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Abstract

We present a short and direct syntactic proof of the fact that adding the axiom of choice
and the principle of excluded-middle to Coquand-Huet’s Calculus of Constructions gives
proof-irrelevance.

Capsule Review

Systems of type theory are used to formalise proofs. For such formalisations it is always
important to know whether they are faithful, i.e. if there exists a formal proof, is there also
an proof in intuitive mathematics? The present paper does not directly adress this issue but
is relevant: if the axiom of choice and the excluded middle are added to certain type systems,
then all proofs become provably equal. This is in the spirit of classical mathematics, in which
one cares more about the truth of a statement than about its provability. The property does
not only hold for the calculus of constructions but also for simpler systems in the A-cube.
The proof does not carry over to the logical-cube.

1 Introduction

The present paper aims to be a contribution to the analysis of the intensional aspects
of Coquand-Huet’s Calculus of Constructions (CC). We will show that adding the
classical principle of excluded-middle (£.#) and the axiom of choice (/%) to CC
yields the so called proof-irrelevance, i.e. any small class (element of Prop) has at
most one element for Leibniz equality or, equivalently, the only model for the theory
turns out to be necessarily the one where Prop is interpreted as a two elements set
and each type is either empty or it has only one element.

Proofs of similar results were previously devised by Coquand and Pottinger.
Coquand (1990) showed that CC with the excluded-middle and a derivation rule for
a strong version of disjoint sum yields proof-irrelevance. To do so he showed that,
by assuming true to be not equal to false (with respect to Leibniz equality), it is
possible to define an interpretation of Girard’s logically inconsistent system, %, into
his extended CC. Thus, by the inconsistency of %, it follows that true is equal to
false, a fact that implies proof-irrelevance.
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A similar argument was also used by Pottinger (1989) (see also Geuvers (1993,
pp- 158-159)) to show that proof-irrelevance can also be obtained by extending CC
with the excluded-middle and the so-called axiom of definite descriptions, which can
be seen as a weaker form of the axiom of choice.

The above-mentioned proofs then heavily rely on the properties of Girard’s system
%, while the alternative proof we give here is direct and self-contained in nature. It
will consist in constructing a small class and an embedding-projection pair showing
that the set of its parts is a retract of it. The existence of such a pair will then be
proved to imply a formalisation of Russell’s paradox, and hence the identification,
with respect to Leibniz equality, of true and false. (A related proof technique is also
exploited by Hurkens (1995) to define a paradoxical term for a restriction of %.)

Our proof will make essential use of the ambiguity, typical of CC, between small
classes and propositions. This ambiguity will allow us to define, in section 3.1, a
small class as a product indexed over all small classes. So, a similar proof could not
go through in systems like (higher-order) predicate logic or HA,,, even though they
are close to CC in many aspects.

We shall use a strong version of the axiom of choice to enhance the simplicity of
the proof, even if the result holds also for weak versions of it.

A complete formal description of our proof can easily be given in few lines of
code in any current implementation of CC. In particular, the formalisation in the
LEGO language of a variant of it can be found in Berardi (1994).

A close examination of our proof shows that it works not only for the whole
CC, but it can also be carried over in a fragment of CC, i.e. its subsystem AP2 (see
Barendregt (1992) and Geuvers (1994) for a definition of AP2 and its relationship
to logics).

In what follows we assume the reader to be well acquainted with CC and its
properties. We refer otherwise to Barendregt (1992), Coquand and Huet (1988) and
Geuvers (1993).

2 Preliminaries

We recall that it is possible to define all the logical operators inside CC, as well
as their introduction and elimination rules in natural deduction. For instance, we
can define 3x:A.P =p,y HX:Prop.((Hx:A.P - X) - X), where B — C is short, as
usual, for ITy:B.C with y ¢ FV(C). In the following, the terms in CC that represent
binary logical operations (‘A’,V’,...) will be used, for the sake of readability, in infix
notation.

The Leibniz equality can, as usual, be defined as follows:

Eq =pes AA:Prop.Ax y:AIIP (A — Prop).(Py) — (Px).

In the rest of the paper we shall write simply ‘a =4 b’ for (Eq 4 a b), where A is the
type of a and b.
One definition more we recall is that of the type of Booleans and its elements:

Bool =p.s [14:Prop.A —» A — A,
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true =p,; A4:Prop.Axy:A.x , false =p.,; AA:Prop.ixy:A.y.
To have an inhabitant of the type false =g true implies, as said above, proof-
irrelevance, that is a =4 b for any small type A and a,b : A. In fact, for any A and
a,b : A, it is possible to define f : Bool — A4 such that (f true) is convertible to a and
(f false) is convertible to b.

Giving explicitely all the CC-terms that form our proof could prevent the reader
to single out the main ideas underlying it. So we shall often describe how to build
such CC-terms, without actually doing it. To make our argument still more readable
we shall often use the abbreviation ‘derive A’ for ‘derive a term of type A’

2.0.1 Formalising 6.4 and oA ¥ into CC

Let us see how to formalise in CC the law of the excluded-middle and the axiom
of choice. For the excluded-middle we can simply introduce a constant &# which,
taken an element 4 of Prop returns an element of (4 V —4), ie.

EM TIA:Prop.(AV —A).

It is worth recalling that introducing a constant in CC corresponds to working in a
context with a variable of suitable type.

In CC, sets are necessarily introduced by comprehension, so the axiom of choice
can be seen as the possibility of getting, out of a proof of 3x:4.P(x), an element a
of A and a proof of P(a). In particular, we can introduce two constants that, given
A : Prop, a predicate P on A and a term (proof) h : 3x:A.(P x) return, respectively,
a witness a of type A and a proof of (P a), i.e. of the fact that a is indeed a witness
of 3x:4.(Px).

We therefore add the following two constants to CC:

L€ : TIA:Prop.I1P:(4 — Prop).((3x:A.(Px)) — A)

FCy : ITAPropIIP (A — Prop).ITh:3x:A.(Px).(P(4 €5 h))
where (/€ h) is short for (€5 A P h).

Note that these terms are uniform on A and P. So, our axiom of choice is
stronger than the choice axiom of set theory. Moreover, if one defines 3!x:4.(Px) as
(Ax:A.(Px)) A (IIx y:A(Px) — (Py) = (x =4 y)), and replaces 3 by 3!, then /€&
and /¥, become weaker and correspond, respectively, to the axiom 1 and to the

axiom of definite-descriptions described in Pottinger (1989) (see also Geuvers (1993,
pp. 158-159)).

2.0.2 Reasoning by cases in CC+EM+ A€

Since it will be necessary, in our proof, to reason by cases, we internalise in CC
+&M+ 4% such sort of reasoning by building an operator IfThenElse that, given
an element A : Prop, considered as condition, and two elements ¢; and c; of a type
C : Prop, ‘returns’ (is equal to) ¢; in case A is true (inhabited), and ¢; otherwise. It
is easy to realise that in the definition of such an operator, the use of the axiom &#
plays an essential role.
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Given A : Prop and ¢y, ¢ : C, we may build, by means of the formalisation of a
simple standard argument in classical logic, a term (proof) p of type Bx:C.(((x =c
)NA)V((x =c c2) A (ﬁA))). We can then ‘extract’ from p, by means of ¥z,
a term (L€ p) : C and, using A ¥,, prove it equal to ¢; or ¢; in case A is true
or false (i.e. inhabited or not), respectively. In particular, it is possible to prove
A — (Z€7 p) =c c1) and ~A4 — ((F¥5 p) =c c2).

Our term IfThenElse will then be

IfThenElse =p.; AAC:Prop.Aci cy:C(LEC 5 p).

In the following we shall write (ifThenElse A4 ¢; ¢»), instead of (IfThenElse A C ¢ ¢3),
to enhance readability.

3 CCHEM+A4E + Proof-Irrelevance

In this section we present the proof of our main result. It will consist of two main
steps:

e The construction of a small class U : Prop and of an embedding-projection
pair showing that £(U) (the ‘powerset of U’) is a retract of U.

e The derivation of Russell’s paradox from the existence of the above embedding-
projection pair between 2(U) and U.

3.1 U and the embedding-projection #(U) < U

Let us begin by defining the small class (proposition) U as the infinite product of all
the powersets of small classes.

U =p.s I1X:Prop.2(X) : Prop,

where 2(X) is short for the proposition (X — Bool) : Prop, denoting the set of
‘subsets’ of X.

It is clear that 2(U), being an element of Prop, is a ‘component’ of U itself and
hence it is possible to define an embedding #(U) — U. In fact, given an element f
in 2(U), we can map it into the infinite sequence having f at ‘position’ U and an
arbitrary value of 2(X) at any other ‘position’ X.

It is also easy to see that U can be trivially mapped onto 2(U): given an infinite
sequence contained in U one can simply ‘select’ its component at ‘position’ U. So,
it is intuitively possible to show that #(U) <1 U, i.e. that 2(U) is a retract of U, by
means of the embedding-projection pair informally described above.

Let us actually build now the terms in CC+&4+ /% that formalise it.

The projection is trivial to describe formally.

projyy =pes Au:U.(uU) : U — (V).

The formalisation of the embedding, instead, is not so immediate. Let f : 2(U).
Following the informal description of the embedding, we can map f to AX :Prop.qy :
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U, where the term qx is such that

f if X isU
qQx = . -
anythingy otherwise.

anythingy can be any element of 2(X) in the product U(= I1X :Prop.22(X)). We
could choose it to be, for instance, 1x:X false, i.e. the empty subset of X, henceforth
denoted by @y : 2(X).

Then our goal is now to get a formal description of the term qx.

Note that the naive definition of qx as (IfThenElse (X = U) f 0x), where ‘=’ is
the CC-predicate stating that two small classes are isomorphic, cannot work because
of typing problems. In fact f and @x, which should have the very same type in
(IfThenEIse X=u) f (DX), have type 2(U) and 2(X), respectively. To get qx we
can, instead, proceed as follows. Let us consider the CC-predicate stating that two
small classes are one the retract of the other.

‘<’ =p.s AAB:Prop.3g:A— B.3h:B — A.(e-p-pair g h),

where e-p-pair, the predicate stating that two functions form an embedding-
projection pair, is defined as follows.

e-p-pair =p.s Ag:A—B.Ah:B—A.((hog) =44 (Id A)).

id is the obvious CC-term representing the polymorphic identity and ‘o’, used in infix
notation, is the CC-term denoting function composition. Also ‘<’ will be used in
infix notation.

From the definition of ‘<’ it is straightforward to get a term, say ty, of type

(2(X) € 2(V)) — (3g:2(X) —> P(V).3h:2(U) > P(X).(e-p-pair g h)). (1)

In classical logic, unlike in the intuitionistic case, any formula of the form (Q — 3x.S),
with x ¢ FV(Q), is equivalent to 3x.(Q — S) in case the domain of x is non-empty.
Now, since in CC+&.4+ /€ we can formalise classical reasoning, and the domains
P(X) - 2(U) and 2#(U) — 2(X) are both non-empty (they contain, for instance,
the constant functions Ax:2(X).9, and Ax :2(U).0x, respectively), it is easy to get a
term, say ty, of type

3g:P(X) - P(U).3h:2(U) » 2(X).((P(X) < P(U)) > (e-p-pairgh)).  (2)

Now, by using /% and /€., on ty, it is possible to get a pair of terms (¢x, ¥ x),
and prove that they are an embedding-projection pair in case 2(X) a4 #(U) (a
condition trivially satisfied when X is U). In particular, (Y x(¢y f)) is the term qx
we were looking for, i.e. a term of type 2(X) equal to f in case X is U (if it returns
@x or something else otherwise, is not essential for our argument).

Then we have that 2(U) <« U by means of the embedding-projection pair
(injy, projy), where

injy =pes Af :P(U).AX :Prop.(¥ x(dy f)) : 2(U) > U

projy =pes Au:U.(uU) : U — 2(U).
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In fact, since ¢y and Yy come out of t)y we can derive

A POy (BU ) =pUpo, (4 2V)).

From this, using the fact that

(projy e injy) =g Af:P(V).(Wy By ) = ¥y ° du),

it is then possible to derive

(projy o injy) =z2U)-z(U) (Id Z2(U)).

3.2 2(U) < U implies Russell’s paradox

Using U and the fact that 2(U) is a retract of it, it is possible to rephrase in our
setting the well known argument of Russell’s paradox.

The universe we consider is U. The existence of a projection from U to 2(U)
enables us to consider the elements of U also as sets (an element u : U corresponds
to the set (projy u) : Z(U))). So, we can express the fact that u : U, seen as element,
‘belongs’ to v : U, seen as set, by means of the following CC-predicate

belongs =pes Auv:U.(((projy v) u) =pggg true) : U — U — Prop.

We will denote (belongs uv) by (u € v).
We can now carry on Russell’s argument by defining the collection of the elements
of our universe that do not belong to themselves.

RussellClass =p,.s Au:U.(IfThenElse —(u € u) true false): 2(U).
The element of U corresponding to the element of 2(U) just defined is then
=pes (injy RussellClass ) : U.

Such an object, as in Russell’s argument, is paradoxical. In fact it is possible to
derive, as shown below, (false =g, true) both from the assumption (r € r) and
from the assumption —(r € r). Moreover, by &4, we can derive ((r eENV-(re r)),
and hence, by means of the term formalising in CC the rule of elimination of
disjunction, it is possible to obtain a closed term of type (false =gq| true). Such a
term, as said before, gives proof-irrelevance.

Let us see how to get (false =g4q true) both from (r € r) and from —(r € r).

Let us assume (r € r). By expanding the definitions of r and €, we get

((projy (injy RussellClass)) r) =gqo true.

Now, since (injy,projy) is an embedding-projection pair, ie. (projy o injy) =
#UppU)(Id 2(V)), we get ((RusseliClass r) =gqq) true). This, by definition, is

((fThenElse —(r € r) true false) =gqq) true)

and hence, by our assumption and the properties of IfThenElse, we can derive
(false =ggq) true).
Now let us assume instead —(r € r). Following the same argument of the previous
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case it is possible, this time, to get —(true =gy true) and L from it. By ex-falso-
quodlibet, also in this case we derive (false =ggq) true).

It is worth noticing that indeed, for the Russel’s paradox, we do not really need
injy, but only the fact that projy, is surjective. To prove this fact one could proceed
as follows. Consider the function ¥y : 2(U) — 2(X) as defined in the previous
subsection. ¥y is surjective whenever #(X) is a retract of 2(U). Define now the
following function.

F =p.; Af:2(U).AX Prop.(¥x f) : P(U) - U

By the fact that (projyy o F) is equal to y it follows that projy is surjective as well.

It is also interesting to notice that in our argument we have derived proof-
irrelevance by the possibility of deriving (false =g true), even if the definitions
of Bool, true and false are not really necessary. In fact, it would be possible to
work in a context containing the variables 4:Prop,x:4,y:4 and to replace in our
argument A, x and y for Bool, true and false, respectively. We would then derive
x =4 y, and hence proof-irrelevance.
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