A NOTE ON QUADRATIC FORMS OVER ARBITRARY SEMI-LOGAL RINGS

K. I. MANDELBERG

1. Introduction and preliminaries. Let R be a commutative ring. A bilinear space (E, B) over R is a finitely generated projective R-module E together with a symmetric bilinear mapping $B: E \times E \rightarrow R$ which is nondegenerate (i.e. the natural mapping $E \rightarrow \operatorname{Hom}_{R}(E, R)$ induced by B is an isomorphism). A quadratic space (E, B, ϕ) is a bilinear space (E, B) together with a quadratic mapping $\phi: E \rightarrow R$ such that $B(x, y)=\phi(x+y)-\phi(x)-\phi(y)$ and $\phi(r x)=r^{2} \phi(x)$ for all x, y in E and r in R. If 2 is a unit in R, then $\phi(x)=\frac{1}{2} \cdot B(x, x)$ and the two types of spaces are in obvious $1-1$ correspondence.

We will write $W(R)$ for the Witt ring based on bilinear spaces (as defined in [13, p. 123]), and denote the corresponding group based on quadratic spaces as defined in [3, p. 144] by $W_{q}(R)$. A hyperbolic plane H is the free rank 2 quadratic (respectively bilinear) space with basis $\{x, y\}$ such that $\phi(x)=\phi(y)=0$ and $B(x, y)=1$ (respectively $B(x, x)=B(y, y)=0$ and $B(x, y)=1$). We call a space hyperbolic if it is an orthogonal sum of hyperbolic planes. Let R be a commutative semi-local ring. Then R can be written as $\prod_{i=m}^{n} e_{i} R$ where each $e_{i} R$ is a connected semi-local ring (i.e. no non-trivial idempotents), and the $\left\{e_{i}\right\}$ are a set of orthogonal idempotents. This ring decomposition induces decompositions $W_{q}(R)=\Pi W_{q}\left(e_{i} R\right)$ and $W(R)=\Pi W\left(e_{i} R\right)$ as group and rings respectively (cf. [13, Lemma 1.9]). A quadratic space (E, B, ϕ) is then trivial in $W_{q}(R)$ if and only if ($\left.e_{i} E, B, \phi\right)$ is trivial in each $W_{q}\left(e_{i} R\right)$. But over $e_{i} R$, projectives are free, thus by the definition of $W_{q}\left(e_{i} R\right)$ and [11, Kürzungssatz, p. 256] it is easy to deduce that $\left(e_{i} E, B, \phi\right)$ is trivial in $W_{q}\left(e_{i} R\right)$ if and only if it is hyperbolic. Therefore, (E, B, ϕ) is trivial in $W_{q}(R)$ if and only if each $e_{i} E$ is hyperbolic over $e_{i} R$, or, if E is free, if and only if E is hyperbolic over R. If 2 is a unit in R, the analogous statement holds for $W(R)$.

Witt [17] has shown that a quadratic space of rank 3 or less over a field K of characteristic different from 2 is determined up to isometry by its rank, determinant, and Hasse invariant. In [1], Arf proved a corresponding result when the characteristic of K is 2 . In Section 2 we simultaneously extend these results to quadratic spaces over an arbitrary semi-local ring R, using the theory of the Clifford algebra and graded Brauer group in [3] and [16]. In Section 3 we use the results of Section 2 together with some results in [13] to prove that if R and S are semi-local rings in which 2 is a unit, then $W(R) \simeq W(S)$ if and only if

[^0]$W(R) / I(R)^{3} \simeq W(S) / I(S)^{3}$, where $I(R)$ and $I(S)$ denote the ideals generated by the free forms of even rank.

We wish to acknowledge the aid we received from M. Knebusch's unpublished paper [11]. After seeing it we decided to alter our original version of Section 2 (which assumed 2 was a unit) to the present more general situation. We have also learned in recent communication with J. S. Hsia that he and Roger Peterson have also proved the results of Section 2 when 2 is a unit [9].

We conclude this section with some notation and some general facts about quadratic forms over semi-local rings.

If R is a commutative ring, we denote the group of multiplicative units of R by $U(R)$. If (E, B) is a free rank n bilinear space with orthogonal basis $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, we will write $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ for (E, B) where the $a_{i}=B\left(x_{i}, x_{i}\right)$ are in $U(R)$. In general, if (E, B, ϕ) is a free rank n quadratic space with basis $\left\{x_{1}, \ldots, x_{n}\right\}$, we will denote the space by the table $\left[a_{i j}\right]$ where $a_{i j}=B\left(x_{i}, x_{j}\right)$ if $i \neq j$ and $a_{i i}=\phi\left(x_{i}\right)$. In the case $n=2$ and $B\left(x_{1}, x_{2}\right)=1$ we reserve the notation $\left[a_{11}, a_{22}\right]$ for the quadratic space. If E is a form and m is an integer, $m E$ will denote the m-fold orthogonal sum of E. If u is in $U(R),\left(E^{u}, B^{u}, \phi^{u}\right)$ will denote the space obtained when B and ϕ are simply multiplied by u.

We now prove a decomposition theorem for quadratic spaces over a semilocal ring. A similar theorem in the special case of a valuation ring can be found in [10, Theorem 3.8, p. 47].

Proposition 1.1. Let (E, B, ϕ) be a free non-degenerate quadratic space of rank n over a semi-local ring R. Then:
(1) if 2 is a unit in $R,(E, B) \simeq\left\langle a_{1}, \ldots, a_{n}\right\rangle$ where each a_{i} is a unit in R;
(2) if 2 is not a unit in R, n is even and

$$
E \simeq \stackrel{n / 2}{\perp}\left[b_{i}, c_{i}\right]
$$

where b_{i} and $1-4 b_{i} c_{i}$ are units in R for each i. In any case, if E has even rank it decomposes as in (2).

Proof. Part (1) follows from [13, Lemma 1.12]. For part (2) we note that the non-degeneracy of E forces $1-4 b_{i} c_{i}$ to be a unit once we have the decomposition. Furthermore, if d is a unit

$$
\left[\begin{array}{ll}
b & d \\
d & c
\end{array}\right] \simeq\left[b / d^{2}, c\right]
$$

by an easy change of basis. Thus, it will suffice to decompose E as

$$
\underset{i=1}{n / 2}\left[\begin{array}{cc}
b_{i} & d_{i} \\
d_{i} & c_{i}
\end{array}\right]
$$

where the b_{i} and d_{i} are in $U(R)$.

Let $m_{1}, m_{2}, \ldots, m_{t}$ be the maximal ideals of R. Using the fact that orthogonal decompositions lift modulo the radical [11, Lemma 1.1.4] as must units, we may assume $\operatorname{Rad} R=m_{1} \cap \ldots \cap m_{t}=0$. Then by the Chinese Remainder Theorem, we can write $R=\sum_{i=1}^{t} e_{i} R$ where the e_{i} are orthogonal idempotents with $e_{i}=\delta_{i j}\left(\bmod m_{j}\right)$, so that $e_{i} R \simeq R / m_{i}$ is a field.

Since we are assuming 2 is not a unit in R, there is some i for which $e_{i} R$ is a field of characteristic 2 . Then by [1, Satz $2, \mathrm{p} .150]$ we can decompose $e_{i} E$ into an orthogonal sum of rank 2 spaces with array of the form $\left[\begin{array}{ll}b & d \\ d & c\end{array}\right]$ with $d \neq 0$ in $e_{i} R$. To be of the required form, we must also obtain that b is not 0 in $e_{i} R$. Of course, if b is 0 while c is not, we simply interchange basis elements. If both b and c are 0 we note that

$$
\left[\begin{array}{ll}
0 & d \\
d & 0
\end{array}\right] \simeq\left[\begin{array}{ll}
d & d \\
d & 0
\end{array}\right]
$$

Besides giving us the required decomposition when the characteristic is 2 , this implies that n is even. Then if $e_{j} R$ is of characteristic different from $2, e_{j} E$ has an orthogonal basis and can be decomposed into rank 2 spaces which are diagonal. But by an easy basis change we see

$$
\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \simeq\left[\begin{array}{cc}
a & 2 a \\
2 a & a+b
\end{array}\right]
$$

So no matter what the characteristic of $e_{j} R$, we can write $e_{j} E \simeq \perp_{k=1}^{n / 2} M_{k}{ }^{j}$ where $M_{k}{ }^{j}$ has basis $\left\{x_{k}{ }^{j}, y_{k}{ }^{j}\right\}$ over $e_{j} R$ and both $B\left(x_{k}{ }^{j}, y_{k}{ }^{j}\right)$ and $\phi\left(x_{k}{ }^{j}\right)$ are not 0 in $e_{j} R$. Now letting

$$
x_{k}=\sum_{j=1}^{t} x_{k}^{j}, \quad y_{k}=\sum_{j=1}^{t} y_{k}^{j}
$$

and M_{k} be the submodule of M with basis $\left\{x_{k}, y_{k}\right\}$ we have $E=\perp_{k=1}^{n / 2} M_{k}$ in the required form, completing the proof.

A free quadratic space (E, B, ϕ) is said to be isotropic if there is a basis vector x with $\phi(x)=0$, otherwise it is called anisotropic. Clearly hyperbolic spaces are isotropic. The next proposition provides a partial converse.

Proposition 1.2. Let (E, B, ϕ) be a free non-degenerate quadratic space over a semi-local ring R. Then E has a decomposition $E=K \perp F$, where K is hyperbolic and F is anisotropic.

Proof. By induction, it will suffice to show that if E is isotropic then $E=H \perp E_{1}$. Thus, suppose $\phi(x)=0$ for some basis vector x. We first assume there is a y in E such that $B(x, y)=a$ is a unit and $\{x, y\}$ can be extended to a basis of E. By an easy change of basis, we see that E_{0}, the span of $\{x, y\}$, is isometric to a hyperbolic plane. But then by [13, Lemma 1.1],

$$
E=E_{0} \perp E_{1} \simeq H \perp E_{1}
$$

for some E_{1}.

To pick y as required we may assume $\operatorname{Rad} R=0$ by [4, Proposition 5, p. 106]. Thus $R=\Pi_{1}^{k} R e_{i}$ with the $R e_{i}$ fields. Then $e_{i} E$ is a non-degenerate free space over the field $e_{i} R$, with $e_{i} x$ part of a basis. Hence, there must be a y_{i} in $e_{i} E$ with $B\left(e_{i} x, y_{i}\right) \neq 0$ in $e_{2} R$, for otherwise the non-degeneracy is violated. Furthermore, y_{i} is not a multiple of $e_{i} x$, since if $r \in e_{i} R, B\left(e_{i} x, r e_{i} x\right)=r e_{i} B(x, x)=2 r e_{i} \phi(x)=0$. Hence $e_{i} x$ and y_{i} can be extended to a basis of $e_{i} E$. It then follows that $y=\sum y_{i}$ is as required.
2. The Clifford algebra. Let R be a commutative ring. In this section we will draw heavily on the theory of graded central separable R-algebras in [3, Chapter 4] and [16]. Before proceeding we recall some of the definitions and theorems we will need from these sources.

Let \mathbf{F}_{2} be the field with 2 elements. An $\left(\mathbf{F}_{2}\right)$-graded R-algebra A is an R-algebra together with an R-module decomposition $A=A_{0} \oplus A_{1}$, where $A_{i} \cdot A_{j} \subseteq A_{i+j}$ (i, j in \mathbf{F}_{2}). If x is in either A_{i} we say it is a homogeneous element and write $i=\operatorname{deg} x$. Clearly, A_{0} is an ungraded algebra, and conversely any ungraded algebra B can be thought of as graded by setting $A_{0}=B$ and $A_{1}=0$. Graded algebras of this last type are said to be concentrated in degree 0 . When A is a graded algebra we will write $|A|$ for the algebra considered as an ungraded algebra. If A and B are graded R-algebras we define the skew tensor product $A \otimes^{\prime} B$ to be the graded R-algebra C, where $C_{0}=\left(A_{0} \otimes B_{0}\right) \oplus\left(A_{1} \otimes B_{1}\right)$, $C_{1}=A_{0} \otimes B_{1} \oplus A_{1} \otimes B_{0}$ and the multiplication is extended by linearity from $(a \otimes b)(c \otimes d)=(-1)^{\operatorname{deg} b \cdot \operatorname{deg} c} a c \otimes b d$, where a, b, c, d are homogeneous elements of A and B. We will write $A \otimes B$ for the algebra with the ordinary multiplication of the tensor product and the above grading. If S is a subset of A we write A^{s} for the graded subalgebra of A generated by

$$
\left\{a \in A_{0} \text { or } A_{1} \mid a s=-1^{\operatorname{deg} a \cdot \operatorname{deg} s} s a \text { for all homogeneous } s \text { in } S\right\} .
$$

By a graded R-module we will mean an R-module M together with an R-module decomposition $M=M_{0} \oplus M_{1}$. We will then write $A=\operatorname{End}_{R} M$ for the R-algebra $\operatorname{End}_{R} M$ graded by $A_{0}=\operatorname{End}_{R} M_{0} \oplus \operatorname{End}_{R} M_{1}$ and $A_{1}=\operatorname{Hom}_{R}\left(M_{0}, M_{1}\right) \oplus \operatorname{Hom}_{R}\left(M_{1}, M_{0}\right)$.

A graded R-algebra is called central if A^{A} is just R. For a definition of separability for graded R-algebras see [16, 2.10, p. 464]. We will say that two graded central separable R-algebras A and B are equivalent if $A \otimes^{\prime}$ End $P \simeq$ $B \otimes^{\prime}$ End Q where P and Q are graded R-module which are R-progenerators, i.e. finitely generated, faithful and projective, when considered as ungraded R-modules. The set of equivalence classes of graded central separable R algebras then forms a group where the multiplication is induced by skew tensor product [16, p. 485 and $3.12,3.14$, p. 467]. We will write $B r_{2}(R)$ for this group, and refer to it as "the graded Brauer group of R ", and reserve $\operatorname{Br}(R)$ for the ordinary Brauer group.

Lemma 2.1. Let A and B be graded central separable R-algebras which are in
the same class of $B r_{2}(R)$. Then $|A|$ and $|B|$ are separable R-algebras, and if they are both central R-algebras they will be in the same class of $\operatorname{Br}(R)$.

Proof. That $|A|$ and $|B|$ are separable R-algebras follows fiom [16, Corollary 5.13, p. 482]. Since A and B are in the same class of $B r_{2}(R)$, we may write $A \otimes^{\prime}$ End $P \simeq B \otimes^{\prime}$ End Q where P and Q are graded R-modules which are R-progenerators as ungraded R-modules. But then by [5, Proposition 1.5, p. 10], $A \otimes \mathbf{E n d}_{R} P \simeq B \otimes \mathbf{E n d}_{R} Q$. Then simply ignoring the grading this yields $|A| \otimes \operatorname{End}_{R} P \simeq|B| \otimes \operatorname{End}_{R} Q$ as R-algebras. But now if we assume $|A|$ and $|B|$ are central R-algebras, it follows by definition that they are in the same class of $\operatorname{Br}(R)$.

Let $Q_{2}(R)$ be the set of isomorphism classes of graded separable R-algebras which are projective R-modules of rank two. When any such algebra is considered without its grading it is a Galois extension of R with a cyclic Galois group of order two [16, Corollary 7.4, p. 487]. An abelian group multiplication * is then defined on Q_{2} as follows: let L_{1} and L_{2} be two algebras representing classes in Q_{2}. Then if σ_{1}, σ_{2} are their non-trivial automorphisms we define $L_{1} * L_{2}$ to be the isomorphism class of the subalgebra of $L_{1} \otimes^{\prime} L_{2}$ fixed by $\sigma_{1} \otimes \sigma_{2}$ [16, p. 488]. Furthermore, there is an exact sequence of abelian groups

$$
0 \rightarrow B r(R) \rightarrow B r_{2}(R) \rightarrow Q_{2}(R) \rightarrow 0
$$

Here, the first map is the one that takes the class of an ungraded algebra to the class of that algebra concentrated in degree 0 , and the second takes the class of a non-degenerate algebra A (i.e. A_{0} and A_{1} have positive rank) to $L(A)$, where $L(A)=$ class $A^{A_{0}}[\mathbf{1 6}$, Theorem 7.10, p. 490].

Suppose (M, B, ϕ) is a non-degenerate quadratic space over R. Let $T(M)$ be the tensor algebra of M, with the obvious \mathbf{F}_{2}-grading. We denote by $J(M)$ the ideal of $T(M)$ generated by the homogeneous elements $x \otimes x-\phi(x)$ for all x in M. Then Cliff M is defined to be the graded quotient algebra $T(M) / J(M)$. By [3, Corollary 3.8, p. 152] the R-module map $M \rightarrow T(M) \rightarrow$ Cliff M is an injection. Therefore, we can identify M with its image in Cliff M, where it, together with R, generates Cliff M. Cliff M is actually a graded central separable R-algebra and Cliff induces a natural group homomorphism $W_{q}(R) \rightarrow B r_{2}(R)$ by [3, Theorem 3.9 and Corollary 3.10, p. 154].

Example 2.2. Let (M, B, ϕ) be a free quadratic space over a commutative ring R, with Cliff $M=C=C_{0} \oplus C_{1}$. Then:
(i) If $(M, B)=\langle 2 a\rangle$, then $(\text { Cliff } M)^{c_{0}}=$ Cliff $M=R \oplus R x$ with $x^{2}=a$, where the grading is given by $C_{0}=R, C_{1}=R x$.
(ii) If $(M, B)=\left\langle 2 a_{1}, \ldots, 2 a_{n}\right\rangle$ with respect to a basis $\left\{x_{1}, \ldots, x_{n}\right\}$, then as an ungraded algebra Cliff M is a free R-algebra of rank 2^{n} with homogeneous basis $\left\{x_{1}^{r_{1}}, \ldots, x_{n}{ }^{r_{n}} \mid r_{i}=0,1\right\}$ where $x_{i}{ }^{2}=a_{i}$ and $x_{i} x_{j}=-x_{j} x_{i}$ when $i \neq j$. The degree of $x_{1}{ }^{r_{1}}, \ldots, x_{n}{ }^{r_{n}}$ is congruent to $\sum r_{i}$ modulo 2 .
(iii) If $(M, B, \phi)=[a, b]$ then Cliff M is the free rank $4 R$-algebra with basis
$\{1, x, y, x y\}$ where $x^{2}=a, y^{2}=b, x y+y x=1$, and the grading is given by $C_{0}=R \oplus R x y, C_{1}=R x \oplus R y$. (Cliff $\left.M\right)^{C_{0}}$ is C_{0} concentrated in degree 0 .

Proof. (i). Since $T(M) \simeq R[x]$ where $M=R x$, the description of Cliff M is immediate from the definition. Moreover, since $C_{0}=R$, we obtain $(\text { Cliff } M)^{C_{0}}=$ Cliff M.
(ii). By [3, Lemma 3.1, p. 147] we have Cliff $\left\langle 2 a_{1}, \ldots, 2 a_{n}\right\rangle=\otimes_{i=1}^{\prime n}$ Cliff $\left\langle 2 a_{i}\right\rangle$. The description of Cliff M now follows immediately from the definition of \otimes^{\prime} and part (i).
(iii). Let $M=[a, b]$ with respect to a basis $\{x, y\}$. Then in Cliff M we have $x^{2}=\phi(x)=a$ and $y^{2}=\phi(y)=b$. Furthermore, in Cliff $M, \phi(x+y)=\phi(x)+$ $\phi(y)+B(x, y)$ as well as $\phi(x+y)=(x+y)^{2}=x^{2}+y^{2}+x y+y x=\phi(x)+$ $\phi(y)+x y+y x$. Hence $x y+y x=B(x, y)=1$. Since M and R generate Cliff M as an R-algebra, these relations imply that $\{1, x, y, x y\}$ span Cliff M over R. In fact $\{x, y\}$ span C_{1} and $\{1, x y\}$ span C_{0}. Now, since M is free on $\{x, y\}$ they are independent and thus a basis of C_{1}. This implies $\{1, x y\}$ are independent and thus a basis of C_{0} : For suppose $r \cdot 1+s \cdot x y=0$. Then $r \cdot x+s \cdot x^{2} y=0$ or $r \cdot x+s a \cdot y=0$, which yields $r=0$ and $s a=0$. Then since a is a unit it follows that $s=0$, which establishes the independence. But this is just the structure we claimed for Cliff M.

Now we compute (Cliff $M)^{C_{0}}$. Clearly it contains C_{0} since C_{0} is commutative. Then $C^{C_{0}}=C_{0} \oplus D_{1}$ with D_{1} contained in C_{1}. Now $L(\mathrm{Cliff} M)$ is in $Q_{2}(R)$, hence $C^{C_{0}}$ is a projective R-module of rank 2 . But since C_{0} is a free R-module of rank 2, this makes the localization $\left(D_{1}\right)_{P}=0$ for every prime ideal P of R. Therefore $D_{1}=0$ and $C^{C}{ }_{0}=C_{0}$.

Lemma 2.3. Let (M, B, ϕ) be a free quadratic space over a commutative ring R, which has a decomposition as in Proposition 1.1 (2) (which is always true if R is semi-local and the rank of M is even). Then \mid Cliff $M \mid$ is a central separable (ungraded) R-algebra. If ($M^{\prime}, B^{\prime}, \phi^{\prime}$) has the same even rank and Cliff $M=\mathrm{Cliff} M^{\prime}$ in $\mathrm{Br}_{2}(R)$, then \mid Cliff $M \mid$ and \mid Cliff $M^{\prime} \mid$ are isomorphic.

Proof. The last assertion follows from the first, Lemma 2.1, and [6, Corollary 1] (applied after decomposing R into a product of connected rings).

As in Lemma 2.1 we always know \mid Cliff $M \mid$ is separable. Thus, we must only show that \mid Cliff $M \mid$ is central. Let $C=$ Cliff $M=C_{0} \oplus C_{1}$. By Proposition 1.1 we can write $M=\perp M_{i}$, where each M_{i} is free of rank 2 . But by [3, Lemma 3.1] Cliff $M=\otimes^{\prime}$ Cliff M_{i}, hence $L($ Cliff $M)=* L\left(\right.$ Cliff $\left.M_{i}\right)$ since L is a group homomorphism. By Example 2.2 (iii) each representing algebra in $L\left(\right.$ Cliff $\left.M_{i}\right)$ is concentrated in degree 0 , hence the product in Q_{2} is concentrated in degree 0 . Thus we have $C^{C_{0}} \subseteq C_{0}$. Now, let x be in the center of C considered as an ungraded algebra. Then certainly x is in $C^{C_{0}}$, hence x is in C_{0}. But if x is in C_{0} and commutes with all of C, it is in C^{C}. Then since C is central as a graded algebra, $C^{C}=R$ and x is in R. Therefore C is central in the ungraded sense.

Lemma 2.4. Let A be a free rank 4 central separable algebra over a commutative
ring R and S a commutative R-algebra. If f is an S-algebra isomorphism of $A \otimes S$ to $M_{2}(S)$ we will write $N(f, S)$ for the map $A \rightarrow S$ defined by $N(f, S)(a)=$ determinant $(f(a \otimes 1))$. Then:
(1) The image of $N(f, S)$ lies in R and does not depend on the choice of f and S, i.e. if S^{\prime} is another commutative R-algebra and $f^{\prime}: A \otimes^{\prime} S^{\prime} \rightarrow M_{2}\left(S^{\prime}\right)$ is an S^{\prime} algebra isomorphism, then $N(f, S)=N\left(f^{\prime}, S^{\prime}\right)$.
(2) $N(f, S)$ defines a quadratic form on A.

Proof. (1) is just [7, Proposition 3.1, p. 237], and (2) follows by a routine calculation with 2×2 matrices.

Under the hypotheses of the Lemma, we will write $N: A \rightarrow R$ for the quadratic form $N(S, f)$, and refer to it as the reduced norm.

Corollary 2.5. Let $[a, b]$ be a non-degenerate quadratic space over a commutative ring R. Then the reduced norm makes $|\mathrm{Cliff}([a, b])|$ into a quadratic space isometric to $[-a,-b] \perp[1, a b]$. If R is semi-local and Cliff $[c, d]=\operatorname{Cliff}[a, b]$ in $B r_{2}(R)$, it follows that $[-a,-b] \perp[1, a b] \simeq[-c,-d] \perp[1, c d]$.

Proof. By Example 2.2 (iii), Cliff ($[a, b]$) is the rank $4 R$-algebra $C=R \oplus$ $R x \oplus R y \oplus R x y$ with $C_{0}=R \oplus R x y, C_{1}=R x \oplus R y, x^{2}=a, y^{2}=b$, $x y+y x=1$, and $C^{C_{0}}$ is the rank 2 subalgebra $R \oplus R x y$. But then, $(x y)^{2}=x(y x) y=x(1-x y) y=x y-a b$, hence the free rank $2 R$-algebra $S=R \oplus R z$ with $z^{2}=z-a b$ is Galois [16, 7.4, p. 287].

We now define an R-module homomorphism $f: C \rightarrow M_{2}(S)$ by letting

$$
\begin{aligned}
f(x)=\left[\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right], f(y)=\left[\begin{array}{cc}
0 & (1-z) / a \\
z & 0
\end{array}\right], f(1)=1 \text { and } \\
f(x y)=\left[\begin{array}{cc}
z & 0 \\
0 & 1-z
\end{array}\right]
\end{aligned}
$$

It then follows that f is actually an R-algebra homomorphism just by checking the identities $f(x y)=f(x) f(y), f(x)^{2}=\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right], f(y)^{2}=\left[\begin{array}{ll}b & 0 \\ 0 & b\end{array}\right]$, and $f(x) f(y)+f(y) f(x)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Now let $f^{*}: C \otimes S \rightarrow M_{2}(S)$ be the S-algebra homomorphism induced by f. Since $C \otimes S$ and $M_{2}(S)$ are free central separable S algebras of the same rank by [2, Corollary 3.4], f^{*} is an isomorphism. Now by directly computing the norm of Lemma 2.3 (i) on the R-basis $\{x,-y, 1, x y\}$ we get the quadratic space $[-a,-b] \perp[1, a b]$.

The final conclusion now follows from Lemma 2.3 together with the uniqueness in Lemma 2.4.

Remark 2.6. In case 2 is a unit, we note that by a change of basis we may restate Corollary 2.5 with $\left\langle a^{\prime}, b^{\prime}\right\rangle\left(a^{\prime}, b^{\prime}\right.$ in $\left.U(R)\right)$ replacing [a, b] in the hypothesis, and $\left\langle-a^{\prime},-b^{\prime}\right\rangle \perp\left\langle 2, a^{\prime} b^{\prime}\right\rangle$ replacing $[-a,-b] \perp[1, a b]$ in the conclusion (and similarly for c, d).

Proposition 2.7. Let (M, B, ϕ) and $\left(N, B^{\prime}, \phi^{\prime}\right)$ be free quadratic spaces of rank 2 over a semi-local ring R. Then M is isometric to N if and only if Cliff $(M)=$ Cliff (N) in $B r_{2}(R)$.

Proof. Clearly, only the sufficiency need be proved. By Proposition 1.1 we may assume $(M, B, \phi)=[a, b]$ and $(N, B, \phi)=[c, d]$.

As noted in the proof of Corollary 2.5 above, $L($ Cliff $M)$ is represented by the free rank $2 R$-algebra $S=R \oplus R z$ with $z^{2}=z-a b$, which is a Galois extension of R with a 2 element Galois group by [16, 7.4, p. 281]. Then since $(1-z)^{2}=$ $(1-z)-a b, S$ has a unique non-trivial automorphism j with $j(z)=1-z$. Then defining $\lambda(w)=w j(w)$ for any w in S we define an $S^{j}=R$ valued quadratic form λ on S. Computing λ on the basis $\{1, z\}$ we see this form is isometric to $[1, a b]$. Therefore, since $L(\operatorname{Cliff} M)=L(\mathrm{Cliff} N)$, we have $[1, a b] \simeq[1, c d]$. Then by Corollary 2.5 and $[\mathbf{1 2}$, Kürzungssatz], $[-a,-b] \simeq$ $[-c,-d]$. It then follows that $M \simeq N$.

If (M, B, ϕ) (respectively, (M, B)) is a free quadratic (respectively, bilinear) space over R, we write Det M for the determinant of B (relative to some basis) and $\operatorname{det} M$ for the class of Det M in $U(R) / U(R)^{2}$.

If 2 is a unit in R, then for each i in \mathbf{F}_{2} and $a \in U(R)$ we will write $R\{a\}_{i}$ for the graded algebra $R \oplus R z$ with $z^{2}=a$ and $\operatorname{deg} z=i$. From Example 2.2 (1) and 2.2 (3) (with a change of basis), we see $L\left(\right.$ Cliff $\left.\left\langle 2 a_{1}\right\rangle\right)=c l\left(R\left\{a_{1}\right\}_{1}\right)$ and $L\left(\right.$ Cliff $\left.\left\langle 2 a_{1}, 2 a_{2}\right\rangle\right)=\operatorname{cl}\left(R\left\{-a_{1} a_{2}\right\}_{0}\right)$, thus $R\{a\}_{i}$ always represents a class in $Q_{2}(R)$. Clearly, the automorphism σ with $\sigma(z)=-z$ is the unique non-trivial automorphism of $R\{a\}_{i}$.

Lemma 2.8. Let R be a semi-local ring in which 2 is a unit.
(1) If (M, B, ϕ) is a free rank n quadratic space, then $L(\mathrm{Cliff} M)$ is represented by $R\left\{\left(\frac{1}{2}\right)^{n}(-1)^{n(n-1) / 2} \operatorname{Det} M\right\}_{\bar{n}}$.
(2) If (M, B, ϕ) and $\left(M^{\prime}, B^{\prime}, \phi^{\prime}\right)$ are two free spaces of the same rank, then $L(\operatorname{Cliff} M)=L($ Cliff $N)$ if and only if $\operatorname{det} M=\operatorname{det} N$.

Proof. (1) If σ_{1} and σ_{2} are the unique non-trivial automorphism of $R\left\{a_{1}\right\}_{i}$ and $R\left\{a_{2}\right\}_{j}$, it is not hard to show that the subalgebra of $\left(R\left\{a_{1}\right\}_{i} \otimes^{\prime} R\left\{a_{2}\right\}_{j}\right)$ fixed by $\sigma_{1} \otimes \sigma_{2}$ is isomorphic to $R\left\{(-1)^{i j} a_{1} a_{2}\right\}_{i+j}$. The result then follows easily by induction using Proposition 1.1 (1) and Example 2.2 (1).
(2) Clearly, by part (1) it will suffice to show that if an R-algebra has two R-bases $\{1, t\}$ and $\{1, y\}$ with t^{2} and u^{2} in R, then $t=b u$ for some unit b of R. But since $\{1, u\}$ is a basis, we can write $t=a+b u$ for some a and b in R. Then $t^{2}=\left(a^{2}+b^{2} u^{2}\right)+2 a b u$, hence $a b=0$. But then $-a^{2} \cdot 1+a \cdot t=0$, thus by the independence of 1 and t we obtain $a=0$ and $t=b u$. Furthermore, since $\{1, t\}$ is a basis b must be a unit of R.

Let R be a commutative ring in which 2 is a unit. If a, b are units in R, we define the quaternion algebra $[(a, b) / R]$ to be the (ungraded) free rank 4
R-algebra with basis $\{1, x, y, x y\}$ subject to $x^{2}=a, y^{2}=b$ and $x y=-y x$. By Example 2.2 (2) we see that $[(a, b) / R]=|\operatorname{Cliff}\langle 2 a, 2 b\rangle|$, and is thus central separable by Lemma 2.3.

Lemma 2.9. Let R be a commutative ring in which 2 is a unit. If a, b, c are units of R, then Cliff $\langle 2 a, 2 b, 2 c, 2 a b c\rangle=[(-a b,-a c) / R]$ in $B r_{2}(R)$, and are in fact equal as ungraded algebras in $\operatorname{Br}(R)$.

Proof. Let Cliff $\langle 2 a, 2 b, 2 c\rangle=C=C_{0} \oplus C_{1}$. By Example 2.2 (2) we see that $C_{0} \simeq[(-a b,-a c) / R]$. But by [16, Corollary 6.4, p. 483] $C \simeq C_{0} \otimes C^{c_{0}}$, thus by Lemma 2.7 (1) $C \simeq[(-a b,-a c) / R] \otimes^{\prime} R\{-a b c\}_{1}$. Then by Example 2.2 (1), $C \simeq[(-a b,-a c) / R] \otimes$ Cliff $\langle-2 a b c\rangle$. Therefore,

Cliff $\langle 2 a, 2 b, 2 c, 2 a b c\rangle \simeq C \otimes^{\prime}$ Cliff $\langle 2 a b c\rangle \simeq[(-a b,-a c) / R]$
\otimes Cliff $\langle-2 a b c, 2 a b c\rangle$.
Since $\langle-2 a b c, 2 a b c\rangle$ is hyperbolic this implies that Cliff $\langle 2 a, 2 b, 2 c, 2 a b c\rangle=$ $[(-a b,-a c) / R]$ in $B r_{2}(R)$. The final conclusion now follows from Lemmas 2.1 and 2.3.

Theorem 2.10. Let (M, B, ϕ) and ($N, B^{\prime}, \phi^{\prime}$) be free non-degenerate quadratic spaces of rank less than or equal to 3 , over a semi-local ring R. Then M is isometric to N if and only if Cliff $M=$ Cliff N in $B r_{2}(R)$.

Proof. Clearly, only the sufficiency need be proved. Let n be the common rank. We already have the conclusion if $n=2$ by Proposition 2.7. Thus n must be odd, and by Proposition 1.1, 2 is a unit in R. But then the $n=1$ case is resolved by Example 2.2 (1) and Lemma 2.8. Therefore we may assume $n=3$.

By Proposition 1.1 we may write $M=\langle 2 a, 2 b, 2 c\rangle$ and $N=\langle 2 d, 2 e, 2 f\rangle$. But, by Lemma 2.8 we know $a b c \equiv \operatorname{def}\left(\bmod U(R)^{2}\right)$, thus Cliff $\langle 2 a, 2 b, 2 c, 2 a b c\rangle=$ Cliff $\langle 2 d, 2 e, 2 f, 2 d e f\rangle$ in $B r_{2}(R)$, which yields

$$
|\mathrm{Cliff}\langle-2 a b,-2 a c\rangle|=|\mathrm{Cliff}\langle-2 d e,-2 d f\rangle|
$$

in $B r_{2}(R)$ by Lemma 2.9 and Example 2.2 (2). Thus by Remark 2.6 we can conclude that $\langle 2 a b, 2 a c, 2,2 b c\rangle \simeq\langle 2 d e, 2 d f, 2,2 e f\rangle$. After cancelling $\langle 2\rangle$ from each side and scaling by $a b c \equiv \operatorname{def}$, the required result follows.

Theorem 2.10 does not hold in general for spaces of higher rank even when 2 is a unit. For example, it is easy to check that $4\langle 1\rangle$ and $4\langle-1\rangle$ have the same invariants over the rational numbers although they are not isometric [14, Example 58:5, p. 152]. After proving a technical Lemma we will give a condition on R under which Theorem 2.10 will hold for spaces of arbitrary rank.

Lemma 2.11. Let R be a semi-local ring and (M, B, ϕ) a free rank 4 non-
degenerate quadratic space over R. Then M is hyperbolic if and only if Cliff M is trivial in $\mathrm{Br}_{2}(R)$.

Proof. The necessity is immediate since we know that Cliff induces a group homomorphism $W_{q}(R) \rightarrow B r_{2}(R)$. Thus, suppose Cliff M is trivial in $B r_{2}(R)$. By Proposition 1.1 we can write $M=M_{1} \perp M_{2}$ where each M_{i} is of rank 2. But then $\mathrm{cl}\left(\mathrm{Cliff} M_{1}\right)=\mathrm{cl}\left(\mathrm{Cliff} M_{2}\right)^{-1}$ in $B r_{2}(R)$. However, $M_{1} \perp M_{1}^{-1}$ is hyperbolic where $M_{1}{ }^{-1}$ is the space M_{1} scaled by -1 , hence $\mathrm{cl}\left(\right.$ Cliff $\left.M_{1}\right)=$ $\mathrm{cl}\left(\text { Cliff } M_{1}^{-1}\right)^{-1}$ as well. Therefore, Cliff M_{1}^{-1} and Cliff M_{2} are in the same class of $B r_{2}(R)$. Then by Theorem 2.10, $M_{1}^{-1} \simeq M_{2}$, and thus $M \simeq M_{1} \perp M_{2} \simeq$ $M_{1} \perp M_{1}^{-1}$. But this makes M hyperbolic.

Theorem 2.12. Let R be a semi-local ring over which all free non-degenerate spaces of rank greater than 4 are isotropic. Then any free non-degenerate quadratic space (M, B, ϕ) is determined up to isometry by its dimension and by the class of Cliff M in $\mathrm{Br}_{2}(R)$.

Proof. If the statement is false, let (M, B, ϕ) be a counterexample of minimal rank n.

Suppose n is greater than 4 . Then by hypothesis, M is isotropic and so by Proposition 1.2, we have $M \simeq M^{\prime} \perp H$ where M^{\prime} is now of rank $n-2$. But since Cliff induces a homomorphism from $W_{q}(R)$ to $B r_{2}(R)$, Cliff M is in the same class as Cliff M^{\prime}. Therefore, by the minimality of n, the isometry class of M^{\prime} is completely determined by Cliff M. Since M^{\prime} then determines M we have a contradiction.

By Theorem 2.10, n cannot be less than 4 , hence it is exactly 4 . Therefore, there exist two rank 4 quadratic spaces (M, B, ϕ) and ($N, B^{\prime}, \phi^{\prime}$) with Cliff M and Cliff N in the same class of $B r_{2}(R)$, but M not isometric to N. By Proposition 1.1 we can write $N=N_{1} \perp N_{2}$ where N_{1}, N_{2} are rank 2 spaces. Then $M^{-1} \perp N_{1}$ is a rank 6 space, which by hypothesis must be isotropic. By Proposition 1.2 we can write $M^{-1} \perp N_{1} \simeq E_{1} \perp H$ for some E_{1} of rank 4. Then since $E_{1} \perp N_{2}$ is also of rank 6, it too can be written as $E_{2} \perp H$ for some rank 4 space E_{2}. Combining the isometries we obtain $M^{-1} \perp N \simeq M^{-1} \perp N_{1} \perp$ $N_{2} \simeq E_{1} \perp H \perp N_{2} \simeq E_{2} \perp 2 H$. But then $4 H \perp N \simeq M \perp M^{-1} \perp N \simeq$ $M \perp E_{2} \perp 2 H$, which implies class $($ Cliff $N)=$ class $($ Cliff $M) \cdot$ class $\left(C l i f f ~ E_{2}\right)$. Therefore class (Cliff E_{2}) is trivial in $B r_{2}(R)$, and Lemma 2.11 implies that E_{2} is hyperbolic. Substituting for E_{2} above yields $4 H \perp N \simeq M \perp 4 H$, hence by [11, Kürzungssatz] $M \simeq N$. This is a contradiction.

We conclude this section by reformulating our results when 2 is a unit in terms of the easier to compute Hasse invariant.

Let M be a free rank m quadratic space over a commutative ring R in which 2 is a unit. We define $H(M)$ as the class of

Cliff $\left(M \perp m\left\langle-\frac{1}{2}\right\rangle \perp\left\langle\frac{1}{2},-\left(\frac{1}{2}\right)^{m-1}\right.\right.$ Det $\left.\left.M\right\rangle\right)$ in $B r_{2}(R)$.
By direct calculation we see that $H(\langle a\rangle)=\operatorname{cl}\left(\mathrm{Cliff}\left\langle a,-\frac{1}{2}, \frac{1}{2},-a\right\rangle\right)=0$, and
if N is another free quadratic space of rank n then

$$
\begin{aligned}
& H(M)+H(N)-H(M \perp N) \\
& \quad=\operatorname{cl}\left(\operatorname{Cliff}\left\langle\frac{1}{2},-\left(\frac{1}{2}\right)^{m-1} \operatorname{Det} M,-\left(\frac{1}{2}\right)^{n-1} \operatorname{Det} N,\left(\frac{1}{2}\right)^{m+n-1} \operatorname{Det} M \cdot \operatorname{Det} N\right\rangle\right) \\
& \quad=\operatorname{cl}\left(\left(\frac{\left(\frac{1}{2}\right)^{m} \operatorname{Det} M,\left(\frac{1}{2}\right)^{n} \operatorname{Det} N}{R}\right)\right)
\end{aligned}
$$

by Lemma 2.9. Using these two observations and the bilinearity of the quaternion algebra in $\operatorname{Br}(R)$, we easily obtain by induction that

$$
H\left(\left\langle 2 a_{1}, \ldots, 2 a_{n}\right\rangle\right)=\operatorname{cl}\left(\prod_{i<j}\left[\left(a_{i}, a_{j}\right) / R\right]\right) \text { in } B r_{2}(R)
$$

Definition 2.13. If $(M, B)=\left\langle b_{1}, \ldots, b_{n}\right\rangle$ is a bilinear space we define the Hasse invariant

$$
\text { Hasse } M=\mathrm{cl}\left(\prod_{i<j}\left[\left(b_{i}, b_{j}\right) / R\right]\right)
$$

in $\operatorname{Br}(R)$. By the bilinearity and the above formula for $H(M)$ it is easy to check that

$$
\text { Hasse } M=H(M) \cdot \mathrm{cl}\left(\left(\frac{2,(\operatorname{Det} M)^{n-1} 2^{n(n-1) / 2}}{R}\right)\right) \text { in } B r_{2}(R)
$$

Since the map $\operatorname{Br}(R) \rightarrow B r_{2}(R)$ is injective, this simultaneously shows that Hasse (M) is independent of the diagonalization of M and, if M and N have the same rank and determinant then Hasse $M=$ Hasse N if and only if $H(M)=H(N)$.

Theorem 2.14. Let R be a semi-local ring in which 2 is a unit, and suppose (M, B) and (N, B) are two free spaces of the same rank. Then Cliff $M=$ Cliff N in $B r_{2}(R)$ if and only if Hasse $M=$ Hasse N and $\operatorname{det} M=\operatorname{det} N$. Consequently, Theorems 2.10 and 2.12 remain true if the class of the Clifford algebra is replaced by the Hasse invariant and determinant.

Proof. By Lemma 2.8 (2), Cliff $M=$ Cliff N in $B r_{2}(R)$ implies $\operatorname{det} M=\operatorname{det} N$, thus by the definition of $H(M)$, Cliff $M=$ Cliff N if and only if $H(M)=H(N)$. The proof is then complete by the observation preceding the theorem.
3. The quotient $W(R) / I(R)^{3}$. In this section we will prove that $W(R) / I(R)^{3}$ determines $W(R)$, where $I(R)$ is the ideal of $W(R)$ generated by the classes of even dimensional forms, and R is a semi-local ring with 2 a unit. The first step will be to prove that for any semi-local ring $R, I(R) / I(R)^{2}$ is isomorphic to $U(R) / U(R)^{2}$, which we do by using the following somewhat more abstract considerations:

Let G be an abelian group of exponent 2 . We will write $\mathbf{Z}[G]$ for its group ring and $\{g\}$ for the image in $\mathbf{Z}[G]$ of an element g of G. The group will be written
multiplicatively with identity e. Let M_{0} be the kernel of the ring homomorphism $\mathbf{Z}[G] \rightarrow \mathbf{Z} \rightarrow \mathbf{Z} / 2 \mathbf{Z}$ defined by sending each group element to 1 and reducing $\bmod 2 \mathbf{Z}$. That is, M_{0} is the ideal of $\mathbf{Z}[G]$ consisting of elements of the form $\sum n_{i}\left\{g_{i}\right\}$ with $\sum n_{i}$ even, and is easily seen to be generated additively by the elements $\{e\}+\{g\}$. If g is an element of G we define $\operatorname{disc}_{g}: M_{0} \rightarrow G$ by

$$
\sum n_{i}\left\{g_{i}\right\} \rightarrow\left(\Pi g_{i}{ }^{n_{i}}\right) \cdot g^{\Sigma_{n} / 2} .
$$

From the formula it is clear that disc $_{g}$ is a group homomorphism using the additive structure on M_{0} and the multiplicative structure on G. If K is an ideal of $\mathbf{Z}[G]$ contained in M_{0} we will write $\overline{M_{0}}$ for the ideal M_{0} / K in $\mathbf{Z}[G] / K$, and use bars to indicate reduction modulo K.

Lemma 3.1. Let K be an ideal of $\mathbf{Z}[G]$ contained in M_{0} with $\{e\}+\{g\}$ in K and $\operatorname{disc}_{g}(K)=e$. Then disc_{g} induces an isomorphism $\overline{M_{0}} / \overline{M_{0}{ }^{2}} \rightarrow G$ of groups.

Proof. Since $\operatorname{disc}_{g}(K)=e$ by assumption, we at least know disc ${ }_{g}$ induces a well defined homomorphism $\overline{M_{0}} \rightarrow G$. To actually define the map from $\overline{M_{0}} / \overline{M_{0}{ }^{2}}$ it will suffice to show $\operatorname{disc}_{g}\left(M_{0}{ }^{2}\right)=e$. But $M_{0}{ }^{2}$ is additively generated by elements of the form $(\{e\}+\{h\})(\{e\}+\{k\})$, hence it is enough to show disc g_{g} vanishes on these. Now

$$
\begin{aligned}
\operatorname{disc}_{g}((\{e\}+\{h\})(\{e\}+\{k\})) & =\operatorname{disc}_{g}(\{e\}+\{h\}+\{k\}+\{h k\}) \\
& =e \cdot h \cdot k \cdot h k \cdot g^{2}=e,
\end{aligned}
$$

since G has exponent 2 .
We now define an inverse map $f: G \rightarrow \overline{M_{0}} / \overline{M_{0}{ }^{2}}$ by $h \rightarrow \operatorname{cl}(\{e\}+\{h g\})$ where cl denotes the map $M_{0} \rightarrow \overline{M_{0}} \rightarrow \overline{M_{0}} / \overline{M_{0}{ }^{2}}$. Then by direct calculation $f(h k)-f(h)-f(k)=\mathrm{cl}(-\{e\}-\{h g\}-\{k g\}+\{h k g\})$. But $-\mathrm{cl}(\{e\})=\operatorname{cl}\{g\}$ by hypothesis, hence $f(h k)-f(h)-f(k)=\operatorname{cl}\{g\} \cdot \operatorname{cl}(\{e\}-\{h\}-\{k\}+\{h k\})=$ $\mathrm{cl}\{g\} \cdot \mathrm{cl}(\{e\}-\{h\}) \cdot \mathrm{cl}(\{e\}-\{k\})=0$. Hence f is a group homomorphism.

If is now easy to check $\operatorname{disc}_{g} \circ f$ and $f \circ \operatorname{disc}_{g}$ are the identity (the latter need only be checked on generators).

We now specialize to the case where G is the group $U(R) / U(R)^{2}$ for a commutative ring R. An upper dot will be used to indicate reduction $\bmod U(R)^{2}$.

Corollary 3.2 (cf. [$\mathbf{1 5}$, Korollar, p. 122]). If R is a semi-local ring then there is an abelian group isomorphism from $I(R) / I(R)^{2}$ onto $U(R) / U(R)^{2}$. This isomorphism is given by

$$
\left[\left\langle a_{1}, \ldots, a_{2 n}\right\rangle\right]+I(R)^{2} \mapsto\left(\Pi \dot{a}_{i}\right) \cdot(-\dot{\mathrm{i}})^{n} \text { with inverse } \dot{a} \mapsto[(1,-a)]+I(R)^{2} .
$$

Proof. First suppose R is connected. Then if we let $G=U(R) / U(R)^{2}$, the ring homomorphism which takes $\{\dot{a}\} \mapsto[\langle a\rangle]$ is a surjection of $\mathbf{Z}[G]$ onto $W(R)$ [13, Theorem 1.16] whose kernel we denote by K. The ideal K is generated by $\{\mathbf{i}\}+\{-\dot{1}\}$ and the elements of the form $\sum_{i=1}^{4}\left(\left\{\dot{a}_{i}\right\}-\left\{\dot{b}_{i}\right\}\right)$ with $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle \simeq\left\langle b_{1}, b_{2}, b_{3}, b_{4}\right\rangle[13$, Corollary 1.17 (i)]. We now wish to apply Lemma 3.1 to $W(R) \simeq \mathbf{Z}[G] / K$, with $g=-\mathbf{i}$. Certainly $\{\mathrm{i}\}+\{g\}=\{\mathrm{i}\}+$
$\{-\mathrm{i}\}$ is in K. Furthermore,

$$
\operatorname{disc}_{-i}\left(\sum_{i=1}^{4}\left(\left\{\dot{a}_{i}\right\}-\left\{\dot{b}_{i}\right\}\right)\right)=\left(\prod_{i=1}^{4} \dot{a}_{i}\right) \cdot\left(\prod_{i=1}^{4} \dot{b}_{i}\right)=\mathrm{i}
$$

the last equality following since isometric forms have the same determinant. Thus Lemma 3.1 applies and $\overline{M_{0}} / \overline{M_{0}{ }^{2}}$ is isomorphic to G. The result now follows by composing the explicit isomorphism of Lemma 3.1 with the induced isomorphism of $M_{0} / M_{0}{ }^{2} \rightarrow I(R) / I(R)^{2}$ given by

$$
\operatorname{cl}\left(\sum n_{i}\left\{g_{i}\right\}\right) \mapsto\left(\sum n_{i}\left[\left(g_{i}\right)\right]\right)+I(R)^{2} .
$$

In the general case the result is obtained by decomposing R into a product of connected rings, say $R=\Pi R_{i}$. Then $W(R) \simeq \Pi\left(W\left(R_{i}\right)\right)$ with $I(R)$ breaking up into $\Pi I\left(R_{i}\right)$ in this natural correspondence [13, Lemma 1.9]. Then $I(R) / I(R)^{2} \simeq \Pi I\left(R_{i}\right) / I\left(R_{i}\right)^{2} \simeq \Pi U\left(R_{i}\right) / U\left(R_{i}\right)^{2} \simeq U(R) / U(R)^{2}$.

Remark 3.3. The same proof also shows that for the Witt ring $W(R, J)$ of hermitian forms (see [13] for definitions), $I(R) / I(R)^{2}$ is isomorphic to $U(R) / N(R)$, as long as (R, J) can be factored into a product of pairs $\left(R_{i}, J_{i}\right)$ to which [13, Corollary 1.17 (i)] can be applied as above, i.e. where R_{i} is a connected ring. However, the result fails in general for semi-local rings with involution. For let $R=A \times A$ where A is a connected semi-local ring, and then define J to be the involution which switches coordinates. Then by [13, Corollary 1.17 (ii)], $W(R, J)=0$ which implies $I(R) / I(R)^{2}=0$, yet $U(R) / N(R) \simeq U(A)$.

Lemma 3.4. Let R be a connected semi-local ring where 2 is a unit Then Cliff $\left(I^{3}(R)\right)=1$ in $\operatorname{Br}_{2}(R)$. If $\left(E_{1}, B_{1}\right)$ and $\left(E_{2}, B_{2}\right)$ are bilinear spaces of rank $r \leqq 3$ with $\mathrm{cl}\left(E_{1}\right) \equiv \operatorname{cl}\left(E_{2}\right)\left(\bmod I^{3}(R)\right)$, then $E_{1} \simeq E_{2}$.

Proof. Since $I(R)$ is generated additively by the forms $\langle 1, a\rangle, I^{3}(R)$ must be generated additively by the forms $\langle 1, a\rangle\langle 1, b\rangle\langle 1, c\rangle$. But

$$
\begin{aligned}
\operatorname{Cliff}(\langle 1, a\rangle\langle 1, b\rangle\langle 1, c\rangle) & =\operatorname{Cliff}(\langle 1, a, b, a b\rangle) \cdot \operatorname{Cliff}(\langle c, a c, b c, a b c\rangle) \\
& =\operatorname{cl}[((-a,-b) / R)]^{2}=1,
\end{aligned}
$$

by Lemma 2.9. Thus Cliff $\left(I^{3}(R)\right)=1$ in $B r_{2}(R)$. Our last assertion now follows from Theorem 2.10.

Lemma 3.5. Let R and S be semi-local rings in which 2 is a unit. Further suppose that $R=\prod_{i=1}^{m} R_{i}$ and $S=\prod_{i=1}^{n} S_{i}$ are decompositions of R and S into connected rings. Then if $W(R) / I(R)^{k} \simeq W(S) / I(S)^{k}$ for any integer $k \geqq 0$, it follows that $m=n$ and $W\left(R_{i}\right) / I\left(R_{i}\right)^{k} \simeq W\left(S_{i}\right) / I\left(S_{i}\right)^{k}$ (after renumbering).

Proof. Clearly the ring decompositions induce an isomorphism

$$
\prod_{i=1}^{m} W\left(R_{i}\right) / I\left(R_{i}\right)^{k} \simeq \prod_{i=1}^{n} W\left(S_{i}\right) / I\left(S_{i}\right)^{k}
$$

as in [13, Lemma 19]. The result now follows if we show that each $W(T) / I(T)^{k}$ is connected when T is a connected semi-local ring. If $k=0$ this is immediate from [13, Example 3.11 and Corollary 3.10]. If $k>0,2^{k}$ is in $I^{k}(T)$ which implies $2^{k}\left(W(T) / I^{k}(T)\right)=0$, and the connectivity follows from [13, Theorem 2.9 (16) and Corollary 3.10].

From now on we will write disc for disc_i and any of its induced maps.
Theorem 3.6 (cf. [8, Theorem, p. 21]). Let R and S be semi-local rings in which 2 is a unit. Then $W(R) / I(R)^{3}$ is isomorphic to $W(S) / I(S)^{3}$ if and only if $W(R)$ is isomorphic to $W(S)$.

Proof. By Lemma 3.5, we may assume R and S are connected. Clearly, since $I(R)$ and $I(S)$ are the unique maximal ideals of $W(R)$ and $W(S)$ containing 2 [13, Lemma 2.13], $W(R)$ isomorphic to $W(S)$ implies $W(R) / I(R)^{3}$ is isomorphic to $W(S) / I(S)^{3}$.

Now suppose f is a ring isomorphism $W(R) / I(R)^{3} \rightarrow W(S) / I(S)^{3}$. By the characterization of $I(R)$ and $I(S)$ mentioned above, we see that f induces an isomorphism of $I(R) / I(R)^{3} \rightarrow I(S) / I(S)^{3}$ and consequently an isomorphism $I(R) / I(R)^{2} \rightarrow I(S) / I(S)^{2}$. Then by Corollary 3.2 we get an isomorphism $f^{\prime}: U(R) / U(R)^{2} \rightarrow I(R) / I(R)^{2} \rightarrow I(S) / I(S)^{2} \rightarrow U(S) / U(S)^{2}$, with

$$
\begin{aligned}
\dot{a} & \mapsto[\langle 1,-a\rangle]+I(R)^{2} \mapsto f\left([\langle 1,-a\rangle]+I(R)^{3}\right)+I(S)^{2} \\
& \mapsto \operatorname{disc}\left(f\left([\langle 1,-a\rangle]+I(R)^{3}\right)\right) .
\end{aligned}
$$

If we write G_{1} for $U(R) / U(R)^{2}$ and G_{2} for $U(S) / U(S)^{2}$, then f induces a ring isomorphism of $\mathbf{Z}\left[G_{1}\right] \rightarrow \mathbf{Z}\left[G_{2}\right]$. Now, by [13, Corollary 1.17 (i)] this in turn induces a ring homomorphism $f^{*}: W(R) \rightarrow W(S)$, if we can show $\left\langle f^{\prime}(\mathrm{i}), f^{\prime}(-\mathrm{i})\right\rangle \simeq$ $\langle\dot{1},-\dot{1}\rangle$ and $\left\langle f^{\prime}(\dot{a}), f^{\prime}(\dot{b})\right\rangle \simeq\left\langle f^{\prime}(\dot{c}), f^{\prime}(\dot{d})\right\rangle$ when $\langle a, b\rangle \simeq\langle c, d\rangle$. In fact, this actually proves f^{*} is an isomorphism, since the same argument applied to $\left(f^{\prime}\right)^{-1}$ produces $\left(f^{*}\right)^{-1}$.

Since f^{\prime} is a group isomorphism $f^{\prime}(\mathbf{i})=\mathbf{i}$, hence to prove the first assertion it is enough to prove $f^{\prime}(-\mathrm{i})=-\mathrm{i}$. Now, $f^{\prime}(-\mathrm{i})=\operatorname{disc}\left(f\left([\langle 1,1\rangle]+I(R)^{3}\right)\right)=$ $\operatorname{disc}\left(f\left([\langle 1\rangle]+I(R)^{3}\right)+f\left([\langle 1\rangle]+I(R)^{3}\right)\right)$. But f is a ring isomorphism, hence $f\left([\langle 1\rangle]+I(R)^{3}\right)=[\langle 1\rangle]+I(S)^{3}$. Then $f^{\prime}(-1)=\operatorname{disc}\left(\left([\langle 1\rangle]+I(S)^{3}\right)+\right.$ $\left.\left([\langle 1\rangle]+I(S)^{3}\right)\right)=\operatorname{disc}\left([\langle 1,1\rangle]+I(S)^{3}\right)=-1$.

Let x_{1} and x_{2} be in $I(R)$. Then $f\left(x_{i}+I(R)^{3}\right), i=1,2$, are in $I(S) / I(S)^{3}$, hence we may write $f\left(x_{i}+I(R)^{3}\right)=y_{i}+I(S)^{3}$, where each y_{i} is in $I(S)$. Now if we write $\dot{c}_{i}=\operatorname{disc} y_{i}$, we obtain $\left\langle 1,-c_{i}\right\rangle+I(S)^{2}=y_{i}+I(S)^{2}$ since both sides have the same image under disc: $I(S) / I(S)^{2} \rightarrow U(S) / U(S)^{2}$. Therefore we can write $y_{i}=\left[\left\langle 1,-c_{i}\right\rangle\right]+z_{i}$ for some z_{i} in $I(S)^{2}$. Now,

$$
\begin{aligned}
f\left(x_{1} x_{2}+I(R)^{3}\right) & =f\left(x_{1}+I(R)^{3}\right) f\left(x_{2}+I(R)^{3}\right)=\left(y_{1}+I\left(S^{3}\right)\left(y_{2}+I(S)^{3}\right)\right. \\
& =\left(\left[\left\langle 1,-c_{1}\right\rangle\right]+z_{1}+I(S)^{3}\right)\left(\left[\left(1,-c_{2}\right)\right]+z_{2}+I(S)^{3}\right) .
\end{aligned}
$$

But expanding this last product all terms except [$\left.\left(1,-c_{1}\right)\right] \cdot\left[\left(1,-c_{2}\right)\right]$ lie in $I(S)^{3}$, thus $f\left(x_{1} x_{2}+I(R)^{3}\right)=\left[\left\langle 1,-c_{1}\right\rangle\right] \cdot\left[\left\langle 1,-c_{2}\right]+I(S)^{3}\right.$.

Now, we substitute $x_{1}=[\langle 1,-a\rangle]$ and $x_{2}=[\langle 1,-b\rangle]$ into this last formula. By the definition of f^{\prime} we have $\dot{c}_{1}=f^{\prime}(\dot{a})$ and $\dot{c}_{2}=f^{\prime}(b)$, hence $f\left([\langle 1,-a\rangle] \cdot[\langle 1,-b\rangle]+I(R)^{3}\right)=\left[\left\langle 1,-f^{\prime}(\dot{a})\right\rangle\right]\left[\left\langle 1,-f^{\prime}(\dot{b})\right\rangle\right]+I(S)^{3}$. But $\langle 1,-a\rangle\langle 1,-b\rangle=\langle 1, a b\rangle \perp\langle-a,-b\rangle$, thus $\langle a, b\rangle \simeq\langle c, d\rangle$ implies $\langle 1,-a\rangle\langle 1,-b\rangle \simeq\langle 1,-c\rangle\langle 1,-d\rangle$ since $\dot{a} \dot{b}=\dot{c} \dot{d}$. This then yields $\left[\left\langle 1,-f^{\prime}(\dot{a})\right\rangle\right]\left[\left\langle 1,-f^{\prime}(b)\right\rangle\right] \equiv\left[\left\langle 1,-f^{\prime}(\dot{c})\right\rangle\right][\langle 1,-f(\dot{d})\rangle]\left(\bmod I(S)^{3}\right)$ or

$$
\begin{aligned}
{\left[\left\langle 1, f^{\prime}(\dot{a}) f^{\prime}(b)\right\rangle\right]+\left[\left\langle-f^{\prime}(\dot{a}),-f^{\prime}(b)\right\rangle\right] \equiv } & {\left[\left\langle 1, f^{\prime}(\dot{c}) f^{\prime}(\dot{d})\right\rangle\right] } \\
& +\left[\left\langle-f^{\prime}(\dot{c}),-f^{\prime}(\dot{d})\right\rangle\right]\left(\bmod I(S)^{3}\right) .
\end{aligned}
$$

We know f^{\prime} is a group isomorphism hence $\dot{a} \dot{b}=\dot{c} \dot{d}$ implies $f^{\prime}(\dot{a}) f^{\prime}(\dot{b})=f^{\prime}(\dot{c}) f^{\prime}(\dot{d})$, and the last congruence becomes $\left[\left\langle f^{\prime}(\dot{a}), f^{\prime}(\dot{b})\right\rangle\right] \equiv\left[\left\langle f^{\prime}(\dot{c}), f^{\prime}(\dot{d})\right\rangle\right]\left(\bmod I(S)^{3}\right)$. Now, an application of Lemma 3.4 yields $\left\langle f^{\prime}(a), f^{\prime}(b)\right\rangle \simeq\left\langle f^{\prime}(c), f^{\prime}(d)\right\rangle$ which is the required conclusion.

References

1. C. Arf, Untersuchungen über quadratische Formen in Körpern der Charakteristik 2, J. Reine Angew. Math. 189 (1941), 148-167.
2. M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
3. H. Bass, Lectures on topics in algebraic K-theory, Tata Institute, 1967.
4. N. Bourbaki, Elements de mathematique, algebre commutative, Ch. 2 (Hermann, Paris, 1961).
5. L. N. Childs, G. Garfinkel, and M. Orzech, The Brauer group of graded Azumaya algebras, Trans. Amer. Math. Soc. 175 (1973), 299-326.
6. F. DeMeyer, Projective modules over central separable algebras, Can. J. Math. 21 (1969), 39-43.
7. S. Endo and Y. Watanabe, On separable algebras over a commutative ring, Osaka J. Math. 4 (1967), 233-242.
8. D. K. Harrison, Witt Rings, Lecture Notes, University of Kentucky, 1969.
9. J. S. Hsia and R. D. Peterson, A note on quadratic forms over semi-local rings (preprint).
10. I. Kaplansky, Linear algebra and geometry, a second course (Allyn and Bacon, Boston, 1969).
11. M. Knebusch, Bemerkungen Theorie der quadratischen Formen über semilokalen Ringen, Schriften des Math, Inst. der Univ. des Saarlandes, Saarbrücken, 1969.
12. -Isometrien über semilokalen Ringen, Math. Z. 108 (1969), 255-268.
13. M. Knebusch, A. Rosenberg, and R. Ware, Structure of Witt rings and quotients of abelian group rings, Amer. J. Math. 94 (1972), 119-155.
14. O. T. O'Meara, Introduction to quadratic forms (Springer-Verlag, Berlin, 1963).
15. A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116-132.
16. C. Small, The Brauer-Wall group of a commutative ring, Trans. Amer. Math. Soc. 156 (1971), 455-491.
17. E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. 176 (1937), 31-44.

Emory University,

 Atlanta, Georgia
[^0]: Received November 1, 1973 and in revised form, February 14, 1974.

