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THE 3x + 1 CONJUGACY MAP 

DANIEL J. BERNSTEIN AND JEFFREY C. LAGARIAS 

ABSTRACT. The 3JC + 1 map T and the shift map S are defined by T(x) = (3JC + l ) /2 
for x odd, T(x) = x/2 for* even, while S(x) = (x — l ) /2 for JC odd, S(x) — x/2 for 
JC even. The 3JC + 1 conjugacy map 0 on the 2-adic integers Z2 conjugates S to T, i.e., 
£> o S o (J)-1 = T. The map 3> mod 2n induces a permutation <J>„ on Z/2"Z. We study 
the cycle structure of <D„. In particular we show that it has order 2n~4 for n > 6. We 
also count 1-cycles of Ow for n up to 1000; the results suggest that O has exactly two 
odd fixed points. The results generalize to the ax + b map, where ab is odd. 

1. Introduction. The 3x + 1 problem concerns iteration of the 3x + 1 function 

*>-|*V)/2 S»J£S§ 
on the integers Z. The well-known 3x+1 Conjecture asserts that, for each positive integer 
n, some iterate Tk{ri) equals 1, i.e., all orbits on the positive integers eventually reach the 
cycle {1,2}. 

The 3JC + 1 function (1.1) is defined on the larger domain Z2 of 2-adic integers. It is 
a measure-preserving map on Z2 with respect to the 2-adic measure, and it is strongly 
mixing, so it is ergodic; see [8]. More is true. Let S: Z2 —» Z2 be the 2-adic shift map 
defined by 

(1.2) S ( * ) = ( ( * - 1 ) / 2 T ^ i ^ H ^ v ' w \x/2 i f x = 0(mod2); 

i.e., £(£?2o bt2l) = £°20 bi+\2\ if each bt is 0 or 1. Then T is topologically conjugate to 
S: there is a homeomorphism O: Z2 —> Z2 with 

(1.3) 3>o So o r 4 = T. 

In fact T is metrically conjugate to S: one map O satisfying (1.3) preserves the 2-adic 
measure. Thus T is Bernoulli. 

The map O is determined by (1.3) up to multiplication on the right by an automor­
phism of the shift S. It is known that the automorphism group of S is isomorphic to Z/2Z, 
with nontrivial element V(x) = — 1 — x. (See [6, Theorem 6.9] and the introduction to 
[3].) We obtain a unique function O by adding to (1.3) the side condition 0(0) = 0. 
We call d> the 3x + 1 conjugacy map. This function has been constructed several times, 
apparently first in [8], where O"1 is denoted goo, and also in [1], [2]. 
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THE 3x + 1 CONJUGACY MAP 1155 

An important property of O is that it is solenoidal. Here we say that a function/ on 
Z2 is solenoidal if, for every n, it induces a function mod 2", i.e., 

x=y (mod 2n) = » / ( * ) =f(y) (mod 2"). 

This solenoidal property, together with <£(0) = 0, implies that 

(1.4) 0>(JC) = x (mod 2). 

For completeness, we give a self-contained proof that O is unique. Let O and ®' be two 
invertible functions satisfying (1.3) and (1.4). Write Q and Q' for their inverses. Then 
SoQ = QoTmdSoQ' = Q'oT,and(1.4)givesQ = Q' (mod2). If 0 = Q' (mod 2*) 
then QoT=Q'oT (mod 2*), so So 0 = So Q' (mod 2*). Now So Q and So Qf agree in 
the bottom k bits, and 0 and Q' agree in the bottom bit, so Q and 0 ' agree in the bottom 
k + 1 bits. Hence Q = Q' (mod 2*+1). By induction g = Qf (mod 2*) for every k, so 

e = e ,,soo = (D,. 
There is an explicit formula for O - 1 ([8]). Let T™ denote the m-th iterate of T. Then 

00 

(1.5) ®-l(x) = E ( ^ W mo<i 2)2/. 
1=0 

This implies (1.3) and (1.4), and also shows that O - 1 is solenoidal. 
There is also an explicit formula for O ([2]). For* G Z2, expandJC as 

in which {di} is a finite or infinite sequence with 0 < d\ < d2 < * • • • Then 

(1.6) 0)(x) = - E 3 - ' 2 ' / ' . 

This also implies (1.3) and (1.4), and shows that O is solenoidal. 
Various properties of the 3x + 1 map under iteration can be formulated in terms of 

properties of <D. The 3x + 1 Conjecture is reformulated as follows ([2], [8]). Here Z+ 

denotes the positive integers. 

3x + 1 CONJECTURE. Z+ C <&{\Z). 

Furthermore, it is known that 0(Q H Z2) C Q Pi Z2. (This is easily proven from (1.6); 
see [2].) The following conjecture is proposed in [8]. 

PERIODICITY CONJECTURE. ®(Q n Z2) = Q n Z2. 

This would imply that the 3x +1 function T has no divergent trajectories on Z. Recall 

that a trajectory {Tk(n) : k > l} is divergent if it contains an infinite number of distinct 

elements, so that |7*(w)| —> co as k —> 00. In fact, if 

i(3x + k)/2 if x = 1 (mod 2), 
*3AX) \x/2 if x == 0 (mod 2), 
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then the Periodicity Conjecture is equivalent to the assertion that, for all k = ± 1 (mod 6), 
the 3x + k function has no divergent trajectories on Z. (This follows from [9, Corol­
lary 2.1b].) 

This paper studies the 3x + 1 conjugacy map O for its own sake. The function O is 
a solenoidal bijection; it induces permutations Q>n of Z/2WZ. Our object is to determine 
properties of the cycle structure of the permutations Ow. In effect, our results give infor­
mation about the iterates O* of O. We prove in particular that Ow contains three "long" 
cycles of length 2W~4, for all n > 6. 

We remark that the results we prove are not related to the 3x + 1 Conjecture in any 
immediate way; indeed for the iterates Tk the conjugacy (1.3) gives O o ^ o O ~ l = f , 
a relation which does not involve O* for any k > 2. We do note that the Periodicity 
Conjecture is equivalent, for any k > 1, to the assertion that 0*(Q n Z2) = Q Pi Z2. 
Consequently information about Q)k may conceivably prove useful in resolving the Pe­
riodicity Conjecture. 

The contents of the paper are as follows. In Section 2 we give a table of the cycle 
lengths of Ow for n < 20. This table motivated our results. We also give data on 1-
cycles of <PW for n < 1000. We conjecture that O has exactly two odd fixed points. In 
Section 3 we formulate results on the progressive stabilization of the "long" cycles of 
Ow. In Section 4 we generalize these results to the conjugacy map for the ax + b function 

_ / (ax + b)/2 if * = 1 (mod 2) 
la,b(x)- | x / 2 if JC = 0 (mod 2), 

where ab is odd. We prove all these results in Section 5. The proofs are based on Theo­
rem 5.1, which keeps track of the highest-order significant bit in the orbit of JC mod 2n+2. 
In Section 6 we reconsider "short" cycles of <3>„, and present a heuristic argument that 
relates their asymptotics to the number of global periodic points. This heuristic is con­
sistent with the data on 1-cycles presented in Section 2. 

There are two appendices on solenoidal maps. Appendix A shows the equivalence 
of "solenoidal bijection," "solenoidal homeomorphism," and "2-adic isometry." Appen­
dix B shows that a wide class of functions {/generalizing the 3x +1 map Tare conjugate 
to the 2-adic shift S by a solenoidal conjugacy map O^. 

Finally, we note that, for odd k, the map Q(x) = kx conjugates the 3x+1 function to the 
3x+k function; i.e., Qo To Q~l — T3ylc. Thus the cycle structure of the permutations mod 
2n of all the conjugacy maps 0 3 ^ are identical. Other properties of the 3x + 1 conjugacy 
map appear in [2], [10], [11]. In particular, O and O - 1 are nowhere differentiable on Z2; 
see [10], [2]. 

We thank Mike Boyle and Doug Lind for supplying references concerning the auto­
morphism group of the one-sided shift, and the referee for helpful comments. 

2. Empirical Data and Two Conjectures. By (1.4), On takes odd numbers to odd 
numbers. Let Ow: (Z/2WZ)* —> (Z/2"Z)* denote its restriction. The properties of (£„ are 
completely determined by 6„. Indeed, 0(2yx) — 2/®(x) by (1.6), so the action of 6„_y 

describes the action of <3>n on odd numbers times 2J. 
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n <f>„ order(6„) 

I 2 i d e n t i t y 1 
3 {1,5} 2 
4 {1,5}{9,13} 2 
5 {1,21}{5,17}{7,23}{9,29,25,13} 4 
6 {1,21}{3,35}{5,17,37,49} {7,23} {9,29,25,13} 

{19,51}{27,59}{33,53}{39,55}{41,61,57,45} 4 | 

Table 2.1. Cycle structure of <bn,n < 6. 1-cycles are omitted. 

Each 6„ consists of cycles of various lengths, all of which are powers of 2. (See 
Section 3 for a proof.) The exact form of 4>n for n < 6 appears in Table 2.1. 

Table 2.2 below lists the number of cycles of various lengths in 6„ for n < 20. Let 
Xnj denote the set of cycles of 6„ of period 2/, and let \Xnj\ be the number of such cycles. 
From Table 2.2 we see, empirically, that 

(2.1) order(6„) = 2n~\ n>6. 

We also see a progressive stabilization of the number of "long" cycles in Ow. In Sec­
tions 3—5 we prove both these facts. 

How does \Xnj\9 the number of cycles of 6„ of size 2/, behave as n —• oo, for fixed/? 
We give data for the simplest case \Xn$\ of 1-cycles. Table 2.3 gives all values of |JL„}O| 

for n < 100, and Table 2.4 gives values of \Xn$\ at intervals of 10 for n < 1000. We 
computed the values \Xn$\ recursively for increasing n by tracking each 1-cycle individ­
ually. 

The tables show that |JL^O| behaves irregularly, but has a general tendency to increase. 
In Section 6 we present a heuristic model which suggests that 

(2.2) 1̂ ,01 ~ F0n as n —> oo, 

where Fo is the number of odd fixed points of O. Comparison with Table 2.4 suggests 
the following conjecture. 

FIXED POINT CONJECTURE. The 3x + 1 conjugacy map O has exactly two odd fixed 

points. 

We searched for odd rational fixed points, and immediately found two: JC = —1 and 
x = 1/3. The conjecture thus asserts that these are the only odd fixed points of O. We 
do not know of any approach to determine the existence or non-existence of non-rational 
odd fixed points. 

More generally we propose the following conjecture. 
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("J) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
2 2 
3 2 1 
4 4 2 
5 6 3 1 
6 6 7 3 
7 8 10 3 3 
8 14 17 8 0 3 
9 14 21 18 4 0 3 
10 10 35 24 14 2 0 3 
11 12 40 37 18 12 2 0 3 
12 16 48 70 23 16 10 2 0 3 
13 26 53 79 60 24 11 10 2 0 3 
14 22 63 111 98 50 14 11 10 2 0 3 
15 18 81 129 153 84 40 11 11 10 2 0 3 
16 20 96 179 186 137 78 31 11 11 10 2 0 3 
17 18 91 242 236 207 131 61 29 11 11 10 2 0 3 
18 12 104 305 308 312 192 105 56 29 11 11 10 2 0 3 
19 16 86 375 401 432 307 152 99 54 29 11 11 10 2 0 3 
20 26 95 424 573 564 445 281 133 911 54 29 11 11 10 2 0 3 

Table 2.2. Number of cycles \XnJ\ of 0>„ of order 2\ 0 <j < n. 

3x + 1 CONJUGACY FlNlTENESS CONJECTURE. For each] > 0, the 3JC + 1 conjugacy 
map O has finitely many odd periodic points of period 2J. 

We have no idea whether the 3x + 1 conjugacy map O has finitely many odd periodic 
points in total. There are examples of ax + b conjugacy maps that have no odd periodic 
points; see Section 4. 

3. Cycle structure of <£„: Inert Cycles and Stable Cycles. There is a simple re­
lation between the cycles of Ow and those of Ow+i: For x e Z2, the cycle crw+1(x) that x 
belongs to in Ow+i has length |crw+1(x)| either equal to or double the length of the cycle 
an(x) that x belongs to in ®w. 

This follows from a more general fact. Call a functional: Z/mw+1Z —* Z/mn+lZ 
consistent mod mn if it induces a function^ from Z/mnZ to Z/mnZ, i.e., if 

(3.1) x\ = x2 (mod mn) =>fn*\(x\) =/rn(x 2) (mod mn). 

LEMMA 3.1. Letfn+\: Z/mn+xZ —> Z/mn+lZ be a function which is consistent mod 
mn. Ifx is a purely periodic point offn+\ then x is a purely periodic point off and 

K+i(*)| = k\an{x)\ 

for some integer k with 1 < k < m. 
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(k,j) 0 1 2 3 4 5 6 7 8 9 
1 12 32 52 80 116 106 152 124 110 
2 2 16 38 54 82 122 112 144 124 108 
3 2 26 36 56 96 124 110 120 130 108 
4 4 22 38 54 106 124 112 108 128 92 
5 6 18 36 54 116 114 106 114 128 96 
6 6 20 36 54 90 128 92 132 136 96 
7 8 18 50 68 82 118 106 140 124 102 
8 14 12 60 68 92 94 116 144 118 108 
9 14 16 62 84 102 92 122 144 104 88 
10 10 26 50 92 108 100 132 144 98 90 

Table 2.3. Number of 1-cycles in Oio/t-Jt-

(kj) 0 1 2 3 4 5 6 7 8 9 
1 10 96 380 700 844 1278 1078 1330 1944 2030 
2 26 90 458 788 840 1176 1130 1142 2180 2162 
3 50 116 452 916 1134 1000 1212 1170 2194 2230 
4 92 156 544 780 942 914 1270 1240 2226 2128 
5 108 240 574 678 874 998 1462 1346 2130 2206 
6 100 278 588 908 910 1110 1476 1538 2294 2362 
7 132 282 628 818 866 1172 1360 1562 2204 2354 
8 144 320 634 784 932 1172 1358 1778 2184 2362 
9 98 378 784 870 1060 1072 1190 1974 2114 2242 
10 90 404 714 892 1150 1086 1208 1808 2056 2308 

Table 2.4. Number of 1-cycles in 6ioq/+io*-

PROOF. The image of on+\{x) under projection mod mn consists of k copies of a 
purely periodic orbit aw(x), for some k > 1. The bound k < m follows because any 
element of Z/mnZ has only m distinct preimages in Z/mn+lZ. m 

Lemma 3.1 applies to <D„+i, because <D is solenoidal. Since m = 2 we have 

kn+i(*)| = k\an(x)\ with k = 1 or 2. 

We call a cycle crn+\(x) split if |OVH-I(X)| = |<T#I(X)|, because an{x) lifts to two cycles 
mod 2W+1, namely an+\{x) and crn+\(x) + 2". If |<7«+i(jt)| = 2 \an(x)\ we call an+\(x) inert, 
because an(x) has lifted to a single cycle. If (rn+\(x) is an inert cycle, and \a„(x)\ = p, 
then |cr„+i(x)| = 2p and 

(3.2) 0£+1(JC) = JC + 2" (mod 2w+1). 

By induction on n, the length of any cycle \an{x)\ is a power of 2. 
We call a cycle an(x) stable if am(x) is an inert cycle for all m>n. If an(x) is a stable 

cycle, then 
|M*)l=2M-w+1K-i(*)|, m>n. 
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For a stable cycle crn(x), Lemma 3.1 guarantees that the map O restricted to 

{y e Z2 : y = xt (mod 2n) for some xt € <rn(x)} 

has no periodic points. 
Our main result concerning O is as follows. 

THEOREM 3.1. For the 3x + 1 conjugacy map <b, suppose that \crn(x)\ > 4 and that 
an(x) and crn+\(x) are both inert cycles. Then an+2(x) is also an inert cycle. Consequently 
an(x) is a stable cycle. 

Theorem 3.1 follows from Corollary 5.1 at the end of Section 5. 

The hypothesis |<JW(X)| > 4 is necessary in Theorem 3.1. For example, (75(3) = {3}, 
so both cr6(3) = {3,35} and cr7(3) = {3,99,67,35} are inert, but cr8(3) = {3,227,195, 
163} is split. 

COROLLARY 3.1A. order(<f>„) = order(Ow) = 2n~4,for n>6. 

PROOF. <J6(5) = {5,17,37,49} is stable. • 

We next consider Table 2.2 in light of Theorem 3.1. Again let Xnj- denote the set of 
cycles of <I>W of period 2J. CallXWj/ stabilized if it consists entirely of stable cycles. 

COROLLARY 3.1B. Assume that all Xn^-j are stabilized for 0 < j < k — 1, and 

that \Xnyn-k\ = |X„+i)W+i-A:| = |X„+2,„+2-A:|. Then Xm^k is stabilized for m > n, and 

\^m,m-k\ — Mf/i,/!-*|-

This criterion gives the stabilized region indicated in Table 2.2. For n = 20 over 90% 
of all elements in (Z/2WZ)* are in stable cycles. 

4. The ax + b Conjugacy Map. Consider now the ax + ft function 

_ f (ax + ft)/2 if x = 1 (mod 2) 
( 4*1 } ^ W - \x/2 if* = 0 (mod 2), 

where ab is odd. See [4], [5], [7], and [12] for various properties of Ta,b under iteration 
onZ. 

The 2-adic shift map S is conjugate to the general ax + ft function Tajb by the ax + ft 
conjugacy map <3>a,b- %2 —> %2', *•<?., ®a,b °So Q)-l

b = Ta^b. If x = £/ 2dl, where {df\ is a 
finite or infinite sequence with 0 < d\ < di < • • •, then 

(4.2) OaJ>(jc) = -bY,a-l2d'; 
i 

see [2]. Associated to Oa^ are the permutations Q>a,b,n on Z/2"Z obtained by reducing 
<£>ab mod 2n. The following result generalizes Theorem 3.1. 
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THEOREM 4.1. For the ax + b conjugacy map O ^ , suppose that a cycle an(x) of 
<bajbjn has \a„(x)\ > 4. 

(i) If a = 1 (mod 4), and an(x) is an inert cycle, then an+\ (x) is an inert cycle, 
(ii) If a = 3 (mod 4), and an(x) and &n+\(x) are both inert cycles, then o-n+2(x) is an 

inert cycle. 

This theorem follows from Corollary 5.1 in Section 5. The proof actually shows that 
in case (i) the weaker hypothesis |<7„(JC)| > 2 suffices, when b = 3 (mod 4). 

There are examples of ax + b conjugacy maps Q>ajb for which all cycles eventually 
become stable. Such Oa>& then have no odd periodic points. Using Theorem 4.1 we easily 
check that the 25* — 3 conjugacy map when taken mod 32 has an odd part consisting of 
two stable cycles of period 8. 

5. The Highest Order Bit. Throughout this section, O = <ba,b is a general ax + 
b conjugacy map, where a and b are odd. We analyze the high bit of the iterates of 
O mod 2W+2. All earlier results follow from Theorem 5.1 below. 

For x E Z2, expand x as 

00 

(5.1) x=X]bi1*(*)2*, 

where bit^(x) is either 0 or 1. Define the bit sums 

k 

(5.2) P°P*(*) : = £ ! % ( * ) • 
7=0 

The ax + b conjugacy map is then given by 

00 _u 

(5-3) O a , i W = E ^ ^ b i t , W 2 t , 

by (4.2). 

LEMMA 5.1. Ify,z e Z2 with z = y (mod 2"), then 

(5 4 ) <D<fl - *(y) - (z -y) = 2 - (?*±i + *LzH pop„_l(y)) 

•(bit„(y) + bit„(z))(mod2"+2). 

PROOF. Expand <J>(z) - 0(y) (mod 2"+2) using (5.3). We have bit*(z) = bit^O) and 
popi(z) = popt(y) for 0 < k < n — 1, so the first n terms in <I>(z) — <5(y) cancel. Thus 

0(z) - m S 2 - ( ( ^ ) bit„(z) - ( - ^ L ) bit„(y)) 

+ 2 " + , ( ( ^ ) ) bit»^> - ( ^ ) b i t-w) • 
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Substitute a - 1 = a (mod 4) in the coefficient of 2", and b = a~] = 1 (mod 2) in the 
coefficient of 2"+1: 

<P(z) - 0(y) = 2n(baW»M bit„(y) - ba™"(z) bit„(z)) 

+ 2"+1 (bit„+1(z) - bit„+1(y)) (mod 2n+1). 

On the other hand 

(5.6) z-y = 2"(bit„(z) - bit„(y)) + 2"+1(bit„+,(z) - bit„+1(y)) (mod 2"+2). 

Subtract (5.6) from (5.5): 

<6(z) - 00;) - (z ->;) = 2"((6apop»(,,) + l)bit„0) - (Z)apop»(z) + l)bit„(z)) (mod 2"+2). 

Substitute a* = 1 + (a — 1 )k (mod 4), pop^*) bitt(x) = (1 + pop t_, (x)) bitt(x), and then 

P<>P„-i(z) = pop„_iO): 

®(z) - ®(y) - (z - y) 

= 2"((&(1 + (a - l)pop„(y)) + l ) bit„(y) 

- (ft(l + (a - l)pop„(z)) + l ) bit„(z)j 

= 2"((a6 + 1 + % - l)pop„_,0;)) bit„(y) 

- (afc + 1 + 6(a - Opop^^z)) bit„(z)) 

= 2"(ab +\+b(a- l)popJ^,C))(l«t.O')-bit„(z)) 

_ 2n+i (ob+1 + bJfl-Y) popni(y)^ (hitn(y) _ b i t n ( z ) ) ( m o d 2„+ 2 ) 

This is equivalent to (5.4). • 
Now fix x e Z2, and fix n > 0. Set \an{x)\ = 2/ and assume from now on that 

(5.7) an+\(x)is inert, 

so that |cr„+i(x)| = 2J+l. We wish to determine whether or not an+2(x) is inert. According 
to (3.2) this occurs if and only if 

(5.8) <D2y+1 (JC) = x + 2n+l (mod 2n+2). 

We now introduce the quantities 

ek[i]:=bitk(®(x)). 

In terms of the ek[i]9 we have 

(5.9) an+2(x) is inert <=> en+l[0] ^ en+l[2/+l], 

by (5.8). We proceed to evaluate en+i[2J+l] - en+{[0] mod 2. The main theorems of this 
paper are deduced from the following formula. 
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THEOREM 5.1. If \ an (x) \ = 2/ and an+ \ (x) is an inert cycle, then 

(5.10) en+l[2/'+l] - en+l[0] = 1 + ?^±2> + b(a~l)N(mod 2), 

where 

(5.ii) ^=E1poP„_1(a>'(x)). 
i=0 

PROOF. First we define^ = (Oi+l+2/\x) - 0 /+1(JC)) - (0 /+2/(JC) - &(x)). Since 

an+\(x) is an inert cycle, 0/+2/(jc) = <&(x) + 2n (mod 2"+1), so, by Lemma 5.1, 

X, s 2 - (2*±L + * ^ i > pop^, ( o ' W ) ) (mod 2 - ) . 

Adding up the Xt gives 

(5.12) £ * = 2"+1 ( f ^ I * + ̂ M (mod2-2). 
1=0 V 2 2 / 

Next define 7, = 2n((en[i + 1 + y'] - en[i + 1]) - (eH[i + 2>] - e„[i])). The sum of the Yt 

telescopes: 

2]T Yt = 2"(ew[2/+1] - en[2!] - en[V] + *„[<)]). 
/=o 

Since o-n+\(x) is an inert cycle, en[0] = en[2J+l] ^ en[2f]9 so 

(5.13) 2 £ 7, = 2w(2ew[0] - 2en[2f]) = 2n+l (mod 2W+2). 
i=0 

On the other hand, 

X{ - Yt = 2n+l (en+l [i + 1 + 2/] - en+l [i + 1] - e„+1 [i + 2>] + ew+i [/]) 

= 2n+l (en+l [i + 1 + 2>] + e„+1 [i + 1] - en+l [i + 2>] - en+l [/]). 

In this form the sum of Xt — Yt also telescopes: 

2 ^ « - Yt) = 2n+l(en+l[2/'+l] - en+l[0]) (mod 2W+2). 
i=0 

Comparing this sum with (5.12) and (5.13), we get 

2"+Wi[2;+ 1] - e„+1[0]) = 2"+1 {^-2J + ^^-N) - 2*1 (mod 2"+2), 

which implies (5.10). • 
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COROLLARY 5.1. (i)Ifa=\ (mod 4), then 

o nJ+l I * rm - I l ( m o d 2 ) i f b = 3 (mod 4) orJ - * 
W * ]-^i[°]- (o(mod 2) otherwise. 

(ii) If a = 3 (mod 4), and crn{x) is inert, then 

rv+h rm - I l ( m o d 2 ) i f./ > 2 , 
^ + l [ 2 ] - ^ l [ 0 ] = 0 ( m o d 2 ) i f y = l . 

Note that (i) proves Theorem4. l(i), and (ii) proves Theorem 4. l(ii), using (5.9). The­
orem 3.1 then follows as a special case of Theorem 4.1 (ii). 

PROOF, (i) Here a = 1 (mod 4), so the term involving Nin (5.10) drops out. 
(ii) Here a = 3 (mod 4), andy > 1, so (5.10) simplifies to 

en+i $+l] - en+i [0] = 1 + N (mod 2). 

The inertness of an(x) gives 

bitn^(<S>i+2J~\xj) = 1 - b i t ^ O ' W ) , 

so 
p o p ^ ^ O ' ^ ' w ) +pop„_1(0)/(x)) = 1 (mod 2). 

Thus 

^ = a 'E l (poP»- i (* f t 2 H , W) +P0P«-1(<P'W)) = * E ' 1 = 2 ' - 1 (««>d 2). 
i=0 v y /=0 

Now (ii) follows. • 

6. Cycle Structure of <£>n: Short Cycles. We consider the behavior of "short" cy­
cles of the 3x + 1 conjugacy map; i.e., the behavior of \Xnj\ as n —» oo for fixed/ We 
describe a heuristic model which relates the asymptotics of \Xnj\ to the number of global 
odd periodic points of O. 

We first note that the odd periodic points Per*(<P) of O determine the entire set Per(O) 
of periodic points of O. The relation 

(6.1) 0(2JC) = 20(x) 

implies that x has period 27 if and only if 2x has period 2J. Thus 

(6.2) Per(O) = {2kx : k > 0 and x € Per*(0)}. 

Let Fj be the number of orbits of <J> containing an odd periodic point of minimal period 
2J. The 3x + 1 Conjugacy Finiteness Conjecture of Section 2 asserts that all Fj are finite. 

https://doi.org/10.4153/CJM-1996-060-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-060-x


THE 3JC + 1 CONJUGACY MAP 1165 

We obtain a simple heuristic model for the 1 -cyclesXn± of <bn by classifying them into 
two types: those arising by reduction mod 2n from an odd fixed point of®, and all the 
rest. Call these "immortal" and "mortal" 1-cycles, respectively. Our heuristic model is to 
assume that each "mortal" 1-cycle has equal probability of splitting or remaining inert, 
independently of all other 1-cycles. When a "mortal" 1-cycle splits, both its progeny in 
^7i+i,i are "mortal." An "immortal" 1-cycle inXW)i always splits, and gives rise to two 
1-cycles in Xn+\^9 at least one of which is "immortal." We also assume that only F0 

"immortal" 1-cycles appear in total, i.e., for all large enough n each "immortal" 1-cycle 
splits into one "immortal" 1-cycle and one "mortal" 1-cycle. 

This model is a branching process model with two types of individuals. The expected 
number of individuals Z„j at step n is 

(6.3) E[ZnA] = F0n + c0, 

where Co is a constant depending on the levels of the initial occurrences of the Fo "immor­
tal" 1-cycles. The empirical data in Tables 6.3 and 6.4 seem consistent with this model, 
with Fo = 2. We know that Fo > 2 in any case. The two "immortal" 1-cycles that we 
know of both appear at n = 1, so that if F0 = 2, then c$ = 0 in (6.3). 

To obtain a heuristic model for \Xnj\ wheny > 1, we use a refined classification of 
cycles of 6W. A step consists of passing from 6„_i to <DW. For 0 < d <j < n \QtXn^d 

denote the set of cycles of 6„ of size 2/ which have remained inert for exactly d steps. 
Let Ynjyd denote the subset of Xn^ that consists of cycles that split in going to ®„+i. Then 
we have 

n 

MGi+Uol =^YJ \Ynj,d\ 
d=0 

and 

\Xn+ij+\,d+\ | = \%njA ~ \YnJ,d\ • 

We know the following facts about these quantities: 
(1) If a cycle of length at least 8 has been inert for d > 2 steps, it remains inert. Thus 

\YnJ,d\ =0ifj>3mdd>2. 
(2) Any cycle of length 4 which has been inert for d = 2 steps must split; i.e., 

MGz,2,2| = | Yn,2,21-
(3) Any odd periodic point x of O of period 2J gives rise to a cycle of period 2j of<hn 

for all sufficiently large n. This cycle always splits. Such cycles are in bothXWj/5o 
and Ynjfl. 

The quantity we are interested in is 

n 

\Xnj\ = YJ \Xnj,d\ ' 
d=0 

The facts above imply that \X„j\ is entirely determined by knowledge of l^m^ol, I JW,o|> 
and |Ymjt\\, for all m <n. 

Our heuristic model is then to suppose the following: 
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(1) Each cycle in Xnjt\ has (independently) probability 1/2 of falling in Y„jt\. 
(2) Each "mortal" cycle inXnjto has (independently) probability 1/2 of falling in 

Ynjto, and if so its two progeny inXn+\jto are "mortal." 
(3) Each "immortal" cycle inXnjfi lies in 7Wj/?0, and one of its progeny mXn+\j$ is 

"immortal" and the other is "mortal," with finitely many exceptions. 
This is a multi-type branching process model. If Znj denotes the total number of individ­
uals in such a process, then one may calculate that, for large «, 

(6.4) E[ZnA] = -F0n
2 + ( F J + -F0)#i - Fi + - F 0 + cu 

in which c\ is a constant depending on the initial occurrence of "immortal" cycles. (We 
assume that Co =' 0.) Fory > 2, where stable cycles may occur, the formula for E[Znj] 
becomes quite complicated. 

It might be interesting to further compare predictions of this model fory > 1 with 
actual data for O. We know of one odd periodic cycle of O of length 2, namely { 1 , - 1 / 3 } ; 
/.*?., <D(1) = - 1 / 3 and <£ ( - l / 3 )= l.ThusFi > 1. 

7. Appendix A. Solenoidal Maps. Call a map F: Z2 —»Z2 solenoidal if, for all n, 

(A. 1) x = y (mod 2") = » F(x) = F(y) (mod 2n\ 

An equivalent condition in terms of the 2-adic metric | -|2 is that F is nonexpanding; i.e., 

(A.2) \F(x) - F(y)|2 < |JC -y\2, all JC,^ G Z2. 

If Fi and F2 are solenoidal maps, then so is F\ 0F2. 
Call a family of functions Fn\ Z/2"Z —̂  Z/2 nZ compatible if F„ agrees with Fw_i 

under projection 7r„:Z/2wZ —-» Z/2W_1Z; i.e., if 7r„ o Fn = Fn-\ o 7rw. A compatible 
family {F„} has an inverse limit F: Z2 —-> Z<2 defined by 

(A.3) F(JC) = FW(JC) (mod 2n\ for all /1. 

The term "solenoidal" is justified by the following lemma. 

LEMMA A.l. F is solenoidal if and only if F is the inverse limit of a compatible 
family {Fn}. 

PROOF. If F is solenoidal, then F mod 2n induces a function Fn: Z/2WZ -» Z/2WZ, 
for each n\ and {F„} is a compatible family. The reverse implication follows from (A.3). • 

LEMMA A.2. Let U be the inverse limit of a compatible family {U„}. Then the fol­
lowing are equivalent, 

(i) U is a bijection. 
(ii) For each n, Un is a permutation. 

(Hi) For each n, ifU(x) = U(y) (mod 2n) then x=y (mod 2n). 

PROOF, (i) => (ii). (/is surjective, so Un is surjective. 
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(ii) => (i). Write Vn = U~l. Then {Vn} is a compatible family. Let V be its inverse 
limit. By construction U o V is the inverse limit of identity functions, so £/ o V is the 
identity. Similarly V o t/is the identity. Hence (7 is a bijection. 

(ii) => (iii). If U(x) = Uty) (mod 2n) then f/„(jc mod 2W) = U„ty mod 2W) so 
xmod2w =ymod2" . 

(iii) =» (ii). Suppose that U„(a) = Un(b). Select x andy in Z2 such that a = x mod 2n, 
b = y mod2w. Then Un(x mod2w) = Unty mod 2"), so [/(*) = Uty) (mod 2"), so 
x = y (mod 2W), so a = b. • 

COROLLARY A.3. The following are equivalent, 
(i) U is a solenoidal bijection. 

(ii) U is a solenoidal homeomorphism. 
(iii) U is a 2-adic isometry. 

Uisa 2-adic isometry if | U(x) — U(y)\2 = \x— y\2. 

PROOF, (i) => (iii). U is solenoidal so | U(x) - U(y)\2 <\x- y\2. On the other hand, 
by Lemma A. 1, U is an inverse limit; and U is a bijection, so | U(x) — U(y)\2 > \x — y\2 

by Lemma A.2 (i => iii). 
(iii) => (ii). Since \U(x) — U(y)\2 < \x—y\2, Uis solenoidal. By Lemma A. 1, U is an 

inverse limit; by Lemma A.2 (iii => i), U is a bijection. Since | U(x) — U(y)\2 > \x — y\2, 
U~l is solenoidal. Finally, solenoidal implies continuous. 

(ii) =$> (i). Immediate. • 

8. Appendix B. Functions Solenoidally Conjugate to the Shift. For any two sole­
noidal bijections Vo, V\ define Uv*,vx: Z2 —> Z2 by 

r / M = /Ko(r/2) ifx = 0(mod2), 
1 Vi ((x - l)/2) if x = 1 (mod 2). 

For example, take VQ(X) = x and V\(x) = ax+(a+b)/2; then t/̂ 0,Fi is the ax+fe function. 
In this appendix we show that a map is solenoidally conjugate to the 2-adic shift map 

S—i.e., conjugate to Sby a solenoidal bijection—if and only if it is of the form UvQtvx. 

LEMMA B.l. Let V be a solenoidal bijection. Ifz = w (mod 2m~l) then V(z) = 
V(w) +z-w (mod 2m). 

PROOF. If z = w (mod 2m) then V(z) = V(w) (mod 2m). 
If z = w + 2m~1 (mod 2m) then still V(z) = V(w) (mod 2m- !). By Corollary A.3, V 

is an isometry, so if V(z) = F(w) (mod 2m) then z = w (mod 2W), contradiction. Thus 
V(z) = F(w) + 2W"1 (mod 2m). • 

LEMMA B.2. Set U = Uy0tVr Fixm> l.Ify = x + 2me (mod 2W+1) rte/i £/(v) = 
(7(jc) + 2m-1e(mod2w). 

PROOF. Put b = x mod 2; then U(x) = Vb(S(xj). Also U(y) = Vb(S(yj), since 

y = x (mod 2). We have Sty) = S(JC) + 2w~1e (mod 2W); by Lemma B.l, Vb(Styj) = 

Vb(S(x))+2m-{e(mod2m). • 
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LEMMA B.3. Set U = UVoiVl. Fixm>j>\.Ify = x + 2me (mod 2m+l) then 
U(y) = U(x) + 2m-J'e (mod 2m~J+l). 

PROOF. Lemma B.2 and induction o n / • 

LEMMA B.4. Set U = UVotVr Fixm> I. Ify = x + 2me (mod 2m+1) then ITfy) = 
Um(x) + e(mod2). 

PROOF. Lemma B.3 withy = m. • 

LEMMA B.5. Set U = UVo,vr Fix bo,bi,b2,... G {0,1}. Definex0 = 0 andxm+\ = 
xm+2m(bm- irixmj). Theny = xm (mod 2m) if and only if U(y) = bt (mod 2)/or 
0 < / < m. 

PROOF. We induct on m. For m = 0 there is nothing to prove. 
Say y = xm+1 (mod2w+1). Then y = xm + 2m(few - £T(xm)) (mod2w+1); by 

Lemma B.4, lT(y) = L^(xw) + 6m - tT(jcw) = Z>m (mod 2). Also y = xm (mod 2W), so 
by the inductive hypothesis lf(y) = 6, (mod 2) for 0 < / < m. 

Conversely, say lj(y) = bt (mod 2) for 0 < / < m. By the inductive hypothesis 
>> = xm (mod 2W). Write y = xm + 2we. Then ^ = £T (y) = ir{xm) + e (mod 2) by 
Lemma B.4. Thus y = xm + 2m (fcw - CT (xm)) = xw+1 (mod 2m+1). • 

THEOREM B.l. Sef U = C/Fo,Fl. £>e/z«e £>(x) = E ^ U ^ C * ) mod 2)2m. 7%e/i 2 w 
a solenoidal bijection, and U = 2 _ 1 o £ o Q. 

Thus any map of the form Uv0,vx is solenoidally conjugate to S. (See Theorem B.2 
below for the converse.) Q~x generalizes the ax + b conjugacy map. 

PROOF. Injective: Say Q(y) = Q(x). Define bm = ITipc) mod 2; then ITiy) = 
ir(x) = bm (mod 2). Next define x0 = 0 andxm+i = xm + 2m{bm - ir(xm)). By 
Lemma B.5, j> = xm (mod 2m) andx = xm (mod 2W). Thusjy = x (mod 2m) for every m\ 
i.e.,y = x. 

Solenoidal: Say y = x (mod 2M). Define 6W = t /^x) mod 2, xo = 0, and xm+\ = 
xm + 2W(&W - ^7m(xm)). Thenx = xw (mod 2n) by Lemma B.5, soy = xn (mod 2"); by 
Lemma B.5 again, ITiy) = 6m (mod 2) for 0 < m < n. Thus g(y) = 2(*) ( m ° d 2")-

Surjective: Given b = £g0ft/2' with 6; G {0,1}, define x0 = 0 andxm+i = xm + 
2m(&m — t7w(xm)). Since xm+\ = xw (mod 2m) the sequence xi,X2,... converges to a 
2-adic limits, withy = xm (mod 2m). By Lemma B.5, LFiy) = fcm (mod 2) for all m. 
Thus Q(y) = b. 

Finally, it is immediate from the definition of Q that QoU = SoQ. • 

THEOREM B.2. Let Q be a solenoidal bijection. Define U = Q~l o S o Q. Then 

U = Uv^Vx for some solenoidal bijections Vo, V\. 

PROOF. If 0(0) is even then Q~l (x) = x (mod 2) for all x; so write 

! J 2W0(x/2) if x = 0 (mod 2), 
^ W j 1 + 2WX ((x - l) /2) if x = 1 (mod 2). 
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Then Wo, W\ are solenoidal bijections, and U = Uv^vx where V\ — Q o Wt. 
Similarly, if Q(Q) is odd then Q~l (JC) = — 1 — x (mod 2) for all x; so write 

_! _ J 1 + 2W0(x/2) if JC = 0 (mod 2), 
2 ( x ) ~ | 2» r i ( ( j c - l ) / 2 ) if JC = 1 (mod 2). 

Again Wo, W\ are solenoidal bijections, and U = UvQ,vx where Vi•-. = Q o W\. • 
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