A confluent λ-calculus with a catch/throw mechanism

TRISTAN CROLARD
Laboratoire Preuves, Programmes et Systèmes Université Paris 7, France
(e-mail: crolard@ufr-info-p7.jussieu.fr)

Abstract

We derive a confluent λ-calculus with a catch/throw mechanism (called λ_{ct}-calculus) from Parigot's $\lambda \mu$-calculus. We also present several translations from one calculus into the other which are morphisms for the reduction. We use them to show that the $\lambda_{c t}$-calculus is a retract of $\lambda \mu$-calculus (these calculi are isomorphic if we consider only convertibility). As a by-product, we obtain the subject reduction property for the λ_{ct}-calculus, as well as the strong normalization for λ_{ct}-terms typable in the second order classical natural deduction.

Capsule Review

Parigot's $\lambda \mu$-calulus provides a very neat extension of λ-calculus by 'control features' making clear the connection to classical logic by using the latter as a typing system for $\lambda \mu$-terms.

However, from the point of view of programming it appears as more natural to consider a control extension λ_{ct} of λ-calculus based on the operators catch and throw which allow for writing and reading of continuations $a k a$ evaluation contexts. The author gives a translation Λ_{μ}^{l} of λ_{ct} to $\lambda \mu$-calculus by expanding catch and throw into appropriate macros. He defines a reduction system on λ_{ct} generating the theory induced by the translation Λ_{μ}^{\prime} to $\lambda \mu$-calculus. This translation turns out to establish a 1-1-correspondence between the two calculi modulo the considered conversion theories. More important, however, is that the translation Λ_{μ}^{l} is a morphism of reduction systems and there is a backward translation $\Lambda_{\mathrm{ct}}^{s}$ with $\Lambda_{\mathrm{ct}}^{s} \circ \Lambda_{\mu}^{s}=\mathrm{Id}_{\mathrm{ct}}$ such that $\Lambda_{\mathrm{ct}}^{s}$ is a reduction morphism as well. Thus, $\lambda_{\text {ct }}$ appears as a retract of $\lambda \mu$-calculus via morphisms preserving reduction. However, as shown in the paper $\lambda \mu$-calculus cannot appear as a retract of λ_{ct} via reduction morphisms.

Based on these results one may reduce confluence of $\lambda_{\text {ct }}$ to confluence of $\lambda \mu$-calculus (already proved by Parigot) and normalisation of a typed version of λ_{ct} to normalisation of typed $\lambda \mu$-calculus (already proved by Parigot). Moreover, the typed version of λ_{ct} gives sort of 'logical meaning' to the operators catch and throw which is interesting in its own.

1 Introduction

In the last four years, several extensions of the λ-calculus with some catch/throw mechanism have been proposed by Nakano (1994a; 1994b; 1995) and by Sato (1997) and Kameyama (1997; 1998). In these papers, the authors consider the catch/throw mechanism as 'intrinsically non-deterministic', and thus investigate non-confluent calculi or confine themselves to some specific evaluation strategy. For instance in

Nakano (1994b), the non-deterministic feature of the catch/throw mechanism is introduced by the following rule:

```
\(C[\) throw \(\alpha t] \mapsto\) throw \(\alpha t\)
```

where the context $C[\bullet]$ does not capture α or any individual/tag variable occurring freely in t. Let us now look at the following example from Nakano (1994b):

$$
M \equiv \operatorname{catch} \alpha((\lambda x . \lambda y .1(\text { throw } \alpha 2)(\text { throw } \alpha 3))
$$

If we assume that we also have the two following rules: catch α throw $\alpha t \rightarrow$ catch αt and catch $\alpha t \rightarrow t$ when α does not occur free in t, we have three possible normal forms, depending on the evaluation strategy:

$$
\begin{aligned}
& M \rightarrow_{\beta} \text { catch } \alpha\left((\lambda y .1(\text { throw } \alpha 2)) \rightarrow_{\beta} \text { catch } \alpha 1 \rightarrow 1\right. \\
& M \mapsto \text { catch } \alpha \text { throw } \alpha 2 \rightarrow \text { catch } \alpha 2 \rightarrow 2 \\
& M \mapsto \text { catch } \alpha \text { throw } \alpha 3 \rightarrow \text { catch } \alpha 3 \rightarrow 3
\end{aligned}
$$

In this paper, however, we will see that if we weaken the rule \mapsto, it is possible to define a confluent λ-calculus with a catch/throw mechanism. This calculus, called $\lambda_{\mathbf{c t}}$-calculus, is in fact derived from Parigot's $\lambda \mu$-calculus. We will present several 'canonical' morphisms for the reduction from one calculus to the other (this notion of canonical translation will be formalized).
Then we show that the $\lambda_{\mathbf{c t}}$-calculus is a canonical retract of the $\lambda \mu$-calculus. This will enable us to derive the confluence of the $\lambda_{\mathbf{c t}}$-calculus from the confluence of the $\lambda \mu$-calculus. We also prove that the converse is not true (the $\lambda \mu$-calculus is not a canonical retract of the λ_{ct}-calculus), since there is no surjective canonical morphism from the λ_{ct}-calculus to the $\lambda \mu$-calculus. Both calculi are, however, isomorphic if we consider terms up to renaming/simplification.

As a by-product of these translations, we also obtain the subject reduction property, as well as the strong normalization for terms typable in the second order classical natural deduction.

As usual with control operators, the catch/throw mechanism is easier to introduce in the framework of abstract stack machines. Indeed, control operators are aimed to handle the continuation (i.e. the rest of the computation to be performed, see Felleisen et al. (1986; 1987) or Reynolds (1993) for a survey), and precisely, in abstract stack machines, the continuation is represented by the stack. In the remainder of this introduction, we thus consider two simple extensions of Krivine's abstract machine: the $\lambda \mu$-machine and the λ_{ct}-machine. The former is designed for evaluating $\lambda \mu$-terms, as suggested by Parigot (1993) and developed by Beus and Streicher (1998) and De Groote (1999), while the latter is provided with a catch/throw mechanism.
In section 2, we derive the reduction rules of the $\lambda_{\mathbf{c t}}$-calculus from the rules of the $\lambda \mu$-calculus. In section 3, we prove that the λ_{ct}-calculus is a canonical retract of the $\lambda \mu$-calculus, and as a corollary we obtain the confluence of the $\lambda_{\mathbf{c t}}$-calculus. In section 4 , we take advantage of the fact that the classical natural deduction may be seen as a type system for the $\lambda_{\text {ct }}$-calculus, as well as for the $\lambda \mu$-calculus.

1.1 An abstract machine for the $\lambda \mu$-calculus

We first recall the syntax of $\lambda \mu$-terms (as usual, we use $x, y, z \ldots$ as λ-variables and $\alpha, \beta, \gamma \ldots$ as μ-variables). The set of $\lambda \mu$-terms is inductively defined as follows.

Definition 1.1.1

If t, u are $\lambda \mu$-terms then the following terms are also $\lambda \mu$-terms (where α and β range over μ-variables and x ranges over λ-variables):

$$
x, \quad(t u), \quad \lambda x . t, \quad \mu \alpha[\beta] t
$$

Remark. The μ-operator is a binder (the μ-variable α is bound in $\mu \alpha[\beta] t$).
We now define the $\lambda \mu$-machine as a rewrite system. For that purpose we recall some common definitions (see Beus and Streicher (1998), for instance): a closure is inductively defined as a triple $\langle\lambda \mu$-term, closure-environment, stack-environment \rangle, where a closure-environment is a list of pairs (λ-variable, closure), a stack-environment is a list of pairs (μ-variable, stack) and a stack is a list of closures.

The rules of the $\lambda \mu$-machine are given below. The variables $C E$ and $S E$ range over closure-environments and stack-environments, respectively. As usual, the notation $E(v)$, where E is a closure-environment (resp. stack-environment) and v a λ-variable (resp. μ-variable), stands for the closure (resp. stack) assigned to v in E.

- $(\langle x, C E, S E\rangle, S) \rightarrow(C E(x), S)$
- ($(\langle u v), C E, S E\rangle, S) \rightarrow(\langle u, C E, S E\rangle,\langle v, C E, S E\rangle:: S)$
- $(\langle\lambda x . t, C E, S E\rangle, c:: S) \rightarrow(\langle t,(x, c):: C E, S E\rangle, S)$
- $(\langle\mu \alpha[\beta] t, C E, S E\rangle, S) \rightarrow(\langle t, C E,(\alpha, S):: S E\rangle,((\alpha, S):: S E)(\beta))$

Remark. We wrote $((\alpha, S):: S E)(\beta)$ in the last rule (and not just $S E(\beta))$ in order to deal with the case $\alpha=\beta$.

An instruction of the form $\mu \alpha[\beta] t$ is carried out as expected: the machine first binds the current continuation to name α, then restores the continuation whose name is β in the current environment (discarding the current continuation) and eventually evaluates t.

Remark. Notice that this abstract machine actually evaluates only the weak head normal form of a $\lambda \mu$-term. For further details, see Beus and Streicher (1998) and De Groote (1999).

1.2 An abstract machine with a catch/throw mechanism

We still consider two separate name-spaces for λ-variables and μ-variables (or 'tagvariables'). The set of $\lambda_{\mathrm{ct}^{\prime}}$-terms is inductively defined as follows.

Definition 1.2.1

If t, u are $\lambda_{c t}$-terms then the following terms are also $\lambda_{\mathbf{c t}^{-}}$-terms (where α ranges over μ-variables and x ranges over λ-variables):

$$
x, \quad(t u), \quad \lambda x . t, \quad \text { catch } \alpha t, \quad \text { throw } \alpha t
$$

Remark. The catch operator is a binder (the μ-variable α is bound in catch αt).
The intended behaviour of the catch and throw operators is intuitively clear. To evaluate catch αt, the machine should bind the current continuation to name α and then evaluate t. To evaluate throw αt, the machine should discard the current continuation, restore the continuation whose name is α in the current environment, and eventually evaluate t. Formally, to define the $\lambda_{\mathbf{c t}}$-machine, just replace the last rule of the $\lambda \mu$-machine by the following rules:

- (\langle catch $\alpha t, C E, S E\rangle, S) \rightarrow(\langle t, C E,(\alpha, S):: S E\rangle, S)$
- $(\langle$ throw $\alpha t, C E, S E\rangle, S) \rightarrow(\langle t, C E, S E\rangle, S E(\alpha))$

1.3 Simulating one machine by the other

It is easy to simulate the behaviour of $\mu \alpha[\beta] t$ in the $\lambda_{\mathbf{c t}}$-machine. Indeed, let us consider a term of the form catch α throw βt. To evaluate such a term, the $\lambda_{\text {ct }^{-}}$ machine binds the current stack to name α, restores the stack whose name is β in the current environment and then evaluates t : this is exactly what does the $\lambda \mu$-machine when it evaluates $\mu \alpha[\beta] t$.

Conversely, the behaviour of the catch and throw operators can also be simulated in the $\lambda \mu$-machine.

- Let us first consider a term of the form $\mu \alpha[\alpha] t$. When the $\lambda \mu$-machine evaluates such a term, it first binds the current stack to name α, then restores this very stack, before it evaluates t. This is exactly what the $\lambda_{\mathbf{c t}}$-machine does when it evaluates catch αt.
- Let us now consider the instruction $\mu \alpha[\beta] t$, where α does not occur in t. To carry out this term, the $\lambda \mu$-machine binds the current stack to name α, then restores the stack whose name is β in the current environment before it evaluates t. Since α does not occur in t, the current stack should have been discarded, and this is exactly what does the $\lambda_{\text {ct }}$-machine whenever it evaluates throw βt.

2 The catch and throw operators and the $\lambda \mu$-calculus
In the previous section, we discussed how abstract machines can simulate one another. However, restricting ourselves to some abstract machine amounts exactly to considering a specified evaluation strategy (weak head reduction for Krivine's abstract machines). In this section, we show that the simulation of the catch and throw operators defined in the framework of abstract machines work as well when we consider the $\lambda \mu$-calculus as a confluent rewriting system: we will take advantage of this in the next section to derive a confluent λ-calculus with some catch/throw mechanism. Let us first recall the reduction rules of the $\lambda \mu$-calculus (note that the original proof of confluence of the $\lambda \mu$-calculus given in Parigot (1992) is broken by the renaming rule, however the fix is easy and presented by Py (1998)).

Reduction rules of the $\lambda \mu$-calculus

- The β-reduction:

$$
(\lambda x . t u) \rightarrow t\{u / x\}
$$

- The structural rule:

$$
(\mu \alpha . t u) \rightarrow \mu \alpha . t\left\{[\alpha=20]\left(\begin{array}{ll}
w & u
\end{array}\right) /[\alpha] w\right\}
$$

- The renaming rule:

$$
[\beta] \mu \alpha . t \rightarrow t\{\beta / \alpha\}
$$

- The simplification rule:

$$
\mu \alpha[\alpha] t \rightarrow t \text { if } \alpha \text { does not occur free in } t
$$

The notation $t\{u / x\}$ stands for the usual capture-avoiding substitution of the λ variable x by u in t. The structural substitution $t\{[\alpha](w u) /[\alpha] w\}$ is defined inductively by:

- $x\left\{[\alpha]\left(\begin{array}{ll}w & v) /[\alpha] w\}=x\end{array}\right.\right.$
- $(\lambda x . t)\{[\alpha](w v) /[\alpha] w\}=\lambda x . t\{[\alpha](w v) /[\alpha] w\}$
- $(t u)\left\{[\alpha]\left(\begin{array}{ll}w & v\end{array}\right) /[\alpha] w\right\}=\left(t\left\{[\alpha]\left(\begin{array}{ll}w & v\end{array}\right) /[\alpha] w\right\} u\left\{[\alpha]\left(\begin{array}{ll}w & v\end{array}\right) /[\alpha] w\right\}\right)$
- $(\mu \beta . t)\{[\alpha](w v) /[\alpha] w\}=\mu \beta . t\{[\alpha](w v) /[\alpha] w\}$
- $([\alpha] t)\{[\alpha](w v) /[\alpha] w\}=[\alpha](t\{[\alpha](w v) /[\alpha] w\} v)$
- $([\beta] t)\{[\alpha](w v) /[\alpha] w\}=[\beta] t\{[\alpha](w v) /[\alpha] w\}$ if $\alpha \neq \beta$.

Remark. We sometimes use the more explicit notation $t\{\mu \beta[\alpha](w u) / \mu \beta[\alpha] w\}$ for structural substitution above, since any occurrence of $[\alpha] w$ in t has actually the shape $\mu \beta[\alpha] w$.

Definition 2.0.1

We call simple $\lambda \mu$-term a term which contains no renaming/simplification redex.
Remark. The simple form of a $\lambda \mu$-term t (which is obtained from t by applying only renaming/simplification rules) is unique (modulo α-conversion), and is reached in a linear number of reduction steps. Indeed, it is easy to check that renaming and simplification rules commute with any other rule. Moreover, the application of renaming/simplification rules strictly decreases the size of the term.

Notation. We denote by \bar{t} the simple form of a $\lambda \mu$-term t.

2.1 Deriving the rules

We saw in the previous section that the catch and throw operators can be simulated respectively by catch $\alpha t \equiv \mu \alpha[\alpha] t$ and throw $\alpha t \equiv \mu \beta[\alpha] t$, where β is a μ-variable different from α and which does not occur free in t.

Notation. We use the abbreviation $\mu_{-}[\alpha] t$ in the latter case, where _ stands for any
μ-variable different from α which does not occur free in t. Moreover, to avoid any confusion, we will use italic font for macros (while we use bold face font for built-in operators).

We call $\lambda \mu c t$-calculus the sublanguage of the $\lambda \mu$-calculus containing only the 'macros' catch and throw (in other words, where any occurrence of a subterm $\mu \alpha[\beta] t$ is either of the form $\mu \alpha[\alpha] t$, or of the form $\left.\mu_{-}[\beta] t\right)$. Unfortunately, the subset consisting of all $\lambda \mu c t$-terms is not closed under reduction because of the following rule:

$$
\text { catch } \alpha \text { throw } \beta t=\mu \alpha[\alpha] \mu_{-}[\beta] t \rightarrow \mu \alpha[\beta] t\{\alpha /-\}=\mu \alpha[\beta] t
$$

We therefore restrict ourselves to instances of rules for which the contractum is still a $\lambda \mu c t$-term. We obtain these rules by enumerating all the redexes that may occur in a $\lambda \mu c t$-term.

- The subset of $\lambda \mu c t$-terms is clearly closed under substitution. We thus obtain the β-reduction as a derived rule (since the contractum is always a $\lambda \mu c t$-term):

$$
(\lambda x . t u) \rightarrow t\{u / x\}
$$

- Any redex of the form $\mu \alpha[\alpha] t$ that occurs in a $\lambda \mu c t$-term has the form catch αt. The rule $\mu \alpha[\alpha] t \rightarrow t$, if α does not occur free in t, and thus yields a unique derived rule (since the contractum is still a $\lambda \mu c t$-term):

$$
\text { catch } \alpha t=\mu \alpha[\alpha] t \rightarrow t
$$

- Any redex of the form $(\mu \alpha . w v)$ (to be more specific $(\mu \alpha[\beta] u v)$) that occurs in a $\lambda \mu c t$-term is either of the form $($ catch $\alpha u) v$, or of the form (throw $\alpha u) v$. The rule $(\mu \alpha . w v) \rightarrow \mu \alpha . w\{[\alpha](t v) /[\alpha] t\}$ yields two derived rules (since in both cases the contractum is still a $\lambda \mu c t$-term):

$$
\begin{aligned}
((\text { catch } \alpha u) v)=(\mu \alpha[\alpha] u v) \rightarrow & \mu \alpha \\
& ([\alpha] u)\{[\alpha](t v) /[\alpha] t\} \\
& =\mu \alpha[\alpha]\left(u\left(\left\{\mu_{-}[\alpha](t v) / \mu_{-}[\alpha] t\right\} v\right)\right. \\
& =\text { catch } \alpha(u\{\text { throw } \alpha(t v) / \text { throw } \alpha t\} v) \\
((\text { throw } \alpha u) v)=(\mu \delta[\alpha] u v) \rightarrow & \mu \delta([\alpha] u)\{[\delta](t v) /[\delta] t\} \\
& =\mu \delta[\alpha] u=\text { throw } \alpha u
\end{aligned}
$$

since, by definition of throw, the variable δ is different from α and does not occur free in u.

- Any redex of the form $[\alpha] \mu \beta . w$ (to be more specific, $\mu \gamma[\alpha] \mu \beta[\delta] t$) that occurs in a $\lambda \mu c t$-term has one of the four following forms: catch α catch βt, throw α throw βt, throw α catch βt, catch α throw βt. The rule $[\alpha] \mu \beta . w \rightarrow$ $w\{\alpha / \beta\}$ yields four cases:

$$
\begin{aligned}
& \text { catch } \alpha \text { catch } \beta t=\mu_{\alpha}[\alpha] \mu \beta[\beta] t \rightarrow \mu_{\alpha}[\alpha] t\{\alpha / \beta\}=\text { catch } \alpha t\{\alpha / \beta\} \\
& \text { throw } \alpha \text { throw } \beta t=\mu_{-}[\alpha] \mu_{-}[\beta] t \rightarrow \mu_{-}[\beta] t\{\alpha /-\}=\text { throw } \beta t \\
& \text { throw } \alpha \text { catch } \beta t=\mu_{-}[\alpha] \mu \beta[\beta] t \rightarrow \mu_{-}[\alpha] t\{\alpha / \beta\}=\text { throw } \alpha t\{\alpha / \beta\} \\
& \text { catch } \alpha \text { throw } \beta t=\mu_{\alpha}[\alpha] \mu_{-}[\beta] t \rightarrow \mu \alpha[\beta] t\{\alpha /-\}=\mu \alpha[\beta] t
\end{aligned}
$$

The first three cases yield three derived rules, but in the last case (as we already
saw) the contractum is no more a $\lambda \mu c t$-term. Nevertheless, in the special case $\alpha=\beta$ we obtain the following derived rule:

$$
\text { catch } \alpha \text { throw } \alpha t=\mu \alpha[\alpha] \mu_{-}[\alpha] t \rightarrow \mu \alpha[\alpha] t=\text { catch } \alpha t
$$

Remark. The rule catch α throw $\beta t \rightarrow \mu \alpha[\beta] t$ shows that the two "macros" catch and throw are enough to express all the $\lambda \mu$-terms up to renaming.

Let us summarize the derived rules we obtained above in the following definition (where catch and throw are now native operators):

Definition 2.1.1

We call $\lambda_{\text {ct }}$-calculus the λ-calculus together with the operators catch and throw defined by the 8 following rules:

1. $(\lambda x . t u) \rightarrow t\{u / x\}$
2. $(($ catch $\alpha t) u) \rightarrow$ catch $\alpha(t\{$ throw $\alpha(w u) /$ throw $\alpha w\} u)$
3. $(($ throw $\alpha t) u) \rightarrow$ throw αt
4. $\operatorname{catch} \alpha \operatorname{catch} \beta t \rightarrow \boldsymbol{\operatorname { c a t c h }} \alpha t\{\alpha / \beta\}$
5. throw α throw $\beta t \rightarrow$ throw βt
6. throw α catch $\beta t \rightarrow$ throw $\alpha t\{\alpha / \beta\}$
. catch α throw $\alpha t \rightarrow$ catch αt
7. catch $\alpha t \rightarrow t$ if α does not occur free in t.

Notation. The structural substitution $t\{$ throw $\alpha(w u) /$ throw $\alpha w\}$ is defined inductively by:

- $x\left\{\right.$ throw $\alpha\left(\begin{array}{ll}w & u\end{array}\right) /$ throw $\left.\alpha w\right\}=x$
- $(\lambda x . t)\{$ throw $\alpha(w u) /$ throw $\alpha w\}=$
$\lambda x . t\{$ throw $\alpha(w u) /$ throw $\alpha w\}$
- $(s t)\left\{\right.$ throw $\alpha\left(\begin{array}{ll}w & u\end{array}\right) /$ throw $\left.\alpha w\right\}=$
$\left(s\left\{\right.\right.$ throw $\alpha\left(\begin{array}{ll}w & u\end{array}\right) /$ throw $\left.\alpha w\right\} t\{$ throw $\alpha(w u) /$ throw $\left.\alpha w\}\right)$
- $($ catch $\beta t)\{$ throw $\alpha(w u) /$ throw $\alpha w\}=$
catch $\beta t\{$ throw $\alpha(w u) /$ throw $\alpha w\}$
- $($ throw $\alpha t)\{$ throw $\alpha(w u) /$ throw $\alpha w\}=$ throw $\alpha(t\{$ throw $\alpha(w u) /$ throw $\alpha w\} u)$
- $($ throw $\beta t)\{$ throw $\alpha(w u) /$ throw $\alpha w\}=$ throw $\beta t\{$ throw $\alpha(w u) /$ throw $\alpha w\}$ if $\alpha \neq \beta$.

Definition 2.1.2

Rules 4-7 are called renaming rules. Rule 8 is called a simplification rule. A simple $\lambda_{\text {ct }}$-term is a term which contains no renaming/simplification redex.

Remark. As for $\lambda \mu$-terms, the simple form of a $\lambda_{\mathbf{c t}}$-term t (which is obtained from t by applying only renaming and simplification rules) is unique (modulo α-conversion), and is reached in a linear number of reduction steps. Two $\lambda_{\text {ct }}$-terms are said to be equal up to renaming/simplification if they have the same simple form.

Notation. We denote by \bar{t} the simple form of a $\lambda_{\mathbf{c t}}$-term t.

3 Canonical morphisms

The construction of the λ_{ct}-calculus lets us expect the existence of some canonical translations that embed each calculus into the other and which are morphisms for the reduction. We first formalize this notion of canonical translation. Then we show that the $\lambda_{\text {ct }}$-calculus is a canonical retract of the $\lambda \mu$-calculus. This will enable us to derive the confluence of the $\lambda_{\text {ct }}$-calculus from the confluence of the $\lambda \mu$-calculus. We also show that the converse is not true (the $\lambda \mu$-calculus is not a canonical retract of the $\lambda_{\mathbf{c t}}$-calculus) since there is no surjective canonical morphism from the $\lambda_{\mathbf{c t}}$-calculus to the $\lambda \mu$-calculus. Both calculi are however isomorphic if we consider terms up to renaming/simplification (and consequently up to convertibility).

To be more specific, we will define two canonical translations $\Lambda_{\mathrm{ct}}^{l}$ and $\Lambda_{\mathrm{ct}}^{s}$ of $\lambda \mu$-terms into λ_{ct}-terms and two canonical translations Λ_{μ}^{l} and Λ_{μ}^{s} of $\lambda_{\mathbf{c t}}$-terms into $\lambda \mu$-terms such that:

- $\Lambda_{\mathrm{ct}}^{s} \circ \Lambda_{\mu}^{l}=\mathrm{Id}_{\mathrm{ct}}$, and thus $\Lambda_{\mathrm{ct}}^{s}$ is surjective and Λ_{μ}^{l} is injective.
- $\Lambda_{\mu}^{s} \circ \Lambda_{\mathrm{ct}}^{l}=\operatorname{Id}_{\mu}$, and thus Λ_{μ}^{s} is surjective and $\Lambda_{\mathrm{ct}}^{l}$ is injective.
- Λ_{μ}^{l} and $\Lambda_{\mathrm{ct}}^{s}$ are morphisms, and thus $\left\langle\Lambda_{\mu}^{l}, \Lambda_{\mathrm{ct}}^{s}\right\rangle$ is a retraction pair.
- $\Lambda_{\text {ct }}^{l}$ is a morphism, but Λ_{μ}^{s} is not a morphism (since there is no surjective canonical morphism from the $\lambda_{\text {ct }}$-calculus to the $\lambda \mu$-calculus).

3.1 Morphisms

We give here the formal definition of a morphism. As usual, for any relation \rightarrow we denote by \rightarrow^{\star} the reflexive, transitive closure of \rightarrow.

Definition 3.1.1

Given two calculus \mathbf{c}_{1} and \mathbf{c}_{2} and a mapping Φ from \mathbf{c}_{1} to \mathbf{c}_{2}, we say that Φ is a morphism for $\rightarrow_{\mathbf{c}_{1}}$ iff for any terms t, u of \mathbf{c}_{1} :

$$
t \rightarrow_{\mathbf{c}_{1}} u \quad \text { implies } \quad \Phi(t) \rightarrow_{\mathbf{c}_{2}}^{\star} \Phi(u)
$$

Remarks

- A morphism for the reduction also preserves convertibility. In other words, if Φ is a morphism for $\rightarrow_{c_{1}}$ and if $=\boldsymbol{c}_{\mathrm{i}}$ denotes the reflexive, symmetric, transitive closure of $\rightarrow_{\mathbf{c}_{\mathrm{i}}}$:

$$
t=\mathbf{c}_{1} u \quad \text { implies } \quad \Phi(t)=\mathbf{c}_{2} \Phi(u)
$$

- A mapping Φ which preserves one-step reduction:

$$
t \rightarrow_{\mathbf{c}_{1}} u \quad \text { implies } \quad \Phi(t) \rightarrow_{\mathbf{c}_{2}} \Phi(u)
$$

is of course a morphism according to the previous definition.

- If Φ is an injective morphism and the relation $\rightarrow_{\mathbf{c}_{1}}$ is irreflexive (i.e. $t \nrightarrow_{\mathbf{c}_{1}} t$ for any t, which is usually the case for one-step reduction) then if $\rightarrow_{\mathrm{c}_{\mathrm{i}}}^{+}$denotes the transitive closure of $\rightarrow_{\mathrm{c}_{\mathrm{i}}}$:

$$
t \rightarrow_{c_{1}} u \quad \text { implies } \quad \Phi(t) \rightarrow_{c_{2}}^{+} \Phi(u)
$$

3.2 Canonical translations

Let us notice that there is a very natural bijection between simple terms of both calculi (see Proposition 3.2.3). A translation from one calculus into the other is thus said to be canonical if it extends this natural bijection. Conversely, we recover this natural bijection from any canonical translation when we consider terms equal up to renaming/simplification (in both calculi).

Definition 3.2.1
We define the mapping Λ_{μ}^{s} from $\lambda_{\text {ct }}$-terms to λ_{μ}-terms by induction:

- $\Lambda_{\mu}^{s}(x)=x$, if x is a λ-variable,
- $\Lambda_{\mu}^{s}((u v))=\left(\Lambda_{\mu}^{s}(u) \Lambda_{\mu}^{s}(v)\right)$
- $\Lambda_{\mu}^{s}(\lambda x . t)=\lambda x . \Lambda_{\mu}^{s}(t)$
- $\Lambda_{\mu}^{s}(\mathbf{c a t c h} \alpha t)= \begin{cases}\mu \alpha[\beta] \Lambda_{\mu}^{s}(u) & \text { if } t \text { has the form throw } \beta u \\ \mu \alpha[\alpha] \Lambda_{\mu}^{s}(t) & \text { otherwise }\end{cases}$
- $\Lambda_{\mu}^{s}($ throw $\alpha t)=\mu \delta[\alpha] \Lambda_{\mu}^{s}(t)$, where δ is a fresh μ-variable.

Definition 3.2.2

We define the mapping $\Lambda_{\mathbf{c t}}^{s}$ from $\lambda \mu$-terms to $\lambda_{\mathbf{c t}}$-terms by induction:

- $\Lambda_{\mathrm{ct}}^{s}(x)=x$, if x is a λ-variable,
- $\Lambda_{\mathrm{ct}}^{s}\left(\left(\begin{array}{ll}u & v))=\left(\Lambda_{\mathrm{ct}}^{s}(u) \Lambda_{\mathrm{ct}}^{s}(v)\right), ~\left(\Lambda_{c}\right)\end{array}\right.\right.$
- $\Lambda_{\mathrm{ct}}^{s}(\lambda x . t)=\lambda x . \Lambda_{\mathrm{ct}}^{s}(t)$
- $\Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\beta] t)= \begin{cases}\operatorname{catch} \alpha \Lambda_{\mathbf{c t}}^{s}(t) & \text { if } \alpha=\beta \\ \text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(t) & \text { if } \alpha \neq \beta \text { and } \alpha \text { is not free in } t \\ \text { catch } \alpha \text { throw } \beta \Lambda_{\text {ct }}^{s}(t) & \text { otherwise }\end{cases}$

Remark. For any $\lambda_{\text {ct }}$-term (resp λ_{μ}-term) t, the free λ-variables and μ-variables are the same in t and $\Lambda_{\mathrm{ct}}^{s}(t)\left(\operatorname{resp} . \Lambda_{\mu}^{s}(t)\right)$.

Proposition 3.2.3

The mapping $\Lambda_{\mathrm{ct}}^{s}\left(\operatorname{resp} . \Lambda_{\mu}^{s}\right)$ is a bijection between simple forms of both calculi.

Proof

Check that if t is a simple $\lambda_{\text {ct }}$-term then $\Lambda_{\text {ct }}^{s}\left(\Lambda_{\mu}^{s}(t)\right)=t$, and conversely if t is a simple λ_{μ}-term then $\Lambda_{\mu}^{s}\left(\Lambda_{\text {ct }}^{s}(t)\right)=t$.

Remark. Notice that neither $\Lambda_{\mathrm{ct}}^{s}$ nor Λ_{μ}^{s} is a bijection (if we do not restrict the domain to simple terms). Indeed, $\Lambda_{\mathrm{ct}}^{s}$ is not injective since if t is a $\lambda \mu$-term such that $\alpha \neq \beta$ and α occurs free in t :

$$
\Lambda_{\mathbf{c t}}^{s}\left(\mu \alpha[\alpha] \mu_{-}[\beta] t\right)=\mathbf{c a t c h} \alpha \text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(t)=\Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\beta] t)
$$

Besides, Λ_{μ}^{s} is not injective since if t is a $\lambda_{\mathbf{c t}}$-term which has not the form throw βu :

$$
\Lambda_{\mu}^{s}(\text { catch } \alpha \text { throw } \alpha t)=\left(\mu \alpha[\alpha] \Lambda_{\mu}^{s}(t)\right)=\Lambda_{\mu}^{s}(\operatorname{catch} \alpha t)
$$

Definition 3.2.4
A translation Ψ from the $\lambda_{\text {ct }}$-calculus into the λ_{μ}-calculus is said to be canonical if for any $\lambda_{\mathbf{c t}}$-term $t, \overline{\Psi(t)}=\Lambda_{\mu}^{s}(\bar{t})$. Conversely, a translation Φ from the
λ_{μ}-calculus into the λ_{ct}-calculus is said to be canonical if for any $\lambda \mu$-term t, $\overline{\Phi(t)}=\Lambda_{\mathrm{ct}}^{s}(\bar{t})$.

Remark. A canonical translation is thus a translation which maps sequences of control operators of one calculus onto sequences of control operators of the other calculus and leaves the rest unchanged. In particular, a term without control operator is translated into itself.

Proposition 3.2.5
The translations Λ_{μ}^{s} and $\Lambda_{\mathrm{ct}}^{s}$ are canonical.
Proof
Check by induction on the $\lambda_{\text {ct }}$-term (resp. $\lambda \mu$-term) $t, \overline{\Lambda_{\mu}^{s}(t)}=\Lambda_{\mu}^{s}(\bar{t})\left(\right.$ resp. $\overline{\Lambda_{\mathrm{ct}}^{s}(t)}=$ $\Lambda_{\mathrm{ct}}^{s}(\bar{t})$).

3.3 Injective canonical morphisms

In this section we define two injective canonical morphisms $\Lambda_{\mathrm{ct}}^{l}$ and Λ_{μ}^{l} from one calculus into the other. Since these translations are injective, they will allow us to derive the strong normalization of one calculus from the strong normalization of the other calculus (see section 4).

3.3.1 From the $\lambda_{\text {ct }}$-calculus towards the $\lambda \mu$-calculus

Definition 3.3.1

We define the mapping Λ_{μ}^{l} from $\lambda_{\text {ct }}$-terms to $\lambda \mu$-terms by induction:

- $\Lambda_{\mu}^{l}(x)=x$, if x is a λ-variable,
- $\Lambda_{\mu}^{l}((u v))=\left(\Lambda_{\mu}^{l}(u) \Lambda_{\mu}^{l}(v)\right)$
- $\Lambda_{\mu}^{l}(\lambda x . t)=\lambda x . \Lambda_{\mu}^{l}(t)$
- $\Lambda_{\mu}^{l}($ catch $\alpha t)=\mu \alpha[\alpha] \Lambda_{\mu}^{l}(t)$
- $\Lambda_{\mu}^{l}($ throw $\alpha t)=\mu \delta[\alpha] \Lambda_{\mu}^{l}(t)$ where δ is a fresh μ-variable.

Remark. For any $\lambda_{\text {ct }}$-terms $t, \Lambda_{\mu}^{l}(t)$ is a $\lambda \mu c t$-term.

Proposition 3.3.2

The mapping Λ_{μ}^{l} is canonical.

Proof

Check by induction on the λ_{ct}-term t that $\overline{\Lambda_{\mu}^{l}(t)}=\Lambda_{\mu}^{s}(\bar{t})$.
We easily show that Λ_{μ}^{l} is a morphism for the reduction.

Proposition 3.3.3

For any λ_{ct}-terms t, t^{\prime}, if $t \rightarrow_{\mathrm{ct}} t^{\prime}$ then $\Lambda_{\mu}^{l}(t) \rightarrow_{\lambda \mu} \Lambda_{\mu}^{l}\left(t^{\prime}\right)$.
Proof
By construction, since for any $\lambda_{\text {ct }}$-term $t, \Lambda_{\mu}^{l}(t)$ is a $\lambda \mu c t$-term and any reduction rule of the $\lambda_{\mathbf{c t}}$-calculus comes from some reduction rule of the $\lambda \mu$-calculus.

3.3.2 From the $\lambda \mu$-calculus towards the λ_{ct}-calculus

Definition 3.3.4
We define the mapping $\Lambda_{\mathbf{c t}}^{l}$ from $\lambda \mu$-terms to $\lambda_{\mathbf{c t}}$-terms by induction:

- $\Lambda_{\text {ct }}^{l}(x)=x$, if x is a λ-variable,
- $\Lambda_{\mathrm{ct}}^{L}\left(\left(\begin{array}{ll}u & v))=\left(\Lambda_{\mathrm{ct}}^{L}(u) \Lambda_{\mathrm{ct}}^{l}(v)\right), ~(1) ~\end{array}\right.\right.$
- $\Lambda_{\mathrm{ct}}^{l}(\lambda x . t)=\lambda x . \Lambda_{\mathrm{ct}}^{l}(t)$
- $\Lambda_{\mathbf{c t}}^{l}(\mu \alpha[\beta] t)=\mathbf{c a t c h} \alpha$ throw $\beta \Lambda_{\text {ct }}^{l}(t)$

Proposition 3.3.5

The mapping $\Lambda_{\mathrm{ct}}^{l}$ is canonical.

Proof

Check by induction on the $\lambda \mu$-term t that $\overline{\Lambda_{\mathbf{c t}}^{\prime}(t)}=\Lambda_{\mathbf{c t}}^{s}(\bar{t})$.
We now show that $\Lambda_{\text {ct }}^{l}$ is a morphism for the reduction.

Lemma 3.3.6

For any $\lambda \mu$-terms u, v and any variable x free in u :

$$
\Lambda_{\mathrm{ct}}^{l}(u\{v / x\})=\Lambda_{\mathrm{ct}}^{l}(u)\left\{\Lambda_{\mathrm{ct}}^{l}(v) / x\right\}
$$

Proof
By induction on the term u.

Lemma 3.3.7

For any instance $u \rightarrow v$ of a rule of the $\lambda \mu$-calculus we have $\Lambda_{\mathrm{ct}}^{\nu}(u) \rightarrow_{\mathrm{ct}}^{\star} \Lambda_{\mathrm{ct}}^{l}(v)$.

Proof

We consider each rule of the $\lambda \mu$-calculus:

- Case of the β-reduction $(\lambda x . u v) \rightarrow_{\beta} u\{v / x\}:$

$$
\Lambda_{\mathbf{c t}}^{l}((\lambda x . u v))=\left(\lambda x . \Lambda_{\mathbf{c t}}^{l}(u) \Lambda_{\mathbf{c t}}^{c}(v)\right) \rightarrow_{\beta} \Lambda_{\mathbf{c t}}^{c}(u)\left\{\Lambda_{\mathbf{c t}}^{l}(v) / x\right\}=\Lambda_{\mathbf{c t}}^{c}(u\{v / x\})
$$

by the substitution lemma.

- Case of the rule $(\mu \alpha . u v) \rightarrow \mu \alpha . u\{[\alpha](t v) /[\alpha] t\}$

$$
\begin{aligned}
\Lambda_{\mathrm{ct}}^{l}(\mu \alpha . u v) & \\
= & \left(\operatorname{catch} \alpha \Lambda_{\mathrm{ct}}^{l}(u) \Lambda_{\mathrm{ct}}^{l}(v)\right) \\
\quad \rightarrow 2 & \text { catch } \alpha\left(\Lambda_{\mathrm{ct}}^{l}(u)\left\{\text { throw } \alpha\left(t \Lambda_{\mathrm{ct}}^{l}(v)\right) / \text { throw } \alpha t\right\} \Lambda_{\mathrm{ct}}^{l}(v)\right) \\
= & \Lambda_{\mathrm{ct}}^{l}(\mu \alpha . u\{[\alpha](t v) /[\alpha] t\})
\end{aligned}
$$

- Case of the rule $[\beta] \mu \alpha t \rightarrow t\{\beta / \alpha\}$, i.e. $\mu \gamma[\beta] \mu \alpha[\delta] t \rightarrow \mu \gamma([\delta] t)\{\beta / \alpha\}$

$$
\begin{aligned}
\Lambda_{\mathbf{c t}}^{l}(\mu \gamma[\beta] \mu \alpha[\delta] t) & = \\
& \text { catch } \gamma \text { throw } \beta \text { catch } \alpha \text { throw } \delta \Lambda_{\text {ct }}^{l}(t) \\
& \rightarrow 6 \text { catch } \gamma \text { throw } \beta\left(\text { throw } \delta \Lambda_{\mathbf{c t}}^{l}(t)\right)\{\beta / \alpha\} \\
& =\Lambda_{\mathbf{c t}} \text { catch } \gamma\left(\text { throw } \delta \Lambda_{\mathbf{c t}}^{l}(t)\right)\{\beta / \alpha\} \\
& \left.=\Lambda^{l}([\delta] t)\{\beta / \alpha\}\right)
\end{aligned}
$$

- Case of the rule $\mu \alpha[\alpha] t \rightarrow t$ if α does not occur free in t.

$$
\begin{aligned}
\Lambda_{\mathbf{c t}}^{l}(\mu \alpha[\alpha] t) & = \\
& \text { catch } \alpha \text { throw } \alpha \Lambda_{\mathbf{c t}}^{l}(t) \\
& \rightarrow_{7} \\
& \text { catch } \alpha \Lambda_{\mathbf{c t}}^{\prime}(t) \\
& \Lambda_{\mathbf{c t}}^{l}(t)
\end{aligned}
$$

In the sequel, we will need the usual concept of context (i.e. a term with a hole). Given a context, denoted by $C[\bullet]$, the notation $C[t]$ stands for the term obtained by replacing in $C[\bullet]$ the symbol \bullet (the hole) by the term t. Let us now prove the following lemma:

Lemma 3.3.8

For any context $C[\bullet]$ and any $\lambda \mu$-terms u, v, if $\Lambda_{\mathbf{c t}}^{l}(u) \rightarrow_{\mathbf{c t}} \Lambda_{\mathbf{c t}}^{l}(v)$ then:

$$
\Lambda_{\mathbf{c t}}^{l}(C[u]) \rightarrow_{\mathrm{ct}} \quad \Lambda_{\mathrm{ct}}^{\iota}(C[v])
$$

Proof

If we extend $\Lambda_{\mathrm{ct}}^{l}$ to $\lambda \mu$-contexts by taking $\Lambda_{\mathrm{ct}}^{l}(\bullet)=\bullet$, we easily prove that for any $\lambda \mu$-context C and any $\lambda \mu$-term t, we have $\Lambda_{\mathbf{c t}}^{l}(C[t])=\Lambda_{\mathbf{c t}}^{l}(C)\left\{\Lambda_{\mathbf{c t}}^{l}(t)\right\}$.

Proposition 3.3.9

For any $\lambda \mu$-terms u, v, if $u \rightarrow{ }_{\lambda \mu} v$ then $\Lambda_{\text {ct }}^{\iota}(u) \rightarrow_{\mathrm{ct}}^{\star} \Lambda_{\mathrm{ct}}^{l}(v)$.
Proof
By lemma 3.3.7 and lemma 3.3.8.
To round off this section, let us prove two useful lemmas:
Lemma 3.3.10
$\Lambda_{\mathrm{ct}}^{s} \circ \Lambda_{\mu}^{l}=\mathrm{Id}_{\mathrm{ct}}$.
Proof
Let us prove that $\Lambda_{\mathrm{ct}}^{s}\left(\Lambda_{\mu}^{l}(t)\right)=t$ by induction on the $\lambda_{\mathbf{c t}}$-term t :

- $\Lambda_{\mathrm{ct}}^{s}\left(\Lambda_{\mu}^{l}(x)\right)=\Lambda_{\mathrm{ct}}^{s}(x)=x$, if x is a λ-variable,
- $\Lambda_{\mathrm{ct}}^{s}\left(\Lambda_{\mu}^{l}((u v))\right)=\Lambda_{\mathrm{ct}}^{s}\left(\left(\Lambda_{\mu}^{l}(u) \Lambda_{\mu}^{l}(v)\right)=\left(\Lambda_{\mathrm{ct}}^{s}\left(\Lambda_{\mu}^{l}(u)\right) \Lambda_{\mathrm{ct}}^{s}\left(\Lambda_{\mu}^{l}(v)\right)\right)=(u v)\right.$
- $\Lambda_{\mathbf{c t}}^{s}\left(\Lambda_{\mu}^{l}(\lambda x . t)\right)=\Lambda_{\mathrm{ct}}^{s}\left(\lambda x . \Lambda_{\mu}^{l}(t)\right)=\lambda x . \Lambda_{\mathbf{c t}}^{s}\left(\Lambda_{\mu}^{l}(t)\right)=\lambda x . t$
- $\Lambda_{\mathbf{c t}}^{s}\left(\Lambda_{\mu}^{l}(\mathbf{c a t c h} \alpha t)\right)=\Lambda_{\mathbf{c t}}^{s}\left(\mu \alpha[\alpha] \Lambda_{\mu}^{l}(t)\right)=\mathbf{c a t c h} \alpha \Lambda_{\mathbf{c t}}^{s}\left(\Lambda_{\mu}^{l}(t)\right)=\mathbf{c a t c h} \alpha t$
- $\Lambda_{\mathbf{c t}}^{s}\left(\Lambda_{\mu}^{l}(\right.$ throw $\left.\alpha t)\right)=\Lambda_{\text {ct }}^{s}\left(\mu \delta[\alpha] \Lambda_{\mu}^{l}(t)\right)$ where δ is a fresh μ-variable

$$
\begin{aligned}
& =\text { throw } \alpha \Lambda_{\mathrm{ct}}^{s}\left(\Lambda_{\mu}^{l}(t)\right) \text { since } \delta \text { does not occur in } \Lambda_{\mu}^{l}(t) \\
& =\text { throw } \alpha t
\end{aligned}
$$

Remark. The translation $\Lambda_{\mathrm{ct}}^{s}$ is thus surjective, and the translation Λ_{μ}^{l} is injective. However, Λ_{μ}^{l} is clearly not surjective since Λ_{μ}^{l} maps any $\lambda_{\text {ct }}$-term to some $\lambda \mu c t$-term. We already saw that $\Lambda_{\mathrm{ct}}^{s}$ is not injective.

Lemma 3.3.11
$\Lambda_{\mu}^{s} \circ \Lambda_{\mathrm{ct}}^{l}=\operatorname{Id}_{\mu}$.
Proof
Let us prove that $\Lambda_{\mu}^{s}\left(\Lambda_{\mathbf{c t}}^{l}(t)\right)=t$ by induction on the $\lambda \mu$-term t :

- $\Lambda_{\mu}^{s}\left(\Lambda_{\mathrm{ct}}^{l}(x)\right)=\Lambda_{\mu}^{s}(x)=x$, if x is a λ-variable,
- $\Lambda_{\mu}^{s}\left(\Lambda_{\mathrm{ct}}^{c}((u v))\right)=\Lambda_{\mu}^{s}\left(\left(\Lambda_{\mathrm{ct}}^{c}(u) \Lambda_{\mathbf{c t}}^{c}(v)\right)=\left(\Lambda_{\mu}^{s}\left(\Lambda_{\mathrm{ct}}^{l}(u)\right) \Lambda_{\mu}^{s}\left(\Lambda_{\mathrm{ct}}^{c}(v)\right)\right)=\left(\begin{array}{ll}u & v\end{array}\right)\right.$
- $\Lambda_{\mu}^{s}\left(\Lambda_{\mathbf{c t}}^{c}(\lambda x . t)\right)=\Lambda_{\mu}^{s}\left(\lambda x . \Lambda_{\mathbf{c t}}^{c}(t)\right)=\lambda x . \Lambda_{\mu}^{s}\left(\Lambda_{\mathrm{ct}}^{c}(t)\right)=\lambda x . t$
- $\Lambda_{\mu}^{s}\left(\Lambda_{\mathbf{c t}}^{l}(\mu \alpha[\beta] t)\right)=\Lambda_{\mu}^{s}\left(\mathbf{c a t c h} \alpha\right.$ throw $\left.\beta \Lambda_{\mathbf{c t}}^{l}(t)\right)=\mu \alpha[\beta] \Lambda_{\mu}^{s}\left(\Lambda_{\mathbf{c t}}^{l}(t)\right)=\mu \alpha[\beta] t$

Remark. The translation Λ_{μ}^{s} is thus surjective, and the translation $\Lambda_{\mathrm{ct}}^{l}$ is injective. However, $\Lambda_{\mathrm{ct}}^{l}$ is clearly not surjective since $\Lambda_{\mathrm{ct}}^{l}$ maps any $\lambda \mu$-term to some λ_{ct}-term in which any catch is followed by a throw. We already saw that Λ_{μ}^{s} is not injective.

3.4 The λ_{ct}-calculus is a canonical retract of the $\lambda \mu$-calculus

In this section, we show that $\Lambda_{\mathbf{c t}}^{s}$ is a morphism, and thus $\left\langle\Lambda_{\mu}^{l}, \Lambda_{\mathbf{c t}}^{s}\right\rangle$ is a retraction pair (the λ_{ct}-calculus is a canonical retract of the $\lambda \mu$-calculus).

Lemma 3.4.1

For any $\lambda \mu$-terms u, v and any variable x free in u :

$$
\Lambda_{\mathbf{c t}}^{s}(u\{v / x\})=\Lambda_{\mathbf{c t}}^{s}(u)\left\{\Lambda_{\mathbf{c t}}^{s}(v) / x\right\}
$$

Proof
By induction on the $\lambda \mu$-term u.

Lemma 3.4.2

For any instance $u \rightarrow v$ of any rule of the $\lambda \mu$-calculus, we have $\Lambda_{\mathbf{c t}}^{s}(u) \rightarrow{ }_{\mathbf{c t}}^{\star} \Lambda_{\mathbf{c t}}^{s}(v)$.
Proof
We consider each rule of the $\lambda \mu$-calculus:

- Case of the β-reduction $(\lambda x . u v) \rightarrow_{\beta} u\{v / x\}:$

$$
\Lambda_{\mathbf{c t}}^{s}((\lambda x . u v))=\left(\lambda x . \Lambda_{\mathbf{c t}}^{s}(u) \Lambda_{\mathbf{c t}}^{s}(v)\right) \rightarrow_{\beta} \Lambda_{\mathbf{c t}}^{s}(u)\left\{\Lambda_{\mathbf{c t}}^{s}(v) / x\right\}=\Lambda_{\mathbf{c t}}^{s}(u\{v / x\})
$$

by the substitution lemma.

- Case of the rule $(\mu \alpha[\beta] u v) \rightarrow \mu \alpha([\beta] u)\{[\alpha](t v) /[\alpha] t\}$

1. If $\alpha=\beta$ then $\mu \alpha([\beta] u)\{[\alpha](t v) /[\alpha] t\}=\mu \alpha[\alpha](u\{[\alpha](t v) /[\alpha] t\} v)$,

$$
\begin{aligned}
& \Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\alpha] u v) \\
& \quad=\quad\left(\text { catch } \alpha \Lambda_{\mathbf{c t}}^{s}(u) \Lambda_{\mathbf{c t}}^{s}(v)\right) \\
& \quad \rightarrow 2 \\
& \quad=\quad \text { catch } \alpha\left(\Lambda_{\mathbf{c t}}^{s}(u)\left\{\text { throw } \alpha\left(t \Lambda_{\mathbf{c t}}^{s}(v)\right) / \text { throw } \alpha t\right\}\right. \\
& \quad=\quad \Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\alpha](u\{[\alpha](t v) /[\alpha] t\} v))
\end{aligned}
$$

since any occurrence of a subterm $\mu \beta[\alpha] t$ (for some $\beta \neq \alpha$) is translated, by definition of $\Lambda_{\mathbf{c t}}^{s}$, either into catch β throw $\alpha \Lambda_{\mathbf{c t}}^{s}(t)$ or into throw $\alpha \Lambda_{\mathbf{c t}}^{s}(t)$.
2. If $\alpha \neq \beta$ and α does not occur in $u, \mu \alpha([\beta] u)\{[\alpha](t v) /[\alpha] t\})=\mu \alpha[\beta] u$,

$$
\begin{aligned}
\Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\beta] u v) & =\left(\left(\text { throw } \alpha \Lambda_{\mathbf{c t}}^{s}(u)\right) \Lambda_{\mathbf{c t}}^{s}(v)\right) \\
& \rightarrow 3 \text { throw } \alpha \Lambda_{\mathrm{ct}}^{s}(u) \\
& =\Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\beta] u)
\end{aligned}
$$

3. If $\alpha \neq \beta$ and α occurs in $u, \mu \alpha([\beta] u)\{[\alpha](t v) /[\alpha] t\}=\mu \alpha[\beta] u\{[\alpha](t v) /[\alpha] t\}$,
$\Lambda_{\text {ct }}^{s}(\mu \alpha[\beta] u v)$
$=\left(\left(\right.\right.$ catch α throw $\left.\left.\beta \Lambda_{\mathbf{c t}}^{s}(u)\right) \Lambda_{\mathbf{c t}}^{s}(v)\right)$
\rightarrow_{2} catch $\alpha\left(\left(\right.\right.$ throw $\left.\beta \Lambda_{\mathbf{c t}}^{s}(u)\right)\left\{\right.$ throw $\alpha\left(t \Lambda_{\text {ct }}^{s}(v)\right) /$ throw $\left.\left.\alpha t\right\} \Lambda_{\mathbf{c t}}^{s}(v)\right)$
$=$ catch $\alpha\left(\right.$ throw $\beta \Lambda_{\text {ct }}^{s}(u)\left\{\right.$ throw $\alpha\left(t \Lambda_{\mathbf{c t}}^{s}(v)\right) /$ throw $\left.\left.\alpha t\right\} \Lambda_{\mathbf{c t}}^{s}(v)\right)$
\rightarrow_{3} catch α throw $\beta \Lambda_{\mathbf{c t}}^{s}(u)\left\{\right.$ throw $\alpha\left(t \Lambda_{\text {ct }}^{s}(v)\right) /$ throw $\left.\alpha\right\}$
$=\Lambda_{\mathrm{ct}}^{s}(\mu \alpha[\beta] u\{[\alpha](t v) /[\alpha] t\})$

Again, since any occurrence of a subterm $\mu \beta[\alpha] t$ (for some $\beta \neq \alpha$) is translated, by definition of $\Lambda_{\mathbf{c t}}^{s}$, either into catch β throw $\alpha \Lambda_{\mathbf{c t}}^{s}(t)$ or into throw $\alpha \Lambda_{\text {ct }}^{s}(t)$.

- Case of the rule $[\beta] \mu \alpha t \rightarrow t\{\beta / \alpha\}$, i.e. $\mu \gamma[\beta] \mu \alpha[\delta] t \rightarrow \mu \gamma([\delta] t)\{\beta / \alpha\}$

1. If $\gamma=\beta$ and $\alpha=\delta$ then $\mu \gamma([\delta] t)\{\beta / \alpha\}=\mu \beta[\beta] t\{\beta / \alpha\}$

$$
\begin{array}{rll}
\Lambda_{\mathbf{c t}}^{s}(\mu \beta[\beta] \mu \alpha[\alpha] t) & = & \text { catch } \beta \text { catch } \alpha \Lambda_{\mathbf{c t}}^{s}(t) \\
& \rightarrow 4 & \text { catch } \beta \Lambda_{\mathbf{c t}}^{s}(t)\{\beta / \alpha\} \\
& = & \Lambda_{\mathbf{c t}}^{s}(\mu \beta[\beta] t\{\beta / \alpha\})
\end{array}
$$

2. If $\gamma=\beta$ and α thus does not occur in $[\delta] t, \mu \gamma([\delta] t)\{\beta / \alpha\}=\mu \beta[\delta] t$
(a) If $\beta=\delta$ then $\mu \beta[\delta] t=\mu \beta[\beta] t$

$$
\begin{array}{rll}
\Lambda_{\mathbf{c t}}^{s}(\mu \beta[\beta] \mu \alpha[\beta] t) & = & \text { catch } \beta \text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(t) \\
& \rightarrow_{7} & \text { catch } \beta \Lambda_{\mathbf{c t}}^{s}(t) \\
& =\Lambda_{\mathbf{c t}}^{s}(\mu \beta[\beta] t)
\end{array}
$$

(b) If $\beta \neq \delta$ and β does not occur in t

$$
\begin{aligned}
\Lambda_{\mathbf{c t}}^{s}(\mu \beta[\beta] \mu \alpha[\delta] t) & =\text { catch } \beta \text { throw } \delta \Lambda_{\mathbf{c t}}^{s}(t) \\
& \rightarrow 8 \\
& =\Lambda_{\mathbf{c t}}^{s}(\mu \beta[\delta] t)
\end{aligned}
$$

(c) If $\beta \neq \delta$ and β occurs in t

$$
\begin{aligned}
\Lambda_{\mathbf{c t}}^{s}(\mu \beta[\beta] \mu \alpha[\delta] t) & =\text { catch } \beta \text { throw } \delta \Lambda_{\mathbf{c t}}^{s}(t) \\
& =\Lambda_{\mathbf{c t}}^{s}(\mu \beta[\delta] t)
\end{aligned}
$$

3. If $\gamma=\beta$ and α occurs then in $[\delta] t \mu \gamma([\delta] t)\{\beta / \alpha\}=\mu \beta([\delta] t)\{\beta / \alpha\}$
(a) If $\alpha=\delta$, this case has already been delt with.
(b) If $\alpha \neq \delta$ then $\mu \beta([\delta] t)\{\beta / \alpha\}=\mu \beta[\delta] t\{\beta / \alpha\}$

- If $\beta=\delta$ then $\mu \beta[\delta] t\{\beta / \alpha\}=\mu \beta[\beta] t\{\beta / \alpha\}$

$$
\begin{array}{rll}
\Lambda_{\mathbf{c t}}^{s}(\mu \beta[\beta] \mu \alpha[\beta] t) & = & \text { catch } \beta \text { catch } \alpha \text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(t) \\
& \rightarrow 4 & \text { catch } \beta\left(\text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(t)\right)\{\beta / \alpha\} \\
& = & \text { catch } \beta \text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(t)\{\beta / \alpha\} \\
& \rightarrow{ }_{7} & \text { catch } \beta \Lambda_{\mathbf{c t}}^{s}(t)\{\beta / \alpha\} \\
& =\Lambda_{\mathbf{c t}}^{s}(\mu \beta[\beta] t\{\beta / \alpha\})
\end{array}
$$

- If $\beta \neq \delta$ then
$\Lambda_{\mathbf{c t}}^{s}(\mu \beta[\beta] \mu \alpha[\delta] t)=\quad$ catch β catch α throw $\delta \Lambda_{\text {ct }}^{s}(t)$
$\rightarrow 4 \quad$ catch $\beta\left(\right.$ throw $\left.\delta \Lambda_{\mathbf{c t}}^{s}(t)\right)\{\beta / \alpha\}$
$=\operatorname{catch} \beta$ throw $\delta \Lambda_{\mathbf{c t}}^{s}(t)\{\beta / \alpha\}$
$=\Lambda_{\mathbf{c t}}^{s}(\mu \beta[\delta] t\{\beta / \alpha\})$

4. If $\gamma \neq \beta$ and γ does not occur in $\mu \alpha[\delta] t$ (then in particular $\gamma \neq \delta$)
(a) If $\alpha=\delta$ then $\mu \gamma([\delta] t)\{\beta / \alpha\}=\mu \gamma[\beta] t\{\beta / \alpha\}$

$$
\begin{array}{rll}
\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\beta] \mu \alpha[\alpha] t) & = & \text { throw } \beta \text { catch } \alpha \Lambda_{\mathbf{c t}}^{s}(t) \\
& \rightarrow 6 & \text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(t)\{\beta / \alpha\} \\
& =\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\beta] t\{\beta / \alpha\})
\end{array}
$$

since $\gamma \neq \beta$ in the last equality.
(b) If $\alpha \neq \delta$ and α does not occur in t (and thus $\mu \gamma([\delta] t)\{\beta / \alpha\}=\mu \gamma[\delta] t$)

$$
\begin{aligned}
\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\beta] \mu \alpha[\delta] t) & = \\
& \text { throw } \beta \text { throw } \delta \Lambda_{\mathbf{c t}}^{s}(t) \\
& =5 \text { throw } \delta \Lambda_{\mathbf{c t}}^{s}(t) \\
& =\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\delta] t)
\end{aligned}
$$

since $\gamma \neq \delta$ in the last equality.
(c) If $\alpha \neq \delta$ and α occurs in t (and thus $\mu \gamma([\delta] t)\{\beta / \alpha\}=\mu \gamma[\delta] t\{\beta / \alpha\})$

$$
\begin{aligned}
\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\beta] \mu \alpha[\delta] t) & =\text { throw } \beta \text { catch } \alpha \text { throw } \delta \Lambda_{\mathbf{c t}}^{s}(t) \\
& \rightarrow 6 \text { throw } \beta\left(\text { throw } \delta \Lambda_{\mathbf{c t}}^{s}(t)\right)\{\beta / \alpha\} \\
& =\text { throw } \beta \text { throw } \delta \Lambda_{\mathbf{c t}}^{s}(t)\{\beta / \alpha\} \\
& \rightarrow{ }_{5} \text { throw } \delta \Lambda_{\mathbf{c t}}^{s}(t)\{\beta / \alpha\} \\
& =\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\delta] t\{\beta / \alpha\})
\end{aligned}
$$

5. If $\gamma \neq \beta$ and γ occurs in $\mu \alpha[\delta] t$
(a) If $\alpha=\delta$ then $\mu \gamma([\delta] t)\{\beta / \alpha\}=\mu \gamma[\beta] t\{\beta / \alpha\}$

$$
\begin{aligned}
\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\beta] \mu \alpha[\alpha] t) & =\quad \text { catch } \gamma \text { throw } \beta \text { catch } \alpha \Lambda_{\mathbf{c t}}^{s}(t) \\
& \rightarrow 6 \\
& \text { catch } \gamma \text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(t)\{\beta / \alpha\} \\
& =\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\beta] t\{\beta / \alpha\})
\end{aligned}
$$

(b) If $\alpha \neq \delta$ and α does not occur in t (and thus $\mu \gamma([\delta] t)\{\beta / \alpha\}=\mu \gamma[\delta] t)$
— If $\gamma=\delta$ then $\mu \gamma[\delta] t=\mu \gamma[\gamma] t$

$$
\begin{aligned}
\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\beta] \mu \alpha[\gamma] t) & =\text { catch } \gamma \text { throw } \beta \text { throw } \gamma \Lambda_{\mathbf{c t}}^{s}(t) \\
& \rightarrow_{5} \text { catch } \gamma \text { throw } \gamma \Lambda_{\mathbf{c t}}^{s}(t) \\
& \rightarrow_{7} \text { catch } \gamma \Lambda_{\mathbf{c t}}^{s}(t) \\
& =\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\gamma] t)
\end{aligned}
$$

- If $\gamma \neq \delta$

$$
\begin{aligned}
\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\beta] \mu \alpha[\delta] t) & =\quad \text { catch } \gamma \text { throw } \beta \text { throw } \delta \Lambda_{\mathbf{c t}}^{s}(t) \\
& \rightarrow 5 \text { catch } \gamma \text { throw } \delta \Lambda_{\mathbf{c t}}^{s}(t) \\
& =\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\delta] t)
\end{aligned}
$$

(c) If $\alpha \neq \delta$ and α occurs in t (and thus $\mu \gamma([\delta] t)\{\beta / \alpha\}=\mu \gamma[\delta] t\{\beta / \alpha\})$

- If $\gamma=\delta$ then $\mu \gamma[\delta] t\{\beta / \alpha\}=\mu \gamma[\gamma] t\{\beta / \alpha\}$

```
\(\Lambda_{\text {ct }}^{s}(\mu \gamma[\beta] \mu \alpha[\gamma] t)\)
    \(=\) catch \(\gamma\) throw \(\beta\) catch \(\alpha\) throw \(\gamma \Lambda_{\text {ct }}^{s}(t)\)
    \(\rightarrow 6\) catch \(\gamma\) throw \(\beta\) (throw \(\left.\gamma \Lambda_{\text {ct }}^{s}(t)\right)\{\beta / \alpha\}\)
    \(=\) catch \(\gamma\) throw \(\beta\) throw \(\gamma \Lambda_{\text {ct }}^{s}(t)\{\beta / \alpha\}\)
    \(\rightarrow 5\) catch \(\gamma\) throw \(\gamma \Lambda_{\text {ct }}^{s}(t)\{\beta / \alpha\}\)
    \(\rightarrow 7 \quad\) catch \(\gamma \Lambda_{\mathbf{c t}}^{s}(t)\{\beta / \alpha\}\)
    \(=\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\gamma] t\{\beta / \alpha\})\)
```

- If $\gamma \neq \delta$ then $\mu \gamma[\gamma] t\{\beta / \alpha\}$
$\Lambda_{\mathbf{c t}}^{s}(\mu \gamma[\beta] \mu \alpha[\delta] t)$
$=$ catch γ throw β catch α throw $\delta \Lambda_{\text {ct }}^{s}(t)$
$\rightarrow 6$ catch γ throw β (throw $\left.\delta \Lambda_{\text {ct }}^{s}(t)\right)\{\beta / \alpha\}$
$=$ catch γ throw β throw $\delta \Lambda_{\mathbf{c t}}^{s}(t)\{\beta / \alpha\}$
\rightarrow_{5} catch γ throw $\delta \Lambda_{\text {ct }}^{s}(t)\{\beta / \alpha\}$
$=\Lambda_{\mathrm{ct}}^{s}(\mu \gamma[\delta] t\{\beta / \alpha\})$
- Case of the rule $\mu \alpha[\alpha] t \rightarrow t$ if α does not occur free in t.

$$
\Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\alpha] t)=\mathbf{c a t c h} \alpha \Lambda_{\mathbf{c t}}^{s}(t) \rightarrow{ }_{8} \Lambda_{\mathbf{c t}}^{s}(t)
$$

Lemma 3.4.3

For any $\lambda \mu$-context $C[\bullet]$ and any $\lambda \mu$-terms u, v, if $\Lambda_{\mathbf{c t}}^{s}(u) \rightarrow_{\mathrm{ct}}^{\star} \Lambda_{\mathbf{c t}}^{s}(v)$ then:

$$
\Lambda_{\mathbf{c t}}^{s}(C[u]) \rightarrow_{\mathbf{c t}}^{\star} \quad \Lambda_{\mathbf{c t}}^{s}(C[v])
$$

Proof
By induction on the context:

- If the context is $\bullet, \Lambda_{\mathrm{ct}}^{s}(C[u])=\Lambda_{\mathrm{ct}}^{s}(u) \rightarrow_{\mathrm{ct}}^{\star} \Lambda_{\mathrm{ct}}^{s}(v)=\Lambda_{\mathrm{ct}}^{s}(C[v])$.
- If the context is an application or an abstraction, just apply the induction hypothesis.
- If the context has the form $\mu \alpha[\beta] C[\bullet]$ then, by definition of the translation $\Lambda_{\mathrm{ct}}^{s}$, on the one hand,

$$
\Lambda_{\mathrm{ct}}^{s}(\mu \alpha[\beta] C[u])=\left\{\begin{array}{l}
\operatorname{catch} \alpha \Lambda_{\mathrm{ct}}^{s}(C[u]) \text { if } \alpha=\beta \\
\text { throw } \beta \Lambda_{\mathrm{ct}}^{s}(C[u]) \text { if } \alpha \neq \beta \text { and } \alpha \text { is not free in } C[u] \\
\text { catch } \alpha \text { throw } \beta \Lambda_{\mathrm{ct}}^{s}(C[u]) \text { otherwise }
\end{array}\right.
$$

and on the other hand,

$$
\Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\beta] C[v])=\left\{\begin{array}{l}
\operatorname{catch} \alpha \Lambda_{\mathbf{c t}}^{s}(C[v]) \text { if } \alpha=\beta \\
\text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(C[v]) \text { if } \alpha \neq \beta \text { and } \alpha \text { is not free in } C[v] \\
\text { catch } \alpha \text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(C[v]) \text { otherwise }
\end{array}\right.
$$

By induction hypothesis $\Lambda_{\mathrm{ct}}^{s}(C[u]) \rightarrow_{\mathrm{ct}}^{\star} \Lambda_{\mathrm{ct}}^{s}(C[v])$, and then we consider each case:

1. If $\alpha=\beta$, by applying the induction assumption:

$$
\begin{aligned}
\Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\beta] C[u])=\mathbf{c a t c h} & \alpha \Lambda_{\mathrm{ct}}^{s}(C[u]) \\
& \rightarrow \mathbf{c t}+\mathbf{c a t c h} \alpha \Lambda_{\mathrm{ct}}^{s}(C[v])=\Lambda_{\mathrm{ct}}^{s}(\mu \alpha[\beta] C[v])
\end{aligned}
$$

2. If $\alpha \neq \beta$ and α does not occur free in $C[u]$, then α cannot occur free in $C[v]$ because no reduction of the $\lambda \mu$-calculus can introduce a free μ-variable, hence by applying the induction hypothesis:

$$
\begin{aligned}
& \Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\beta] C[u])=\text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(C[u]) \\
& \rightarrow{ }_{\mathbf{c t}}^{\star} \text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(C[v])=\Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\beta] C[v])
\end{aligned}
$$

3. If $\alpha \neq \beta$ and α occurs free in $C[u]$, and α do not occur free then in $C[v]$ by applying the induction hypothesis and then rule (8):

$$
\begin{array}{rcl}
\Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\beta] C[u]) & = & \text { catch } \alpha \text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(C[u]) \\
& \rightarrow_{\mathrm{ct}}^{\star} & \text { catch } \alpha \text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(C[v]) \\
& \rightarrow_{1} & \text { throw } \beta \Lambda_{\mathrm{ct}}^{s}(C[v]) \\
& =\Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\beta] C[v])
\end{array}
$$

4. If $\alpha \neq \beta$ and α occurs free in $C[u]$ and in $C[v]$ by applying the induction hypothesis:

$$
\begin{aligned}
\Lambda_{\mathbf{c t}}^{s}(\mu \alpha[\beta] C[u]) & =\text { catch } \alpha \text { throw } \beta \Lambda_{\mathrm{ct}}^{s}(C[u]) \\
& \rightarrow{ }_{\mathrm{ct}}^{\star} \text { catch } \alpha \text { throw } \beta \Lambda_{\mathrm{ct}}^{s}(C[v])=\Lambda_{\mathrm{ct}}^{s}(\mu \alpha[\beta] C[v])
\end{aligned}
$$

Proposition 3.4.4
For any $\lambda \mu$-terms u, v, if $u \rightarrow_{\lambda \mu} v$ then $\Lambda_{\mathrm{ct}}^{s}(u) \rightarrow_{\mathrm{ct}}^{\star} \Lambda_{\mathrm{ct}}^{s}(v)$.

Proof

By lemma 3.4.1 and lemma 3.4.3.
Remark. The morphism $\Lambda_{\mathbf{c t}}^{s}$ does not map any reduction step onto at least one reduction step since $\mu \alpha[\alpha] \mu_{-}[\beta] t \rightarrow \mu \alpha[\beta] t$ while $\Lambda_{\mathbf{c t}}^{s}\left(\mu \alpha[\alpha] \mu_{-}[\beta] t\right)=\Lambda_{\mathrm{ct}}^{s}(\mu \alpha[\beta] t)$.

Corollary 3.4.5
The λ_{ct}-calculus and the $\lambda \mu$-calculus are isomorphic if we consider terms up renaming/simplification.

Proof

Indeed, for any $\lambda_{\mathbf{c t}}$-term t, we have:

$$
\overline{\lambda_{\mathbf{c t}}\left(\Lambda_{\mu}^{l}(t)\right)}=\lambda_{\mathbf{c t}}\left(\overline{\Lambda_{\mu}^{l}(t)}\right)=\lambda_{\mathbf{c t}}\left(\Lambda_{\mu}^{s}(\bar{t})\right)=\bar{t}
$$

since $\lambda_{\text {ct }}$ and Λ_{μ}^{l} are canonical.

Corollary 3.4.6

The $\lambda_{\text {ct }}$-calculus and the $\lambda \mu$-calculus are isomorphic if we consider terms up convertibility.

Proof
Since $\overline{\lambda_{\mathbf{c t}}\left(\Lambda_{\mu}^{l}(t)\right)}=\bar{t}$ implies $\lambda_{\mathbf{c t}}\left(\Lambda_{\mu}^{l}(t)\right)={ }_{\text {ct }} t$.

3.5 Confluence of the λ_{ct}-calculus

We are now able to show the confluence of the $\lambda_{\text {ct }}$-calculus. Indeed, let us consider following diagram (where w exists since the $\lambda \mu$-calculus is confluent):

Theorem 3.5.1
The $\lambda_{c t}$-calculus is confluent.
Proof
We have shown that for any $\lambda_{\mathbf{c t}}$-term $t, t=\Lambda_{\mathbf{c t}}^{s}\left(\Lambda_{\mu}^{l}(t)\right.$), (only the weaker property $t \rightarrow \stackrel{\text { ct }}{\star} \Lambda_{\mathrm{ct}}^{s}\left(\Lambda_{\mu}^{l}(t)\right)$ was actually needed) and the confluence of the λ_{ct}-calculus results from the following diagram:

3.6 The $\lambda \mu$-calculus is not a canonical retract of the λ_{ct}-calculus

Proposition 3.6.1

There is no surjective canonical morphism from the $\lambda_{\text {ct }}$-calculus to the $\lambda \mu$-calculus.
Proof
Let us assume that Ψ is a surjective canonical morphism from the λ_{ct}-calculus to the $\lambda \mu$-calculus. Let r be a simple $\lambda \mu$-term of the form $(\mu \alpha[\beta] u v)$ where $\alpha \neq \beta$ and β occurs free in u. Since Ψ is surjective, there is a $\lambda_{\text {ct }}$-term s such that $\Psi(s)=r$. Since Ψ is canonical, $\overline{\Psi(s)}=\Lambda_{\mu}^{s}(\bar{s})$. But $\overline{\Psi(s)}=\bar{r}=r$ since r is simple. Thus the simple $\lambda_{\text {ct }}-$ term $\bar{s}=\Lambda_{\text {ct }}^{s}(r)$ is $\left(\left(\right.\right.$ catch α throw $\left.\beta \Lambda_{\mathbf{c t}}^{s}(u) \Lambda_{\text {ct }}^{s}(v)\right)$. Now let c be the contractum of \bar{s} :

$$
c=\mathbf{c a t c h} \alpha\left(\text { throw } \beta \Lambda_{\mathbf{c t}}^{s}(u)\left\{\text { throw } \alpha\left(t \Lambda_{\mathbf{c t}}^{s}(v)\right) / \text { throw } \alpha t\right\} \Lambda_{\mathbf{c t}}^{s}(v)\right)
$$

Since Ψ is a morphism, we should have $\Psi(\bar{s}) \rightarrow^{\star} \Psi(c)$ and thus $\overline{\Psi(\bar{s})} \rightarrow^{\star} \overline{\Psi(c)}$ (since the renaming/simplification rules commute with any other rule). Finally, notice that $r=\overline{\Psi(s)}=\overline{\Psi(\bar{s})}$ but we do not have in general, $r \rightarrow^{\star} \mu \alpha[\alpha](\mu \delta[\beta] u\{[\alpha](t v) / t\} v)$ (for instance if the contractum of r which is $\mu \alpha[\beta] u\{[\alpha](t v) / t\}$ is a normal form). Whence the contradiction.

4 The typed $\lambda_{\text {ct }}$-calculus

Typing control operators is strongly related to classical logic. This striking fact has been first noticed by Griffin (1990) and has been widely investigated since, for instance, by Murthy (1990; 1991), Barbanera and Berardi (1994a; 1994b), Rehof and Sørensen (1994), De Groote (1995; 1994), Krivine (1994), Nakano (1994b; 1994a; 1995), Sato and Kamayema (1997; 1998; 1997) and Parigot (1992; 1993).

As far as the author knows, Parigot's $\lambda \mu$-calculus is the only λ-calculus with control operators for which strong normalization has been proved in the second order framework.

We first recall the typing rules of this calculus (for more details see Parigot (1992)). Then we derive the typing rules of the catch and throw operators: they correspond respectively to right contraction and weakening rules of classical natural deduction. The subject reduction property and strong normalization are straightforward consequences.

4.1 The typed $\lambda \mu$-calculus

Axiom

$$
x: A^{x} \vdash A
$$

Rules for \rightarrow

$$
\frac{t: \Gamma, A^{x} \vdash \Delta ; B}{\lambda x . t: \Gamma \vdash \Delta ; A \rightarrow B} \quad \frac{u: \Gamma \vdash \Delta ; A \rightarrow B \quad v: \Gamma \vdash \Delta ; A}{(u v): \Gamma \vdash \Delta ; B}
$$

Rules for \forall (where x does not occur free in Γ, Δ in the introduction rule)

$$
\frac{u: \Gamma \vdash \Delta ; A}{u: \Gamma \vdash \Delta ; \forall x A} \quad \frac{u: \Gamma \vdash \Delta ; \forall x A}{u: \Gamma \vdash \Delta ; A\{t / x\}}
$$

Rules for \forall^{2} (where X does not occur free in Γ, Δ in the introduction rule)

$$
\frac{u: \Gamma \vdash \Delta ; A}{u: \Gamma \vdash \Delta ; \forall X A} \quad \frac{u: \Gamma \vdash \Delta ; \forall X A}{u: \Gamma \vdash \Delta ; A\{T / X\}}
$$

Contraction and weakening rules (where Π is either empty or a single formula B)

$$
\begin{array}{cc}
\frac{t: \Gamma, A^{x}, A^{y} \vdash \Delta ; \Pi}{t\{x / y\}: \Gamma, A^{x} \vdash \Delta ; \Pi} & \frac{t: \Gamma \vdash \Delta ; \Pi}{t: \Gamma, A^{x} \vdash \Delta ; \Pi} \\
\frac{t: \Gamma \vdash \Delta, A^{\alpha}, A^{\beta} ; \Pi}{t\{\beta / \alpha\}: \Gamma \vdash \Delta, A^{\beta} ; \Pi} & \frac{t: \Gamma \vdash \Delta ; \Pi}{t: \Gamma \vdash \Delta, A^{\alpha} ; \Pi}
\end{array}
$$

Remark. As usual in natural deduction, these explicit contraction and weakening rules are not actually needed if we allow for 'generalized axioms':

$$
x: \Gamma, A^{x} \vdash \Delta ; A
$$

Naming rules

These are the rules of the $\lambda \mu$-calculus that allow for multiple conclusions:

$$
\frac{t: \Gamma \vdash \Delta ; A}{[\alpha] t: \Gamma \vdash \Delta, A^{\alpha} ;} \quad \frac{t: \Gamma \vdash \Delta, A^{\alpha} ;}{\mu \alpha . t: \Gamma \vdash \Delta ; A}
$$

4.2 Typing the catch and throw operators

Let us now use the naming rules to derive type judgments for the $\lambda \mu c t$-terms throw αt and catch αt.

- We recall that catch $\alpha t=\mu \alpha[\alpha] t$:

$$
\frac{\frac{t: \Gamma \vdash \Delta, A^{\alpha} ; A}{[\alpha] t: \Gamma \vdash \Delta, A^{\alpha} ;}}{\frac{[\alpha[\alpha] t: \Gamma \vdash \Delta ; A}{}}
$$

- We recall that throw $\alpha t=\mu \beta[\alpha] t$ where β does not occur free in t :

$$
\frac{\frac{t: \Gamma \vdash \Delta ; A}{[\alpha] t: \Gamma \vdash \Delta, A^{\alpha} ;}}{\frac{[\alpha] t: \Gamma \vdash \Delta, A^{\alpha}, B^{\beta} ;}{\mu \beta[\alpha] t: \Gamma \vdash \Delta, A^{\alpha} ; B}}
$$

Hence, we are now able to type the native throw and catch operators.

The catch rule

$$
\frac{t: \Gamma \vdash \Delta, A^{\alpha} ; A}{\operatorname{catch} \alpha t: \Gamma \vdash \Delta ; A}
$$

The throw rule

$$
\frac{t: \Gamma \vdash \Delta ; A}{\text { throw } \alpha t: \Gamma \vdash \Delta, A^{\alpha} ; B}
$$

Remark. As for the $\lambda \mu$-calculus, there is no need for explicit rules for contracting and weakening 'named' conclusions. Consequently, one can see these catch and throw rules respectively as explicit right-hand contraction and weakening rules for classical natural deduction.

Proposition 4.2.1

A $\lambda_{\text {ct }}$-term t is typable of type $\Gamma \vdash \Delta ; A$ if and only if $\lambda \mu c t$-term $\Lambda_{\mu}^{l}(t)$ is typable of type $\Gamma \vdash \Delta$; A

Example. The $\lambda_{\mathbf{c t}}$-term λy.catch $\alpha(y \lambda x$.throw $\alpha x)$, which represents the famous call/cc of the Scheme language just as the corresponding $\lambda \mu c t$-term (Parigot, 1992),
can be typed by Peirce's axiom:

$$
\frac{y:((A \rightarrow B) \rightarrow A)^{y} \vdash(A \rightarrow B) \rightarrow A \quad \frac{\frac{x: A^{x} \vdash A}{\text { throw } \alpha x: A^{x} \vdash A^{\alpha} ; B}}{\lambda x . \text { throw } \alpha x \vdash A^{\alpha} ; A \rightarrow B}}{\left.\frac{(y \lambda x . t h r o w ~}{} \alpha x\right):((A \rightarrow B) \rightarrow A)^{y} \vdash A^{\alpha} ; A}
$$

4.3 Subject reduction property

The subject reduction property holds for the second order $\lambda \mu$-calculus: if a $\lambda \mu$-term t is typable of the type $\Gamma \vdash \Delta ; A$ and $t \rightarrow_{\lambda \mu} t^{\prime}$ then t^{\prime} is also typable of the type $\Gamma \vdash \Delta ; A$. This property extends directly to the $\lambda_{\text {ct }}$-calculus:

Proposition 4.3.1
Given a λ_{ct}-term t, if t is typable of type $\Gamma \vdash \Delta ; A$ and $t \rightarrow{ }_{\text {ct }} t^{\prime}$ then t^{\prime} is also typable of the type $\Gamma \vdash \Delta ; A$.

Proof

By proposition 4.2.1, if t is typable of type $\Gamma \vdash \Delta$; A, then $\Lambda_{\mu}^{l}(t)$ is also typable of type $\Gamma \vdash \Delta ; A$. We know that $\Lambda_{\mu}^{l}(t) \rightarrow_{\lambda \mu} \Lambda_{\mu}^{l}\left(t^{\prime}\right)$, and since the subject reduction property holds for the $\lambda \mu$-calculus, $\Lambda_{\mu}^{l}\left(t^{\prime}\right)$ is typable of type $\Gamma \vdash \Delta ; A$, and again by proposition 4.2.1, t^{\prime} is also typable of type $\Gamma \vdash \Delta ; A$.

4.4 Strong normalization of the second order λ_{ct}-calculus

The $\lambda \mu$-calculus is strongly normalizing in the second order framework, i.e. if a $\lambda \mu$-term t is typable of type $\Gamma \vdash \Delta ; A$ then there is no infinite sequence of reductions starting from t. This property extends directly to the λ_{ct}-calculus.

Proposition 4.4.1

Given a $\lambda_{\mathbf{c t}^{\prime}}$-term t, if t is typable of type $\Gamma \vdash \Delta ; A$ then there is no infinite sequence of reductions starting from t.

Proof

If t is typable of type $\Gamma \vdash \Delta$; A, then the $\lambda \mu$ ct-term $\Lambda_{\mu}^{l}(t)$ is also typable of type $\Gamma \vdash \Delta ; A$. If there was an infinite sequence of reductions $t_{1} \rightarrow_{\mathrm{ct}} t_{2} \ldots \rightarrow_{\mathrm{ct}} t_{n} \ldots$ then, since Λ_{μ}^{l} preserves one-step reduction (proposition 3.3.3), there would be an infinite sequence of reductions $\Lambda_{\mu}^{l}\left(t_{1}\right) \rightarrow_{\lambda \mu} \Lambda_{\mu}^{l}\left(t_{2}\right) \ldots \rightarrow_{\lambda \mu} \Lambda_{\mu}^{l}\left(t_{n}\right) \ldots$, which contradicts the strong normalization of the $\lambda \mu$-calculus.

Remark. The converse is also true: the strong normalization of the λ_{ct}-calculus implies the strong normalization of the $\lambda \mu$-calculus. Indeed, the translation $\Lambda_{\mathrm{ct}}^{l}$ is also an injective morphism. Moreover, a $\lambda \mu$-term t is typable of type $\Gamma \vdash \Delta$; A if and only if $\Lambda_{\text {ct }}^{l}(t)$ is typable of type $\Gamma \vdash \Delta ; A$.

5 Conclusion

We have defined a confluent λ-calculus with a catch/throw mechanism. Any $\lambda_{\text {ct }}$-term typable in the second order classical natural deduction is strongly normalizing. We have also seen that the call/cc of Scheme can be defined as:

$$
\text { call } / \text { ce } t \equiv \operatorname{catch} \alpha(t \lambda x . \text { throw } \alpha x)
$$

De Groote (1994) has shown in that the $\lambda \mu$-calculus is isomorphic (modulo convertibility) to the C-calculus. Similarly, it would be interesting to study how the λ-calculus with a 'native' call/cc is related to the $\lambda_{\text {ct }}$-calculus. Besides, we have only investigated here Parigot's 'call-by-name' $\lambda \mu$-calculus. Ong and Stewart (1996; 1997) have proposed a 'call-by-value' $\lambda \mu$-calculus. It is likely that a 'call-by-value' $\lambda_{c t}$-calculus can be derived from their work. Notice that De Groote (1994) and Ong (1996; 1997) separate the μ and the [] in their $\lambda \mu$-calculus. Nevertheless, this separation does not define a catch/throw mechanism (since in $\mu \alpha . t$ the type of t is $\perp)$.

We did not consider tag-abstraction as in the work of Nakano, Kamayema and Sato, since there is no need for tag-abstraction in the classical framework where a tag (μ-variable) α can be reified as the term λx.throw αx whose type is $\vdash A^{\alpha} ; \neg A$ (first-class continuations are typed by the negation $\neg A \equiv A \rightarrow \perp$). Of course, this is not sound anymore in intuitionistic logic since this type is the excluded-middle. We consider tag-abstraction in a constructive framework in a forthcoming paper, but where subtraction, the connector dual to implication (see Crolard, 1996, 1998) will be used instead of disjunction.

Acknowlegements

We would like to thank Serge Grigorieff for important suggestions and careful technical proofreading. The many discussions with Hugo Herbelin have been essential for this work. Comments of the anonymous referees have also been very useful.

References

Barbanera, F. and Berardi, S. (1994a) A symmetric lambda calculus for 'classical' program extraction. Theoretical Aspects of Computer Software: Lecture Notes in Computer Science 542, pp. 495-515. Springer-Verlag.
Barbanera, F. and Berardi, S. (1994b) Extracting constructive content from classical logic via control-like reductions. Lecture Notes in Compter Science 662. Springer-Verlag.
Beus, B. and Streicher, T. (1998) Classical logic, continuation semantics and abstract machines. J. Functional Programming (submitted).

Crolard, T. (1996) Extension de l'isomorphisme de Curry-Howard au traitement des exceptions (application d'une étude de la dualité en logique intuitionniste). Thèse de Doctorat, Université Paris 7.
Crolard, T. (1999) Subtractive logic. Theoretical Comput. Sci. (to appear).
De Groote, P. (1994) A CPS-Translation of the $\lambda \mu$-calculus. Lecture Notes in Computer Science 787, p. 85.
De Groote, P. (1994b) On the relation between the lambda-calculus and the syntactic theory of sequential control. Lecture Notes in Computer Science 822, p. 31.

De Groote, P. (1995) A simple calculus of exception handling. 2nd Int. Conference on Typed Lambda Calculi and Applications: Lecture Notes in Computer Science, pp. 201-215. SpringerVerlag.
De Groote, P. (1999) An environment machine for the $\lambda \mu$-calculus. Mathematical Structure of Computer Science (to appear).
Felleisen, M., Friedman, D. P., Kohlbecker, E. and Duba, B. F. (1986) Reasoning with continuations. First Symp. on Logic and Computer Science, pp. 131-141.
Felleisen, M., Friedman, D. P., Kohlbecker, E. and Duba, B. F. (1987) A syntactic theory of sequential control. Theoretical Comput. Sci. 52(3), 205-237.
Griffin, T. G. (1990) A formulæ-as-type notion of control. Conference Record of the 17th Annual ACM Symposium on Principles of Programming Languages, pp. 47-58.
Kameyama, Y. (1997) A new formulation of the catch/throw mechanism. In: Ida, T., Ohori, A. and Takeichi, M. (eds.), Second Fuji International Workshop on Functional and Logic Programming, pp. 106-122. World Scientific.
Kameyama, Y. and Sato, M. (1998) A classical catch/throw calculus with tag abstraction and its strong normalizability. In: Lin, X. (ed.), Proc. 4th Australasian Theory Symp.: Australian Computer Science Communications 20-3, pp. 183-197. Springer-Verlag.
Krivine, J.-L. (1994) Classical logic, storage operators and second order λ-calculus. Ann. Pure \& Appl. Logic, 68, 53-78.
Murthy, C. R. (1990) Extracting constructive content from classical proofs. PhD thesis, Department of Computer Science, Cornell University.
Murthy, C. R. (1991) Classical proofs as programs: How, when, and why. Technical Report 91-1215, Department of Computer Science, Cornell University.
Nakano, H. (1994a) A constructive logic behind the catch and throw mechanism. Ann. Pure \& Appl. Logic, 69(3), 269-301.
Nakano, H. (1994b) The non-deterministic catch and throw mechanism and its subject reduction property. Logic, Language and Computation: Lecture Notes in Computer Science 592, pp. 61-72. Springer-Verlag.
Nakano, H. (1995) The logical structures of the catch and throw mechanism. PhD thesis, The University of Tokyo.
Ong, C.-H. L. and Stewart, C. A. (1997) A Curry-Howard foundation for functional computation with control. Conference record of POPL '97: 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 215-227.
Ong, C.-H. L. (1996) A semantic view of classical proofs: Type-theoretic, categorical, and denotational characterizations (preliminary extended abstract). Proceedings 11th Ann. IEEE Symp. on Logic in Computer Science, LICS'96, pp. 230-241. New Brunswick, NJ. IEEE Press.
Parigot, M. (1992) $\lambda \mu$-calculus: an algorithmic interpretation of classical natural deduction. Proc. Logic Prog. and Autom. Reasoning: Lecture Notes in Computer Science 624, pp. 190201. Springer-Verlag.

Parigot, M. (1993) Classical proofs as programs. Computational Logic and Theory: Lecture Notes in Computer Science 713, pp. 263-276. Springer-Verlag.
Py, W. (1998) Propriétés combinatoires $d u \lambda \mu$-calcul. Thèse de Doctorat, Université de Savoie.
Rehof, N. J. and Sørensen, M. H. (1994) The λ_{Δ}-calculus. Theoretical Aspects of Computer Software: Lecture Notes in Computer Science 542, pp. 516-542. Springer-Verlag.
Reynolds, J. C. (1993) The discoveries of continuations. Lisp and Symbolic Computation, 6, 233-248.
Sato, M. (1997) Intuitionistic and classical natural deduction systems with the Catch and the Throw rules. Theoretical Comput. Sci. 175(1), 75-92.

