
[ηzn ,wn]
t+wn

− zn)t≥0 is equal in distribution to
(ζO

t )t≥0 by translation invariance.

4.2. Proof of Theorem 1.1

We denote by P̄ the probability measure induced by the construction of the process con-
ditional on {ζO

t survives}, and we denote by Ē the expectation associated to P̄. Consider the
setting of Theorem 4.1, and let α = Ē(rτ̃1)/Ē(τ̃1), α ∈ (0, ∞).

Proof of part (i). Because rτ̃n
= ∑n

m=1(rτ̃m
− rτ̃m−1) and τ̃n = ∑n

m=1(τ̃m − τ̃m−1), n ≥ 1,
using the strong law of large numbers twice yields

P̄

(
lim

n→∞
rτ̃n

τ̃n

= α

)
= 1. (4.12)

We prove that indeed limt→∞ rt /t = α, P̄-a.s. From Theorem 4.1 we have

rτ̃n
− Mn

τ̃n+1
≤ rt

t
≤ rτ̃n+1

τ̃n

for all t ∈ [τ̃n, τ̃n+1), n ≥ 0. (4.13)

Furthermore, because (Mn)n≥0, M0 ≥ 0, is a sequence of i.i.d. and exponentially bounded
random variables, we have

P̄

(
lim

n→∞
Mn

n
= 0

)
= 1, (4.14)

by the first Borel–Cantelli lemma. Consider any a < α. By (4.13) we have{
rtk

tk
< a for some tk ↑ ∞

}
⊆

{
lim sup
n→∞

{
rτ̃n

− Mn

τ̃n+1
< a

}}
; (4.15)

however,

P̄

(
lim sup
n→∞

{
rτ̃n

− Mn

τ̃n+1
< a

})
= 0.

To see this, simply use (4.12) and (4.14) to deduce that limn→∞(rτ̃n
− Mn)/τ̃n+1 = α, P̄-a.s.

By use of the upper bound in (4.13) and (4.12), we also have, for any a > α, P̄({rtk /tk >

a for some tk ↑ ∞}) = 0. This completes the proof of part (i).

Proof of part (ii). We will prove that

lim
t→∞ P̄

(
rt − αt√

t
≤ x

)
= �

(
x

σ 2

)

for some σ 2 > 0 and x ∈ R, where � is the standard normal distribution function, i.e.

�(y) := 1√
2π

∫ y

−∞
exp

(
−1

2
z2

)
dz, y ∈ R.
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Define Nt = sup{n : τ̃n < t}; evoking Lemma 2 of [10, pp. 1330–1331], which applies due
to Theorem 4.1, we have

lim
t→∞ P̄

(
rNt − αt√

t
≤ x

)
= �

(
x

σ 2

)
, x ∈ R.

From this, by standard association of convergence concepts, i.e. Slutsky’s theorem, it is sufficient
to show that

P̄

(
lim

t→∞
rt − rNt√

t
= 0

)
= 1 (4.16)

and that σ 2 is strictly positive. Note however that by Theorem 4.1 we have

M
Ñt√
t

≤ rt − rNt√
t

≤ rτ̃Nt +1 − rτ̃Nt√
t

(4.17)

for all t ≥ 0.
We show that (4.16) follows from (4.17). Because (rτ̃n+1 − rτ̃n

)n≥0, rτ̃1 ≥ 1, are i.i.d. and
exponentially bounded, by the first Borel–Cantelli lemma, and then the strong law of large
numbers, we have

lim
n→∞

(rτ̃n+1 − rτ̃n
)/

√
n√

τ̃n/n
= 0 P̄-a.s.

From the above display and emulating the argument given in (4.15), we have limt→∞(rτ̃Nt +1 −
rτ̃Nt

)/
√

t = 0, P̄-a.s. Similarly, because (Mn)n≥0, M0 ≥ 0, are also i.i.d. and exponentially
bounded, we also have limt→∞ M

Ñt
/
√

t = 0, P̄-a.s.
Finally, we show that σ 2 > 0. As in the proof of Corollary 1 of [10], because α =

Ē(rτ̃1)/Ē(τ̃1), we need to show that Ē(rτ̃1 Ē(τ̃1) − τ̃1Ē(rτ̃1))
2 > 0. However, because rτ̃1 ≥ 1,

this follows by Chebyshev’s inequality. This completes the proof of part (ii).

For the remainder of the proof, consider the graphical construction for (λ, µ) such that
µ > µc and µ ≥ λ > 0. Consider ζO

t , and let rt = sup It and lt = inf It be respectively the
rightmost and leftmost infected of It = � (ζO

t ). Consider also ξZ
t , the contact process with

parameter µ started from Z. By Lemma 2.2 we have, for all t ≥ 0,

It = ξZ

t ∩ [lt , rt ] on {It 
= ∅}. (4.18)

Proof of part (iii). Let θ = θ(µ) > 0 be the density of the upper invariant measure, i.e. θ =
limt→∞ P(x ∈ ξZ

t ). We prove that limt→∞ |It |/t = 2αθ , P̄-a.s.
Considering the interval [max{lt , −αt}, min{rt , αt}], we have, for all t ≥ 0,

∣∣∣∣
rt∑

x=lt

1{x∈ξZ
t } −

αt∑
x=−αt

1{x∈ξZ
t }

∣∣∣∣ ≤ |rt − αt | + |lt + αt | on {It 
= ∅}, (4.19)

where we denote by 1E the indicator of event E. However, by (4.18), we have |It | =∑rt
x=lt

1{x∈ξZ
t } on {It 
= ∅}; thus, because limt→∞ rt /t = α and, by symmetry, limt→∞ lt /t =

−α, P̄-a.s., the proof follows from (4.19) because it is known that, for any a > 0,

lim
t→∞

1

t

∑
|x|≤at

1{x∈ξZ
t } = 2aθ P -a.s.

(see Equation (19) in the proof of Theorem 9 of [6]).

https://doi.org/10.1239/jap/1316796902 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1316796902


One-dimensional reverse immunization contact processes 623

Proof of part (iv). Let ρ = inf{t ≥ 0 : It = ∅}. In the context of set-valued processes, by
general considerations (see [5]), it is known that weak convergence is equivalent to convergence
of finite-dimensional distributions and that, by inclusion-exclusion, it is equivalent to show that,
for any finite set of sites F ⊂ Z,

lim
t→∞ P(It ∩ F = ∅) = P(ρ < ∞) + P(ρ = ∞)φF (∅),

where φF (∅) := limt→∞ P(ξZ
t ∩ F = ∅). By set theory, it is sufficient to prove that

limt→∞ P(It ∩ F = ∅, ρ ≥ t) = P(ρ = ∞)φF (∅), because {ρ < t} ⊆ {It ∩ F = ∅}.
However, emulating the proof of the respective result for the contact process (see, e.g. Theo-
rem 5.1 of [8]), we have limt→∞ P(ξZ

t ∩ F = ∅, ρ ≥ t) = P(ρ = ∞)φF (∅); hence, it is
sufficient to prove that

lim sup
t→∞

P(It ∩ F = ∅, ρ ≥ t) ≤ lim
t→∞ P(ξZ

t ∩ F = ∅, ρ ≥ t), (4.20)

because {It ∩ F = ∅, ρ ≥ t} ⊇ {ξZ
t ∩ F = ∅, ρ ≥ t} by (4.18).

It remains to prove (4.20). By elementary calculations,

P(It ∩ F = ∅, ρ = ∞) − P(ξZ

t ∩ F = ∅, ρ ≥ t) ≤ P(ξZ

t ∩ F � It ∩ F, ρ = ∞)

for all t ≥ 0, where we have used the fact that, by (4.18), It ⊂ ξZ
t for all t ≥ 0. From the above

display and set theory, we have

P(It ∩ F = ∅, ρ ≥ t) − P(ξZ

t ∩ F = ∅, ρ ≥ t)

≤ P(ξZ

t ∩ F � It ∩ F, ρ = ∞) + P(t < ρ < ∞)

for all t ≥ 0; however, the limit as t → ∞ of both terms on the right-hand side is 0—for the
first term this follows from (4.18), because limt→∞ rt = ∞ and limt→∞ lt = ∞, P̄-a.s., while,
for the second term, this is obvious.
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