
Bull. Aust. Math. Soc. 99 (2019), 376–384
doi:10.1017/S0004972719000133

FACTORS OF CARMICHAEL NUMBERS AND AN EVEN
WEAKER k-TUPLES CONJECTURE

THOMAS WRIGHT

(Received 8 June 2018; accepted 25 August 2018; first published online 20 February 2019)

Abstract

One of the open questions in the study of Carmichael numbers is whether, for a given R ≥ 3, there
exist infinitely many Carmichael numbers with exactly R prime factors. Chernick [‘On Fermat’s simple
theorem’, Bull. Amer. Math. Soc. 45 (1935), 269–274] proved that Dickson’s k-tuple conjecture
would imply a positive result for all such R. Wright [‘Factors of Carmichael numbers and a weak k-
tuples conjecture’, J. Aust. Math. Soc. 100(3) (2016), 421–429] showed that a weakened version of
Dickson’s conjecture would imply that there are an infinitude of R for which there are infinitely many
such Carmichael numbers. In this paper, we improve on our 2016 result by weakening the required
conjecture even further.
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1. Introduction

Let us begin with a definition.

Definition 1.1. A Carmichael number is a composite number n for which

an ≡ a (mod n)

for every a ∈ Z.

Of course, Fermat’s little theorem states that ap ≡ a (mod p) is always true if p
is prime. Carmichael numbers, then, are the counterexamples which disprove the
converse of Fermat’s little theorem.

Although it was proved that there are infinitely many Carmichael numbers in 1994
[1], a number of open questions about Carmichael numbers still remain. One such
problem is the following question.

Question 1.2. Let R be an integer such that R ≥ 3. Are there infinitely many
Carmichael numbers with exactly R prime factors?
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It is believed that there are infinitely many Carmichael numbers with exactly R
prime factors for any R ≥ 3. In fact, specific conjectures [7] have been made about the
number of Carmichael numbers up to x with a given number of prime factors.

Granville–Pomerance Conjecture. For any R ≥ 3, let CR(x) denote the number of
Carmichael numbers up to x with exactly R factors. Then

CR(x) = x1/R+o(1).

At present, we are unable to prove even that there exists an R such that there exist
infinitely many Carmichael numbers with exactly R prime factors. Alford, Granville,
and Pomerance’s proof [1] that there are infinitely many Carmichael numbers was
accomplished by constructing Carmichael numbers with ever-increasing numbers of
prime factors; as such, their methods cannot be easily modified to deal with the case
where the number of prime factors is limited.

2. Current results

The closest we have come to a substantial result toward the Granville–Pomerance
conjecture above was in [13], wherein the present author was able to prove that such
an R exists under the assumption of a strong conjecture. To explain the conjecture, we
first recall Dickson’s conjecture.

Conjecture 1 (Dickson’s k-tuple conjecture). Let D = {a1z + b1,a2z + b2, . . . ,akz + bk}

be an admissible set of k linear forms; in other words, let D be a set of forms such that
for any prime p, there exists a z such that none of the forms are congruent to 0 modulo
p. If k ≥ 2 then there exist infinitely many z for which all of the forms in D are
simultaneously prime.

In 1935, Chernick [3] introduced this conjecture to the study of Carmichael
numbers when he proved the following result.

Theorem 2.1 (Chernick, 1935). Assume Dickson’s k-tuple Conjecture (Conjecture 1).
Then there are infinitely many Carmichael numbers with exactly 3 prime factors.

Chernick also showed how one would find infinitely many Carmichael numbers
with four and five prime factors; these cases also required the full use of Dickson’s
conjecture.

The next progress came in 2015, when the present author [13], was able to make
use of the following weakened form of Dickson’s conjecture.

Conjecture 2 (Dickson’s k-tuple conjecture (weak version)). As before, let D =

{a1z + b1, a2z + b2, . . . , akz + bk} be an admissible set of k linear forms. There exists a
fixed constant T > 1 such that for any m ≥ 2, if k ≥ mT then m of the forms in D are
prime infinitely often.

Armed with this conjecture, we were then able to prove the following result.
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Theorem 2.2 (Wright, 2016). Assume the weak version of Dickson’s k-tuple conjecture
(Conjecture 2). Let CR(x) denote the number of Carmichael numbers up to x with
exactly R prime factors. Then there are infinitely many R for which CR(x) goes to
infinity as x goes to infinity.

Recent work of Maynard and Tao [9] has given us the following progress toward
Dickson’s conjecture.

Theorem 2.3 (Maynard–Tao theorem). Let D = {a1z + b1, a2z + b2, . . . , akz + bk} be a
set of k admissible linear forms. For any m ≥ 2, if k ≥ e3.91m then m of the forms in D
are prime infinitely often.

The weak version of Dickson’s k-tuple conjecture is still quite a distance from the
Maynard–Tao result; it requires a polynomial relationship, while Maynard–Tao only
gives an exponential one.

3. New results

This paper attempts to bridge the gap between what was proved in [13] and what
is known via Maynard–Tao [9]. We are able to improve the 2016 result to the point
where it is almost unconditional. To do so, let us introduce the following even weaker
version of Dickson’s conjecture.

Conjecture 3 (Dickson’s k-tuple conjecture (even weaker version)). Again, let

D = {a1z + b1, a2z + b2, . . . , akz + bk}

be a set of k admissible linear forms. There exists a fixed constant T ≥ 1 such that for
any sufficiently large m, if k ≥ em1/(log log m)T

then m of the forms in D are prime infinitely
often.

Our main result is the following theorem.

Theorem 3.1 (Main Theorem). Assume the even weaker version of Dickson’s k-tuple
conjecture (Conjecture 3). Let CR(x) denote the number of Carmichael numbers up to
x with exactly R prime factors. Then there are infinitely many R for which CR(x) goes
to infinity as x goes to infinity.

4. Methods

The traditional proof of infinitely many Carmichael numbers as laid out in [1]
requires us to find many primes q for which P(q − 1) (the largest prime divisor of q − 1)
is small. (In [1], ‘small’ is defined to be less than q1/2.) This allows us to construct a
number L, defined to be the product of these q’s, where the maximum order λ(L) of an
element (mod L) is fairly small relative to L. We then construct primes p of the form
dk + 1, where d|L and k is a constant that is common to all of the p − 1.

In our proof, however, we will need λ(L) to be even smaller—specifically
logarithmic—relative to L. Ideally, we could accomplish this by taking primes q for
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which P(q − 1) is on the order of log q, but unfortunately, no known theorem would
allow anything close to this.

The remedy we introduce in this proof is to be somewhat more intentional in our
construction of these q. In particular, we construct our smaller primes q in the same
way that we construct the larger primes p. Let us take a J made up of many prime
factors. We will take our q to be of the form gl + 1, where g|J (and hence P(g) is of
size log q) and l is some parameter that is common to all of the q. This is the goal of
Section 5.

Once we have our small primes q, we multiply them together to find L. In Section 6,
we show that λ(L) is, in fact, very small relative to L. Having constructed L, we simply
apply Dickson’s conjecture (as stated above) to the tuple

D = {2dk + 1 : d|L}.

Sections 7 and 8 show that this tuple is large enough so that some subset of the primes
found from it will yield a Carmichael number.

5. The product of small primes

Let us now begin the proof of the Main Theorem. In the first section of the proof,
we will construct our q’s with this new method of construction.

To start, let z be some large positive number. Let us then define J′ by

J′ =
∏

r prime, z1/2<r<z

r.

As is standard, let π(x, d, a) denote the number of primes up to x that are congruent
to a (mod d). Fix B such that 0 < B < 5/12. Theorem 2.1 of [1] says that for any
x there exists a set of integers SB(x), where |SB(x)| is bounded by some constant SB,
such that if d is not divisible by an element in SB(x) and d ≤ xB then

π(x, d, a) ≥
π(x)

2φ(d)
,

for any a with (a, d) = 1. To use this estimate, we must be careful that our moduli
are not divisible by an element of SB(x). As such, for each element c ∈ SB(x), pick a
prime sc that divides c, and define

S = {sc : c ∈ SB(x)}.

We can then define
J =

∏
r|J′,r<S

r.

Now, let us define
Ql = {q prime : q = gl + 1, g|J}.

In [1], it is shown that there must exist an l with many such primes. We perform a
similar proof here.
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Theorem 5.1. Let B < 5/12, and let J be as above. Then there exists an l ≤ x1−B/2 with
(k, L) = 1 such that

|Ql| ≥ 2z/(2 log z).

Proof. A similar (though not identical) proof appears in [1, Theorem 2.1] and
[14, Lemma 5.1]. To begin, we recall from above that for any g relatively prime to
the elements of S and any c relatively prime to g,

π(x, g, c) ≥
x

2φ(g) log x
.

By Montgomery and Vaughan’s explicit version of the Brun–Titchmarsh theorem [11],
we also know that

π(x, g, c) ≤
2x

φ(g) log x
.

To count all of the primes q less than x for which q = gl + 1 with g|J and l ≤ x1−B,
consider ∑

g|J

π(gx1−B, g, 1) ≥
∑
g|J

[
π(gx1−B, g, 1) −

∑
g′ |J/g

π(gx1−B, g′g, 1)
]

≥
gx1−B

2φ(g) log x
−

∑
g′ |J/g

2gx1−B

φ(gg′) log x
,

where the second summand on the first line ensures that primes are not double-counted.
Clearly,

∑
g′ |J 1/φ(g′) can be bounded by 1

8 since z is large. So the above is

≥
∑
g|J

gx1−B

2φ(g) log x
−

gx1−B

4φ(g) log x

≥
∑
g|J

gx1−B

4φ(g) log x

≥
∑
g|J

x1−B

4 log x

≥
x1−B

4 log x
2(1−ε)z/ log z

where the last line is simply a count of the number of divisors of J.
Again, since z is large,

x1−B

4 log x
2(1−ε)z/ log z ≥ x1−B2z/(2 log z).

Since there are x1−B choices for l between 1 and x1−B, we know by the pigeonhole
principle that there must exist an l with at least 2z/(2 log z) primes. Let us denote this l
by l0. Then, as required,

|Ql0 | ≥ 2z/(2 log z).

This concludes the proof. �
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Note that while the proof above is roughly the same as the one in [1] or [14], we use
it here for different purposes. In the cited works, this result is used to generate primes
p that can be combined into Carmichael numbers. In our case, we use this theorem
one step earlier; it allows us to create an L that we will then use to find these primes p.

We also remark here that we can give a very trivial upper bound for |Ql0 | by noting
that Ql0 can have at most ω(J) elements, where ω(J) is the number of prime divisors
of J. So

|Ql0 | ≤ 22z/ log z.

6. Constructing L

Next, we follow the more standard framework of constructing the prime factors of
the Carmichael numbers themselves. Having now found our choices for q, we multiply
them together into a large L (with small λ(L)). From here, we will find primes of the
form p = dk + 1, where d|L.

To begin, let us define
L =

∏
q∈Ql0

q.

Let λ(n) denote the maximum order of an element (mod n). We prove the following
estimate for λ(L).

Lemma 6.1. For λ(L) as defined above,

λ(L) ≤ e3z.

Proof. Note that every prime divisor q of L is such that (q − 1)|Jl. By construction,
l < x1−B < J7/5. Recall also that the product of primes up to z can be bounded by e1.02z,
according to [12, Theorem 9]. So

λ(L) ≤
[ ∏

r prime, r<z

r
]12/5

≤ e3z.

This concludes the proof. �

7. Constructing the tuple

We can now finally define our tuple. Let

D(y) = {2dy + 1 : d|L}.

The goal of the rest of the paper will then be to prove that, assuming Conjecture 3,
this tuple will (for infinitely many choices of y) give enough primes relative to λ(L)
such that some product of these primes will yield a Carmichael number. Obviously,
the number of prime factors of each of these Carmichael numbers must then be less
than the size of the tuple, thereby proving the theorem.

https://doi.org/10.1017/S0004972719000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000133


382 T. Wright [7]

More specifically, let us define n(L) to be the smallest number such that a collection
of at least n(L) elements (mod L) must contain some subset whose product is the
identity. To prove the main theorem from here, we will need to show that |D| is large
and n(L) is small.

Lemma 7.1. For D as above,
|D| ≥ 22z/(2 log z)

.

Proof. This follows trivially from the fact that D is comprised of every possible
(nonempty) combination of elements in Ql, where Ql ≥ 2z/(2 log z). �

For ease of comparison, we will say that

|D| ≥ eez/(4 log z)
. (7.1)

We also need a result about n(L). To this end, we cite the following theorem which
appears in [5] and [10].

Theorem 7.2. For n(L) as above,

n(L) ≤ λ(L)
(
1 +

log |L|
λ(L)

)
.

In fact, we can even be more specific about the number of elements that we
are multiplying together to get the identity. The following theorem appears in
[1, Proposition 1.2].

Theorem 7.3. Let s > t > n = n(L) be integers. Then any sequence of s elements (mod
L) contains at least ( r

t

)/( r
n

)
distinct subsequences of length at most t and at least t − n whose product is the identity.

We can combine these two theorems with Lemma 6.1 to find a bound for n(L).

Lemma 7.4. We have n(L) ≤ e5z.

Proof. From Lemma 6.1,
λ(L) ≤ e3z.

Since the number of primes that are multiplied to form L is |Ql0 | and the size of each
prime is at most Jl,

L ≤ (Jl + 1)|Ql0 | ≤ e3z·22z/ log z
.

This implies that log L ≤ e2z, which means that

n(L) ≤ λ(L)
(
1 +

log |L|
λ(L)

)
e3z ≤ e5z,

concluding the proof. �

https://doi.org/10.1017/S0004972719000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000133


[8] Factors of Carmichael numbers 383

8. Completing the proof

We can now invoke Conjecture 3 to prove the existence of R as required in the Main
Theorem. First, we prove that for a given z, we can find an appropriate R.

Theorem 8.1. Assume the even weaker version of Dickson’s k-tuple Conjecture
(Conjecture 3) as stated in Section 3. Then there are infinitely many Carmichael
numbers with exactly R prime factors, where e7z < R < e8z.

Proof. Let m = e10z. By Conjecture 3, any k-tuple with k ≥ ee10z/ logT (10z)
must be such

that at least m of the forms in the tuple are simultaneously prime infinitely often.
From (7.1), we know that |D| is greater than this choice of k. So there must exist
infinitely many y such that, for each of these y, there are m terms in the tuple which
are simultaneously prime.

Now, choose a y such that there are at least m primes in the tuple. We will apply
Theorem 7.3. Let s = e10z and t = e8z. Since n ≤ e5z, we know that t − n ≥ e7z. So by
Theorem 7.3, for this choice of y, there exist subsets of these m primes whose product
is 1 (mod L). Let p1, p2, . . . , ps denote such a set of primes and define c to be their
product. Since

c = p1 p2 · · · ps ≡ 1 (mod Ly)

and (pi − 1)|Ly for every i, we know that (pi − 1)|(c − 1) for every pi|c. Thus, c is a
Carmichael number; more specifically, c is a Carmichael number with between t − n
and t factors.

Since there are infinitely many choices of y, there are infinitely many Carmichael
numbers with between t − n and t factors. �

Finally, we prove the Main Theorem. Let us restate it here.

Main Theorem. Assume the even weaker version of Dickson’s k-tuple Conjecture
(Conjecture 3). Let CR(x) denote the number of Carmichael numbers up to x with
exactly R prime factors. Then there are infinitely many R for which CR(x) goes to
infinity as x goes to infinity.

Proof. Theorem 8.1 above states that for any sufficiently large z, we can find an R with
e7z ≤ R ≤ e8z such that there are infinitely many Carmichael numbers with exactly R
prime factors. Since there are infinitely many choices for z, there are infinitely many
such R, thereby proving the Main theorem. �
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