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Abstract. Let I' C X be a smooth curve on a 3-fold which has only index 1 terminal singulari-
ties along I'. In this paper we investigate the existence of extremal terminal divisorial contrac-
tions £ C Y— T C X, contracting an irreducible surface E to I'. We consider cases with
respect to the singularities of the general hypersurface section S of X through I'. We comple-
tely classify the cases when S'is 4;, i < 3, and D, for any n.
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0. Introduction

One of the main objectives of birational geometry is to identify in each birational
class of varieties some distinguished members which are ‘simple’ and are called mini-
mal models, and then study the structure of birational maps between them. In
dimension two, satisfactory results were known for over one hundred years. In
higher dimensions, the minimal model program (MMP) was developed to search
for minimal models. After contributions of Reid, Mori, Kawamata, Kollar,
Shokurov and others, the program was completed in dimension three by Mori in
1988. A projective variety X is called a minimal model iff it is Q-factorial, terminal
and Ky is nef. According to Mori’s theorem, for any Q-factorial, terminal projective
3-fold X, there is a sequence of birational maps X —> X”, such that X’ is either a
minimal model or has the structure of a Mori fiber space. The birational maps that
appear are divisorial contractions and flips. Any birational map between minimal
models is an isomorphism in codimension one and a composition of flops
[Ko-Mo098]. Terminal flops were classified by the work of Kollar [Ko91].

The structure of birational maps between Fano fiber spaces is complicated. The
Sarkisov program was developed by Sarkisov, Reid and Corti to factorize birational
maps between these spaces as a composition of ‘elementary links’ [Cor95]. These
links consist of flops, flips and divisorial contractions. Therefore to understand the
structure of birational maps between Fano fiber spaces, it is important to understand
divisorial contractions and flips. Flips were classified by Kollar and Mori [Ko-Mo092].
The structure of divisorial contractions is still an open problem.
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Let ECY —f> I' C X be a divisorial contraction. Mori and Cutkoski completely
classify such contractions when Y is Gorenstein. In particular, if dim I' = 1, then X is
smooth along I" and Y is just the blow up of X along I'. Kawamata [Kaw94] showed
that if there is a point P € I' C X such that P € X is a cyclic quotient terminal sin-
gularity, then I' = {P} and f is a weighted blow up. Divisorial contractions of a
surface to a point, i.e. when I' = {pr}, have been studied by Luo, Corti, Kawakita
and others.

This paper studies divisorial contractions of a surface to a curve, i.e. when
dimI" = 1 and X has only index 1 terminal singularities along I'. It is not always true
that given I' C X, then there is a terminal contraction of a surface to I'. We investi-
gate when there is one, give criteria for existence or not and in the case that there is a
terminal contraction we also describe the singularities of Y.

The natural setting of the problem is to replace X with an analytic neighborhood
of a singular point P € I' and study the existence of divisorial extremal neighbor-
hoods over the germ P € X.

By [Ko-Mo092], if a terminal divisorial extremal neighborhood with irreducible
central curve exists then there is a DuVal section I' € S € X. In this paper we will
assume the existence of a DuVal section S of X through I" and we base the classifi-
cation of contractions on the type of singularities the general S as above has, instead
of X itself. Theorem 1.6 shows that under certain conditions there is always a cano-
nical contraction. The objective of the rest of this paper is to investigate when the
contraction is terminal in the case that I' is smooth. This smoothness condition on
I' is not a big restriction for applications to the Sarkisov program. In particular,
to study the birational rigidity of a Fano 3-fold, it is important to exclude certain
curves as maximal centers. In most cases [Cor-Rei00] these are either lines or conics.

In order to investigate the existence of a terminal contraction, it is important to
obtain normal forms for the equations of I' C S C X. This is done in Proposition 4.7.
Theorem 5.1 gives criteria for existence in the case that S'is A; with i < 3, and The-
orem 6.1 treats the case that S is Dy,.

There is an important difference between the D, and D,y |, as well as for the
higher A, cases. The main difficulty is the explicit calculation of the (Q-factorializa-
tion Z of Ej, as appears in the proof of Theorem 1.6. The reason of this difficulty
becomes clear in Lemma 6.2.

1. Uniqueness and Canonical Contractions

DEFINITION 1.1. A 3-fold divisorial contraction is a morphism f: EC Y —
I' C X, such that X and Y are Q-factorial, Y — E=~ X —I" and E is a prime divisor,
—Ky is f~ample, and p(Y/X) = 1.

Under certain conditions, contractions of a surface to a curve are unique, as

shown by the next proposition. In particular, this is the case for terminal contrac-
tions.
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PROPOSITION 1.2 ([Ko-Mo098]). Let f>EC Y— T C X be a 3-fold divisorial
contraction of an irreducible surface E to a curve T'. Suppose that X, Y are normal,
dimf{Y¥"¢) = 0, X has isolated singularities and —E is f-ample. Then

. d
Y = Proj @ Ig-}(

d=0

However this is not true if the condition dim f{ Y*"¢) = 0 is removed, as shown by
the next example:

EXAMPLE 1.3. Let X be given by x> +3*2+ 22+ =0 and I':x=z=1=0.
Then there are 2 nonisomorphic canonical divisorial contractions g;: S; C Z; —>
I' C X contracting the surfaces S; C Z; to I'. Z; has index 1 and is singular along a
section of S; —> I" and Z, has index 2 and its singular locus is g5'(0).

Proof. The statement about the contraction Z, —> X follows from Theorem 6.1.
So here we will only show how to construct the contraction g;: Z; — X. Let
I=(x%z1). Let g:Z =B X— X be the blow up of the ideal I in X.
7, c C* x P2, Let u, v, w be coordinates for P2. Look at the chart w #0. Z; is
given by

XP—ut=0
u+ o+t +1=0

There is only one g|-exceptional divisor S; given by x =t = u + y?u = 0. Z; is easily
seen to be singular along the line /: x = t = u = v = 0 which lies over I". Moreover,
since Z; is a complete intersection, it has index 1. O

The existence of a divisorial contraction as above, is equivalent to the finite gen-
eration of @, - OI(FQ(. This is local around any singular point of X on I'. Therefore
the proper way to study this problem is to replace X with an analytic neighborhood
of a singular point P e T'.

The singularities of the general hyperplane section S of X through I' are very
important for the study of terminal contractions as shown by the following
theorem.

THEOREM 1.4 ([Ko-Mo092]). Let f1Y D C—> X > P be an extremal neighborhood
with irreducible central curve C. Then the general member Ey of |—Ky| and Ex = f(Ey) €
|—Kx| have only DuVal singularities. Moreover, the minimal resolution of Ex domi-
nates Evy.

If the germ P € X is (Q-factorial, then the central curve is irreducible and the
above theorem applies. Moreover, Professor S. Mori told me that he has recently
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proved the above theorem when the central curve is reducible and the contraction
is flipping. However, he did not check the divisorial case yet but he feels that his
method may prove this case as well. Therefore in order to study and classify
divisorial extremal neighborhoods it is not really restrictive to assume the existence
of a DuVal section containing the curve. Our problem is thus reduced to the
following:

QUESTION-DEFINITION 1. Let (P € X) be the germ of an index 1 3-fold
terminal singularity and P € I' C X a curve. Assume that there exist a DuVal section
S of X containing I'. Does there exist a projective birational morphism f: ¥ — X
from a variety Y with only terminal singularities whose exceptional set E is a
Q-Cartier irreducible divisor such that —F is f~ample and is mapped onto I". We will
call any such contraction a divisorial contraction of type I.

By this replacement, the Q-factoriality of X is lost as well as the p(Y/X) =1
requirement. However, by [Art69] and [Art70], P € X is algebraic and we may also
work with an algebraic neighborhood of P € X that is Q-factorial, if we need to.

From Theorem 1.4 and the above discussion it follows that we expect that if
a terminal contraction exists, then there is a DuVal section S containing I'. The
converse is not true as shown by Example 5.3.

The next example shows that there are cases when there is no DuVal section
containing I.

EXAMPLE 1.5. Let X be given by x>+  +22 +y®*=0and I x =y =z=0.
Then there is no DuVal section of X containing I'. Moreover, the blow up Y = BrX
of X along I' is not even canonical (this shows that the conditions of Proposition 2.6
are needed).

Proof. First observe that 0 € X is a ¢Dy4 singularity and therefore terminal. The
section # = 0 is the surface x> 4 »3 4 z* = 0, which is easily seen to be a Dy, singu-
larity. A general hyperplane containing I' in C* is given by x = ay + bz. Hence the
corresponding section of X is S:(ay + bz + 33 4+ 22 + yt% = 0. It is not difficult to
check that after two blow ups it becomes nonnormal and hence it cannot be DuVal.
Hence there is no DuVal section of X containing I'.

Now let /2 Y = BrX — X be the blow up of X along I'. In the affine chart x = xz,
y =yz, Yis given by x’z + %22 + 22 + y1® = 0. Moreover,

N4y 2+ 24y =X+ P+ D2y~ X 40

which is singular along the line /: x = z = t = (. A typical section given by y = a is
X%z +z? 4+ at® = 0. Blow up the origin twice as before to get a nonnormal surface.
Hence Y has a line of at best log canonical singularities.

Hence the existence of a DuVal section through T" is important to conclude that
Y = BrX is canonical in Proposition 2.6. O
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The previous example shows the significance of the existence of a DuVal section S
of X through I'. Therefore from now on we will assume the existence of such
a section. In fact, we will study the existence of terminal contractions by considering
cases with respect to the type of singularities of the general S through I, instead of
the singularities of X itself. To start with we will show that there is always a
canonical contraction.

THEOREM 1.6. Let P € X be the germ of an index 1 terminal 3-fold singularity and
P el C X an irreducible curve having at worst lci singularities. Suppose there is a
DuVal section S of X containing I'. Then there is a divisorial contraction of type I
g: EC W—T C X contracting an irreducible surface E to I, with W canonical and
dim g(W*") = 0. In particular, R(T, X) = @)1201511.))( is finitely generated.

The proof of the previous theorem will be given in Section 3.

2. Some Easy Lemmas

DEFINITION 2.1. Let X be a normal variety, and D a Q-Cartier divisor in X. Let
P € X. Then the index of D at P, indexp(D), is defined to be the smallest r € N — 0
such that rD is Cartier at P. The global index of D in X, indexy(D) is the smallest
r € N — 0 such that rD is Cartier.

LEMMA 2.2. Let X be a threefold. Suppose that its singular locus is an irreducible
curve I and that it has only hypersurface singularities. Let D be a Q-Cartier divisor on
X. Then

index p(D) = index x(D)

for any point P € I'. Hence the index of D can be computed at any point of T'.

Proof. The proof is almost identical to that for the case of isolated index 1
terminal singularities that appears in [Kaw88]. I am not aware of a reference for this
more general case and therefore I include it for the convenience of the reader.

Let r = indexy(D). Then there are finitely many possibilities for indexp(D). Sup-
pose that r| < r, < --- < =r be these possibilities. Suppose that r; = indexp, (D).
Since I' is irreducible, D is Cartier at all but finitely many points where D has
index greater than r;. We can assume that it is only one, say P, since the result is
local. Hence indexp(D) =r. Then D' =r D is Cartier everywhere except P. Let
n: W — X be the index 1 cover of D'. Hence W — n~!(P) — X — P is étale. X has
hypersurface singularities and therefore by [Mil68, Theorem 5.2] n;(X — P) = 0.
Hence the cover is trivial and therefore D’ is Cartier. ]

LEMMA 2.3. Let Pe ' C X. Suppose that P € X is a three-dimensional index 1
terminal singularity, and that P € T is a plane curve singularity. Let f- Y = BrX — X be
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the blow up of X along T. Then f (') = E| + mE,. E is an irreducible surface over T'.
If P €T is smooth, then E; = P2, Otherwise E» = P* or E, = §.

Proof. The result is local around P. Since P € X'is an index 1 terminal singularity,
P is a <DV point. Hence, we can assume that X c C*. Suppose P € I is smooth.
First we will show that dimf~!(P) = 2. Suppose not. Let P € S C X be a general
hypersurface section transversal to I'. Then P € Sis DuVal and S’ = /7S is just the
blow up of Pin S. In particular, it is normal and Ky = f*Ks. If dim f ~!(P) = 1, then
f*S = 8. In particular, S’ is Cartier. Moreover, since fis generically the blow up of a
smooth curve, Ky = f*Ky + E;. Since Y is CM and S’ Cartier,

Ky =(Ky+S) ls=("Kx+ Ei +1*S) |y
=(["Kx+S)+E) |ls=f"Ks+ E| |s= Kg + Ei |s.

It now follows that E| |g= 0, which is impossible. Hence, dim f~'(P) = 2. Now in
both cases, since I' has at worst plane curve singularites at P, 7. .« is generated
by a regular sequence {gi, g», g3}. Hence BrC* — C* is the blow up of a regular
sequence and thus all its fibers over I are isomorphic to P?. Hence E, = [P2. O

LEMMA 24. Let PeT' C S. Suppose that P € T is at worst a plane curve singu-
larity, T — P is smooth, and S is a normal and canonical surface. Let f> S' = BrS — S
be the blow up of S along T'. Then S’ is normal.

Proof. Clearly, S’ — f~!(P) =~ S — Psince it is the blow up of a Cartier divisor. So
the result is local over P. Hence, we can assume that SC X = C? Let
/2 Y = BrX —> X be the blow up of X along I', and E the f~exceptional divisor. Since
P e I' is a lci singularity, Y is just the blow up of a regular sequence, say {g;, g2} in X.
Hence, E = Pr(Ir x/It. ). In particular, dimf~'(x) < 1 Vx € X. Hence, since Y is
the blow up of a smooth curve away from P, Y is normal. Moreover, f*S = S + E,
and Ky = f*Ky + E. Hence

Ky+ S =f*(Ky+S).

By [K097, Theorem 7.3], the pair (X, S) is also canonical. Hence, (Y, S’) is also
canonical and, hence, p/t. By [Ko-Mo098, Theorem 5.51] and [K097], S’ is normal
and canonical. ]

LEMMA 2.5. Let Pel C X. Assume that T" is smooth and that P € X is a 3-
dimensional normal hypersurface singularity. Let - Y = Br X —> X be the blow up of
X along T'. Let P € S C X be a general hypersurface section through P. Then

[*S =S8+ (mpX — 1)E,,

where mpS is the multiplicity of S at P and f ~'(T') = E, + dE, as in Lemma 2.3.
Proof. Suppose that f*S =S + aE,. f /(') = E| + dE, is Cartier and Oy(E; +
dEz) = Oy(—l). Then,

f*S - (E\ +dE)* =S - (E| + dEy)> + aE; - (E) + dE,)?

https://doi.org/10.1023/B:COMP.0000018135.42305.7a Published online by Cambridge University Press


https://doi.org/10.1023/B:COMP.0000018135.42305.7a

3-FOLD CONTRACTIONS, SURFACE TO CURVE I 245

Since E, = P2, it follows that E, - (E1 + dEz)2 = 1. Moreover, S’ = BpS the blow up
of S at P. Let F be the exceptional divisor. Then F? = —mpS = —mpX, and
F2 =8 -(E, +dE>)*. Moreover, (E; + dE>)* = E; - (E, + dE>) + dE, - (E; + dE>) =
A+dL, where A is a section of E;—T and L a line in E, = P?. Hence
S (E; +dE2)2 = S.T =1, and therefore a = mpS — 1 =mpX — 1. O

PROPOSITION 2.6. Let P T C X. Assume that P € X is an index 1 terminal
singularity and X normal. let f: Y = Br X — X. Then:

(1) If T is smooth, then Y is normal of index 1.

(2) If there is a DuVal section P e I' C S C X and I has at worst plane curve singu-
larities, then Y is normal and canonical of index 1.

(3) Ky =f*Ky + E| +dE,, and f~'(') = E; +dE, is Cartier but E|, E, are not
Q-Cartier.

Proof. First we will show that Y is CM and that wy is invertible. The result is
local around P. Since P € X is index 1 terminal, it is cDV. So we can assume that
X c C*=U. Let W = BrC*. Since I has at worst plane curve singularities, W is the
blow up of a regular sequence and therefore W is lci and hence CM and wy is
invertible. Moreover, E = f~!(I') = E = Pr(Ir,y/I{ ) is Cartier and irreducible.
Suppose that f*X = Y + aF, a € N. Hence Y C W is Cartier and hence is CM and
wy is invertible.

Now assume that I" is smooth. Since P € XiscDV, mpX =2. Let Pe SC X bea
general hypersurface section. Then P € S is DuVal. From Lemma 2.5 it follows that
f*S=S5+ E,. Since E, = P? and S’ + E, is Cartier, it follows that Y is smooth at
the generic point of E, and hence regular in codimension 1 and therefore normal.
This shows 1. Now suppose that f ~!(I') = E| + dE,. This is of course Cartier. Since
Y C W is Cartier, we can use adjunction to calculate Ky. Since W — f~!(P) is the
blow up of a smooth curve, it follows that Ky = f*Ky+2E. Moreover,
f*X =Y+ E. Hence

Ky=Kw+ YV ly=f"Kv+X)+E|ly=f"Ky+E|y
=f*Ky+ E, + dE>.

If E; were Q-Cartier, then for a fiber 6 of f disjoint from E, and a line / C E», 0 = al,
a>0.Hence 0</-Ey =ad-E, =ad-(E, +dE;) = —a < 0, which is not possible.
Of course one could argue that in this case the exceptional would have to be irredu-
cible which is not the case.

Now suppose that a DuVal section I' C S C X exists. Then S = XN H for some
general plane in U. Therefore, f*H = H + E and hence it follows that
f*S =S8+ E; + dE,. In particular, S’ is Cartier. From Lemma 2.4 it follows that
S’ is normal and canonical and therefore since S’ is Cartier, Y is smooth at some
points of E, and hence regular in codimension 1 and therefore normal. Since X is
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terminal and S is canonical it follows that (X, S) is canonical. Adjunction for S"in Y
gives that Ky + 8" = f*(Kx + S). Hence, the pair (Y, .S’) is also canonical. Since Y
has index 1 and S’ is DuVal, it follows that Y is also canonical. O

If there is no DuVal section S containing I', then Y may fail to be canonical. In
fact as shown by Example 1.5, it may not even be log canonical.

3. Proof of Theorem 1.6

Let f: Y= BrX— X. Then by Proposition 2.6, Y is canonical and normal.
Therefore by [KawS88], there is g: Z— Y such that g is an isomorphism in
codimension 1 and —Ef =g.'E| is Q-Cartier and g-ample. More precisely,
R(E\,Y)= &@,0Oy(—iE;) is finitely generated and Z = ProjR(E), Y). Hence,
K; = ¢g*Ky and Z is canonical. In fact since X is Q-factorial, Z is also Q-
factorial. We want to contract E5 =g, 'E, over X and obtain the required
contraction.

Let S be the general hyperplane section of X containing I'. Then as we have seen in
the proof of Proposition 2.6, Ky + S =f*(Kxy +S) and therefore K, + S =
h*(Ky + S), where h=gof. Now run a (Z,S* +¢E5) MMP over X. We get a
diagram

where ¢ is a composition of flips and flops, and g’ is divisorial. A this point I must
say that in all cases that I have worked explicitely, there are no flips or flops. Since
the first step of the MMP is the contraction of a Kz-negative extremal ray, this would
follow from [Benv85, Theorem 0]. However, Takagi pointed out an example to me
that shows that this theorem is not correct.

The only thing left is to show that W is canonical. Since ¢ is an isomorphism in
codimension 1, it follows that Kz +S% = (/)" (Ky+S) where i =pog.
Therefore, since (X, S) is canonical, Z’ is also canonical. Moreover, if C is a g’-
exceptional curve, then SZ - C >0 and therefore K, - C = —S% - C < 0. Now by
[Ko-Mo098, Proposition 3.38], it follows that 17 is also canonical O

Therefore, in order to understand when W is terminal, it is important to describe
the Q-factorialization of E;, Z. If there are no flops or flips, i.e., Z = Z’ (in particu-
lar, this is the case when none of the g-exceptional curves is contained in E%),
W is terminal iff Z has isolated terminal singularities away from E% [Ko-Mo98,
Proposition 3.38]).
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In general, describing explicitely Z is difficult. However, in the cases that the gen-
eral section S of X through I' is D,, or 4; with i < 3, it is possible to get such a
description and therefore treat these cases completely.

4. Normal Forms for ' c SCc X

In this section we will obtain normal forms for the equation of I' ¢ S C X. For the
rest of this paper I' will be smooth. Jaffe [Jaf92] obtained a classification of pairs
(S,T) when Sis DuVal and I" C S a smooth curve. Let U — S be the minimal reso-
lution of S and let E; be the exceptional curves. The next lemma gives normal forms
for the equations of I' in S based on the position of I' in the fundamental cycle. It
essentially follows from [Jaf92].

LEMMA 4.1. With assumptions as before.
(1) Suppose that 0 € S is A,, and that the fundamental cycle is

Eq Ey En_1 En
0 — O —+vv— O — O,
If T intersects the Ej then S is given by xy—z"t'=0 and T by
I=(x—z5y—2"1"7) 1 <k<(k+1))2.
(2) Suppose that 0 € S is D, and that the fundamental cycle is

I" can only intersect E, E,_\ or E,. If it intersects E| then it is given by I = (x, z)
and S by x> + y*z + "' = 0. If it intersects E,_, or E,, then by an obvious change
of variables:

(@) In the Dy, case, S is given by x* + y?z +2yz" =0 and T by I = (x, y).
(b) In the Dy,y1 case, S is given by x> + y*z +2xz" =0 and T by I = (x, ).

DEFINITION 4.2. Let I' be a smooth curve on a surface S. Suppose that S has
exactly one singular point on I" which is of type D,. Let /- U— S be its minimal
resolution and I” = f."'T". Then:

(1) T c S will be called of type FD; if I intersects E; in the minimal resolution of S.
(2) T c S will be called of type FD, if I intersects E, or E,_;.

Next we will derive the simplest possible normal forms for 0 e ' ¢ S ¢ X. To do
this it is necessary to obtain some properties of S.
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First we will show that if 0 € X is ¢4, then 0 € S'is 4,, for the general section .S of
X containing T,

LEMMA 4.3. Let 0 e T’ C X, T a smooth curve and 0 € X a cA, 3-fold singularity.
Then the general hyperplane section S of X containing T is A,.

Proof. Since I' is smooth, we can assume that it is given by x = y =z =0, and X
by

96,32+ 1] 3 el ] =0
k
and the section given by ¢ = 0 is 4,. Therefore

q(xv y,Z) = qZ(-xs y,Z) + Z%’(x»y»z)

i=3

with ¢»>(x, y, z) a quadratic that is not a square.
A general hyperplane through I' is x = by + cz. Then S is given by

qz(by + CZ, —V7 Z) + qu(by + CZ, y’ Z) + ll: Z ¢,(by + CZv ,V, Z)li:l = 0.
I

i>3
It’s quadratic term is
Vo = qa(by + ¢z, ,2) + tlby + ¢z, y, 2) + ar’

where I(by + ¢z, y, z) is linear. 0 € S'is 4, iff i, is not a square. If it is a square, then
putting ¢ = 0 it follows that ¢>(by + ¢z, y, z) is also a square.

Claim. If g2(by + ¢z, y, z) is a square for all b, ¢ then ¢»(x, y, z) is also a square. To
see this suppose that

@2(x, 3, 2) = x> + ar)* + a3z + asxy + asxz + agyz.
Then

q2(by + ¢z, ,2)
= (a1b2 +ar + a4b)y2 + (a]c2 +az + 615(:)22 + (2bcay + agc + asb + ag)y:z.

This is a square iff
4(a1(:2 + a3 + asc)(alb2 + ay + agb) = Qbcay + asc + asb + a(,)2 Vb, c.

Hence, a; = ay = as = 0 and 4aya; = a2. But then ¢a(x, y, 2) = ax)* + a3z> + agyz is
a square. ]

Now let /3 Y = BrX — X as before. Let f~'(I') = E; + dE>. We want to relate d
with some quantity on the general hyperplane section S of X, through T.
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LEMMA 4.4. Let f- Y= BrX—> X. Assume that Y is canonical. Suppose that
f~NI) = E| + dE,. Then there is a Du Val section S of X containing T such that if
g: S =f71S— S, then g\(T) ="+ dE and E = Pl is the g-exceptional curve. In

fact this is true for the general section S of X through T.

This way we see that somehow d controls the type of the general hyperplane sec-
tion through I'. This result will be useful later when we try to get normal forms for
the equations of 0 e I' C S C X.

Proof. Let Q € L = E; N E; be acDV point and let S' C Y be general through Q.
Then Q € S’ is DuVal. Since S’ is general, S' N (E] + dE;) =TI + dE, and T maps to
I'. Moreover, for a general 6 C Ey, 0-S =1 and, hence, ¢ - (S + E; +dE,) =0.
Therefore, there is a Cartier divisor S, 0 eI’ Cc SC X such that f*S=
S+ E; + dE,. By adjunction

Ky = (Ky+8) ls=f"(Kx+S) |s=f"Ks.

Therefore S is canonical with the required property. ]
The next proposition relates d with the type of singularities of S.

PROPOSITION 4.5. Let PeT' C S. T' a smooth curve and P € S Du Val. Let
g: 8" —> S be the blow up of S along T'. Let E be the g-exceptional curve which is
necessarily irreducible. Suppose that g\ () =T + dE. Let f: U— S be the minimal
resolution of S, E; the f-exceptional curves and T the birational transform of T in U.
Then

(1) Suppose that P € S is A, and that T intersects E, 1 <k < (n+1)/2. Then
@ [T O =T+ S5 E A+ kS5 B 5 (k= DE i
(b) E=E, 1, and d =k.

(2) Suppose that P € S is D,. Then T intersects one of the edges of the dual graph of
S. Then

(a) With notation as in Lemma 4.2.2, if T” intersects E;, then E = E| and d = 2.
Moreover S’ is smooth along T and

n—2
O =T"+2) B+ Eno + E,
i=1

(b) If T intersects E,_; then
(i) if n is even, then E = E,_|,d = n/2, is smooth along T" and

n—2
n n—2
[TO]=T"+E +2) jE,-+§E,H +5 Es
=2
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(i) if n is odd, then E=E,, d= (n—1)/2, and

n—-2
. , n—1 n—1
fT N =T+ Ev+2) B+ =By +—— En.
i=2

COROLLARY 4.6. Let PeT' Cc SC X, I' smooth and P€ X a c¢DV point. Let
f[1Y=BrX— X, [f'\T)=FE +dE;and L = E\ N E,. If P € S is a D, singularity,
then Y has finitely many singular points on L and therefore a Q-factorialization of E) is
obtained by blowing up E|.

Proof. From the previous proposition it follows that S’ = /7S is smooth at one
point of L. Therefore since S’ is Cartier, Y is also smooth at this point and hence has
finitely many singularities along L. O

Proof Proposition 4.5. Let Z =[ f~'(I')]. This is an integral cycle. From the
properties of the blow up it follows that g~!(I') is Cartier and, hence, Z - E = —1 and
Z - E; =0 for all i such that E; # E. Moreover, d is just the coefficient of E in Z.

We will only do the case when 0 € S'is D,,, with n odd, and I'” intersects E,_;. The
rest is similar. In fact the 4, is simpler.

Observe that since S has embedding dimension 4 and S’ is the blow up of a smooth
curve, it follows that g='(0) = E = P'. Therefore E appears with coefficient 1 in the
fundamental cycle and, hence, it must be one of the edges. So let Z=T"+ )", ¢;E;,
a; € . There are three cases to be considered. Only one will give an integral cycle
and this will be the answer. We will only work the case that E = E,. The others
are similar.

The relations Z - E, = —1 and Z - E; = 0, Vi # n give the system of equations

a1 —2ar+ a1 =0, 1<k<n-2,
ay-3 — 2,2+ ap1 +a, =0,
ay_o2 — 2an_j+1 +1=0, j=1,2.

It is easy to see that the solution of this system is ¢; =i for 2<i<n—2, and

ap—1 = a, = (n—1)/2. This solution gives an integral cycle. Similarly we see that
the cases £ = E,_; and £ = E| do not give integer cycles and, hence, are not possible.
Therefore,
n—2
. Y n—1 n—1
D=I"+E+2) EE+—F, | +—E,,
WA(Y) +1+;+2 L+
E=E,andd=n—-1)/2. O

We are now in position to get normal forms for the equations 0 e I' ¢ S C X in
the case that 0 € S'is D,, and S is general through I". We will not treat the general
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A, case here and so I will not attempt to write normal forms in this case. However,
normal forms for the case when 0 € S'is A3 will be given in the proof of Theorem 5.1.

PROPOSITION 4.7. Suppose 0 e I' ¢ S C X, S general. Suppose that 0 € S is D,,.
Then under suitable choice of coordinates, 0 € I’ C S C X is given by

(1) If T C S is of type FD;, then
X:xX>+y’z 424 tp--(y,z, 1) =0, Ir = (x, z, 1).

Moreover, no y* appears in ¢ -2y, 2, 1) for any k. For n = 4 this is the only possi-
bility.
If n=5 then ¢, = 0. That is X is given by

X2 +yzz—i—z”_1 +tpo3(y,z, 1) =0

and again no y* appears in b-3(r,z,0).
(2) Suppose that T" C S is of type FD,. Then

(@) If nis even then 0 € T’ C S C X is given by

X2+ Pz 4 292" + th-r(v,z, 1) =0, Ir = (x,, ).

Moreover, There is no z* in b-o(y,z, 1) for any k.
(b) If nis odd then 0 € ' C S C X is given by

(i) xX>+yz+ 2x2T 4 tlaxz* + G20, 2, 0)]=0,k=11Ir=(x,p,1).

No yz or 2V appear in ¢ -,(y,z, 1) for any v. a € 7.
(i1) Alternatively, the equation can take the form

2+ 2z 2xT + tlxzy(z, 1) + axt'T + bxt* + ¢-r(r, 2, 0] =0,

k=1, Ir =(x,y,t) and in this case, y2, yz, or z' do not appear in

¢ o, 2, 1), for any v.

Sometimes it is better to have 2.5 and sometimes 2.a. The existence of y> may com-
plicate calculations.
Proof. We will apply the following methods:

(1) The Weierstrass preparation theorem.

(2) The elimination of the y"~'-term from the polynomial a,)" + a,_1y"' +--- by a
coordinate change y — y — a,_/na, when a, is a unit.

(3) Let M, M, M5, M4 be multiplicatively independent monomials in the variables
X, y, z, t. Then any power series of the form M - (unit) + M> - (unit) + M3 - (unit)
+ My - (unit) is equivalent to M| 4+ M, + M3+ M4 by a suitable coordinate
change x> x - (unit), y+y - (unit), z+>z - (unit), ¢+t - (unit).
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I will only present here the proof of (1). The rest can be proved by the same
method.
So, suppose that I'” intersects E; in the dual graph. Then by Lemma 4.1,
0 eI C X is given by
X2 +y22 +270 4 tpo1(x,y,2,1)=0

and I is given by x = z = ¢t = 0. Apply the Weierstrass preparation theorem on x? to
eliminate x from ¢. Moreover, by Lemma 4.4, if ¢ has linear terms, then 0 € X'is ¢4,
and therefore the general section I' C S C X is 4, which is not possible by our
assumptions. Therefore I' C S C X is given by

X2+ Pz 424 1o ,(y,z, 1) =0,
and I' = (x, z, ).

Now suppose that
ooz, 1) = f5200) + Pa(y, 2, 1),

with no y¥ in @~ (y, z, ). Then write f(y) = y* - (unit), k > 2. Then the equation of X
is

¥+ Y2z 4 F 72 (unit)) + 27 4 1®2s(y, 2, 1) = 0.

The change of variables z+>z — ty*=2 - (unit) will give the normal form claimed by
the first part of 1.

Now suppose that n = 5. If ¢,(», z, ) = 0 then there is nothing to prove. Suppose
it is not zero. Then we already know that in the DF; case it is possible to write the
equations of ' C S C X as

G=x* +y22 +7 4 tpo,(y,z, 1) =0,
and no power of y, y*, appears in ¢y, z, 1). Let
¢>2(y’ Z, t) = ¢2(yv Z, t) + ¢;3(}/, z, l)-

Let ¢,(v,z, 1) = a1z> + axt> + asyz + asyt + aszt. Let S be the section given by
t = Az. This is given by

F(x,y,z2)= X+ yzz +7 4 22P5(, z, 2z) + Az o5 (y, z, Az) = 0,

and ¢,(y, z, Az) = (a1 + w2+ ash)z* + (a3 + agd)yz. If ¢, # 0, then for general / at
least one of the coeffiecients of z> or yz in not zero. Suppose that both coefficients are
nonzero. i.e., a =aj; + aziz +asA #0, and b = a3 + as4 # 0. Hence ¢,(y, z, 12) =
az*> + byz, ab # 0 and

F=x>4 2z + 2"V 4 dz(az* + byz) + iz o5, z, Az).
Now write

$=300,2,42) = 2f5000) + 25100, 2, 22), [220) =Y ), k=2
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Then

F=x"+yz4y2[b+ 0 0l + 2 [a+ 27 4+ ifz1(y. 2, 22)]

=x2+y22+y22-u1+z3-u2,

where u; = b + V), u» = da + "% + if=1(y, z, Az), are units. Hence F = x>+
Z[y? + yz-u; + 2> -up]. Eliminate the yz-term by the change of variables
vy — zu; /2. Hence the equation becomes

2,2 2
F:x2+z|:y2—z4i+zzu2j| :x2+yzz+z3<u2—%>.

We will now consider cases with respect to the nature of § = uy — (u}/4).

Suppose that § is a unit. Then F ~ x?> + %>z 4 z3and therefore S is Dj.

Suppose now that ¢ is not a unit. First check when this happens. By looking at
how u;, u, are defined, we see that

272
o= <}va — /14b> + {higher}.

Therefore & is not a unit iff a — (Ab%/4) =0, V.. But this implies that a; + A2ar+
Jas =% Maz + ag2)?, for all 4, and hence a; = a; = a4 = 4as — a3 = 0. Therefore
Oy, z, 1) = j—lazzt + ayz Then
G=x"4+yz+""1+ t(% a’zt + ayz) + 13y, 2, 1)
=X +z(0P+1P v apt) + 2+ tpos(, 2 1)
=4 z(y +1 @)+ 150 2, 0).
Make the change of variables y+>y —% at to bring the equation in the form

X2 +y22 +27 tp-3(y,z, 1) =0,

which is what we want.
Similar arguments show that if a =0 or b = 0 for all 4, then a D4 section exists.
This concludes the proof of the proposition. O

5. The Ay, A;, and A3 Cases

In this section we will study the existence of terminal contractions in the case when
PeSis A], A2 or A3.

THEOREM 5.1. Let Pe ' C S C X. Suppose that P € S is A,. Then

(1) Suppose that T intersects one edge of the dual graph of the singularities of S. (In
particular, this is always the case when n = 1, 2). Then there is always a terminal
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contraction E C W—T C X contracting a surface E to U. If n =1 then W has
exactly one non Gorenstein point which is a %(l, 1, 1) singularity.
If n> 1, then

2 < index(W) <n+ 1.

In the case that the central curve is irreducible we can say more. In particular, there
are two cases

(a) W has exactly one non Gorenstein point which is a cyclic quotient singularity of
index n+ 1.

(b) W has exactly 2 non Gorenstein points and it is of IA + IA type (in the sense of
[Ko — Mo092]). Let SY be the birational transform of S in W. It has one A,
and one Ay singular point. Moreover, r, s are the indices of the two singular
points of W, kr +1Is — 1 = n, and k, I their axial multiplicities.

(2) Suppose that n = 3. Then

(a) If T intersects one edge of the dual graph of the singularities of S, then there
is a terminal contraction as follows from the previous part.

(b) If T intersects E,, i.e. the middle of the dual graph, then write the equation of
'cScXas

x2+y2 +f<3(yvz» t)+f>4(ya2, [):0,

no y* appears in f <3(y, z, t) and Ir = (x, y, t). (This is always possible.) Then a
terminal contraction exists iff f<3(y, z, t) is irreducible, and it has exactly one
non-Gorenstein point which is an index 2 type cA singularity.

Proof. Fix notation as in the proof of Theorem 1.6.

P € X is an isolated singularity and therefore by [Art69], [Art70] it is algebraic.
Hence we can work in the algebraic category. Moreover we can assume that X is
Q-factorial.

Case 1. Assume that I intersects one edge of the dual graph. Now proceed as in the
proof of Theorem 1.6. From Proposition 4.5 it follows that d =1 and therefore
f~'(T)=E| +E,. E|, E, are both smooth and hence Y = BrX is c4, along
L = E; N E,. Moreover, Y is smooth away from L. Let C C Z be a g-exceptional
curve. It must lic over a cDV point and therefore Z can have at most finitely many
terminal singularities along C. We now run a (Z, S + ¢E5) MMP. Observe that
for any g-exceptional curve C, C - E5 > 0 and therefore it cannot contract. Any other
f o g-exceptional curve is Kz-negative. So the first step of the MMP is the contraction
of a K, negative extremal ray. Moreover, since p(Z/X) = 2, we play a 2 ray game and
therefore the outcome of the (Z, S* +¢E5) MMP is the same as the outcome
of the (Z,0) MMP. But now by [Ko-Mo098, Proposition 3.38] it is clear that W is
terminal.
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In order to study the index of the singularities of W it is preferable to work in the
analytic category. So we assume that /: W > C— X > P is an extremal neighbor-
hood. Let C=J._, =/ ~!(P) be the central curve. By [Kaw88, Lemma 3.4] it is
possible to contract each one of the components of the central curve. Hence there
is a factorization

8i h;
W — W — X
where g; contracts C; and f'= h; o g;. Moreover, since S € |—Kx| is 4, Sy € |— K|
is also 4,, for a m < n and therefore Sy, € |—Ky,| is also 4, (it dominates S). Apply
[Ko-M092, Theorem 2.2] to g; to get that

2 <index(W)<n+1.

Now assume that the central curve C is irreducible.

1. (b) follows from [Ko-Mo092, Theorem 2.2].

If this is not the case, then by the same theorem it follows that W has exactly one
non Gorenstein point which is of type /4, I4Y or II4, and S" = S. In particular this
implies that there are no flipping contractions during the (Z, S* + ¢E5) MMP.
Indeed, suppose there are. In the notation of the proof of Theorem 1.6, let C C Z’
be one of the flipped curves. Then since this MMP is also the (Z,0) MMP,
K7 -C>0. On the other hand, K, +S“ is crepant over X and therefore
S7 . C <0, which means that C ¢ S¥. C is not contracted by g and hence S"
contains an exceptional curve which is impossible. Hence Z' = Z. For convenience
set g =¢g'.

Now to find the index of W. Let b € N such that Kz = ¢* Ky + bE5.

Claim. E5 has index n.

Let 8" = f*S. Then $’ has exactly 1 singular point which is 4,_;. This follows since
I'” intersects the edge of the dual graph. So at the generic point of L, Y has a 4,,_;
point as follows from Lemma 4.4 and Proposition 4.5. At this point, E, E, corre-
spond to two lines at the edge of the dual graph Therefore nE,, nE, are Cartier at
all but finitely many points.

Since E| + E is Cartier, it follows that the singularities of Y lieon L = E; N E>. In
fact if n > 2, then Y is singular along L. If not then by Lemma 4.4, there is a
I' C S C X such that §' = BrS is smooth along S’N E;. But by Proposition 4.5
this implies that S must be 4; which is not possible.

Moreover, since Z has has hypersurface singularities and therefore by Lemma 2.2 the
indices of EY and E¥ can be computed at any point of LZ. Therefore, they have index n.

Let / C EZ be the birational trasform of a line in E, = P? contracted by p.
Then, /- ES = —a/n, a € N. Moreover, /- E5 +1- E{f = —1, and clearly /- E¥< 1.

Hence —2 < l~E22 < — 1, and therefore n < a < 2n. Moreover, Kz - = Ky - [ = —1
and hence b = n/a. In fact a = n is not possible. If it was, then Kz = ¢* Ky + E5.
But,

Kw=p'Ky+E/ and K;=hKy+E +E5
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where h = fo g: Z—> X. Combining the above relations it follows that ¢*E}" =~ EY,
which is not possible. Therefore index(W) = n+ 1. But we already know that
index(W) < n+ 1 and hence it must be equal. Moreover, from [Ko-Mo092, Theorem
2.2] it follows that the non Gorenstein point must have axial multiplicity 1 and hence
it is cyclic quotient.

Case 2. n = 3. The only case to study is when I'” intersects the middle of the dual
graph. It will be necessary to obtain a normal form for the equation I' € S C X.

LEMMA 5.2. Let0 e I' C S C X. Suppose that 0 € S is an Az singular point and that
I'” intersects the middle of the dual graph in the minimal resolution of S. Then under
suitable coordinates, 0 e I’ € S C X can be written as

x? 4 )7 + 2xz? +1p(x,2,0)=0

and It = (x, y, t) and no power z* appears in b 1(x,z,0).

Proof. By Theorem 4.1, under suitable coordinates it is possible to write
S:xy—z>=0and I': x —z> =y — z2 = 0. The change of coordinates x> x + 2,
yr>y + 22 brings it to xp+xz>+yz> =0 and T': x =y =0. Now let xr>x — y,
y+>x + y and apply the Weierstrass preparation theorem to y* to get

S:x2+y2+2x22+l¢>l(x,z, =0

and I': x =y =1=0. To eliminate z we must show that z does not appear in
¢-1(x,z,1). If it does then it is easy to see that the general hyperplane section
y = at + bx through I' will be 4; which is impossible. Now eliminate the powers
of z as in Proposition 4.7. O

The statement about existence of a terminal contraction is proved in exactly the
same way as Theorem 6.1 and I omit its proof. O

EXAMPLE 5.3. Let X be given by
X+ P2+ =0

and I x=y=1¢=0. Then if m >4, there is no 3-fold terminal contraction,
contracting a surface to I'.

Proof. In this case, the section S: (¢ = 0) is an 43 type and the curve intersects the
middle of the minimal resolution of S. Moreover, f<3(x, z, ) = 2xz? is reducible and
therefore by the previous theorem there is no terminal contraction. O

6. The D,, Cases

In this section we will study the existence of terminal contractions when 0 € S is a
Dy, type for general 0 e I' C S C X.
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THEOREM 6.1. Let Pe I C S C X. Suppose that P € S is a D, type singular point.
Then

(1) Suppose that T' C S is of type FD,. If n = 5, then there is no terminal contraction.
If n = 4 then the next case holds.

(2) Suppose that T C S is of type FD, and n is even. Then write the equation of
Pel'cScX

iz )+ fo4(n 2 1) =0
with It = (x, y, 1).

(a) If f3(», z, t) is an irreducible homogeneous cubic, then there is a terminal con-
traction W — X of a surface to I'. W has index 2 and has exactly one singu-
larity which is of c¢D type. Moreover, R(I',X)=@,. OI(FC{}( is finitely
generated by elements of degrees 1 and 2.

(b) If f3(y, z, t) is reducible or 0, then there is no terminal contraction.

Proof. We will only do the second part of the theorem. The first one is proved in
exactly the same way.
By Proposition 4.7, under suitable coordinates I' € S C X is given by

¥+ yz+ 292"+ tpo (v, 2, 1) = 0,

I x = y = t = 0 and no power z* appears. Let / Y —> X be the blow up of I'. In the
chart x = xt, y = yt, Y is given by

X2t 4yt + 2y + ¢-o(vt,z, 1) =0.

For t =0 we find that f~'(I') = E; + mE,, and E|: y=1t=0, Ey:z=1t=0. It is
easy to check that Y has exactly one singular pointon L = E; N E> = (3, z, t). There-
fore, g: Z = Bg, Y — Y is the Q-factorialization of E; (and hence E,). Moreover,
Ef =~ E, = IP2. Now as in the proof of Theorem 1.6 contract E% to get a morphism
Z s Wover X. Then W -5 X'is the required contraction. Whether or not W is
terminal depends on what kind of singularities Z has away from E%. Let

¢;2(y’ Z, t) = (,252()/, Z, t) + ¢;3(y’ Z, Z)-
In the chart y = yt, Z is given by
1 1
X2 4y P4 2y ;c},’)z(ytz, z,0) + ;¢>3(yt2, z,1)=0.

Write
¢>3(ylz’ 2, 0) = tfs2(2) + Pfo1(y, 2, 1)
with 75 1(y,0,0) = 0. Then Z is given by

1 X X
F=x? +y2122 + 2yz™ —i—;(ﬁz(ytz, 2, )+ fs202) + tf>1(p, 2, £) = 0.
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Let C=g"'(0):x=2z=1¢t=0, and

1
Dy(y,z, 1) = ;4520/12, z, 1).

We want to investigate the singularities of Z along C.

IF

— = 2x,

ox

IF oD d
R Gy L e R LY
ay ay ay

oF 55 1 0Dy Ifsn fs1
R Z 2 m = t = ,
0z YU smyz + 0z + 0z + 0z
aF 8@2 af>1

— =2 2[ —_ ,Z, 1 .
ik S ey >

Hence Z is singular along a point Q € C iff

8CI>2 8(1)2 3(1)2
o Q=" =770=0.

Let ¢,(y,z, 1) = a1y* + ayt* + a3yt + a4yz + aszt. Then
1
Dy(y,z, 1) = 7¢2(yt2, z, 1) = a1y2t3 + at + a3ylz + agyzt + asz.

Now it follows that

)

8_y2= 2a1y1° + a3t + ayzt,

oD

—2=a4yt+a5,

0z

)

3_12 = 3a1y2t2 + ap + 2a3yt + agyz.
Along C,

B(Dz_o Bd)g_a 861)2_a

vy 0 ez Ta . E

Therefore, Z is either singular along C and a, = as = 0, or has exactly one singular
point in E5 (in the other chart). If ¢ = as = 0, then

G, (v, z, ) = y(a1y + azt + as2).

A coordinate independent way to say this is the statement of Theorem 6.1(2b).

We will now find the index of the singularities of W. Let a > 0 such that
K7 = p*Ky + aE¥. Moreover, E5 = E; =~ P2, E7 is Cartier and therefore for a gen-
eral line / C E4, |- E{ = 1. On the other hand,

[-(Ef +2E5) =1-g"(E| +2E;) = |- (Ey +2E;) = —1.
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Hence /- E¥ = —1. Moreover,
l-KZ:l'g*KY:l~KY:—1.

Combining the above we see that ¢ = 1 and therefore Ky = p*Ky + EzZ Ezz has index
2 and hence W has also index 2. From the above proof it is also clear that W has
exactly one index 2 point. This, as well as the type of the singularities, also follows
from [Ko-Mo092, Theorem 4.7].

Moreover, since W has index 2 it follows that —2E if p—very ample where
E=E]. The statement about the number of generators of R(I', X) follows
immediately. O

The difference between the D,, and Dy, cases is shown by the next lemma.

LEMMA 6.2. Suppose that the general section S of X containing T is D,y and
I' C Sis of type DF,. Let f: Y = BrX — X. Let f "{(T') = E; + dE,. Then Y is sin-
gular along L = E| N E,.

This is precisely the reason that makes the D, case very difficult to work with.
In the D,, cases, Y had exactly one singular point on L and that made an explicit
description of the Q-factorialization of E; relatively easy.

Proof. Suppose that Y is not singular along L. Let Q € L be a smooth point. Let
S’ be a general section of Y through Q. As in Lemma 4.4, there is a section S of X
through T such that ' = f,~'S. Then by assumption, S is Dy,;;. Then by Proposi-

tion 4.5.2.b(ii), it follows that Q € S’ is singular which is not true. O

To apply Theorem 6.1, it would be useful to get information about the general
section from a special section. The next lemma gives informaion about the general
section starting from a special one.

LEMMA 6.3. Let I' C X. Suppose that the general section of X containing T is
Dy. Let Pe T C Sy C X be a special section and suppose that Sy is D, with n = 5.
Then

(1) If T" C Sy is of type DF,, then the general section S of X through U is D,,, m < n
and also of type DF.

(2) If T C Sy is of type DF, and n is even, then the general S through T is Dy, and also
of type DF,.

Proof. Case 1. Suppose that I’ C Sy is of type FD,, ie., I'” intersects E| in the
fundamental cycle of Sy. Let S be the general section through I" and assume it is D,,. If
I'” intersects E,,_, or E, in the fundamental cycle of S, then by Proposition 4.5 it
follows that d = m/2, if m is even, or d = (m — 1)/2, if m is odd. On the other hand, by
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the assumption on S, and Proposition 4.7, under suitable coordinates I" C X is given by
x2 +yzz +2 1y tp-,(y,z,1) =0, and It = (X, z, 1). Use notation as in Lemma 6.2.

A computation as in Theorem 6.1 shows that d = 2 and Y has exactly one singular
point on L. Hence, the only possibility that the general section is not as claimed is
that it is Ds and I'” intersects E4 or Es. But then Y is singular along L as follows from
Lemma 6.2.

The fact that m < n follows from the upper semicontinuity of the Tyurina number
of the singularity.

Case 2. Suppose that I' C Sy is of type FD, and n is even. First we will show that
it is not possible that I C S, S C X general through T, is of type FD,. Suppose it is.
Then since 7 is even, S’ = f,~'S has exactly one singular point which is D,_; as fol-
lows from Proposition 4.6.2.a. On the other hand, S has exactly one 4,_; singular
point Q. Therefore Q € Y is cA; and by [KoBa88] it is cA4y in a neighborhood of Q.
But then for a general I’ € S C X, §' is A, and hence it must be of type FD,. If ' C S
is FD, but S'is Dy,,. for general S, then by Lemma 6.2 Y is singular along L which is
not true as follows from Corollary 4.6. ]

Hence by looking at one section we know in which part of Theorem 6.1 we are. So
if we know that there is a section as in 1 then all we need to know to conclude that
there is no terminal contraction is that the general section is not D4. The next lemma
gives a criterion for that.

LEMMA 6.4. Let T C X be given by x*+f>30,z,0)=0, and T =(x,y,1).
Moreover, suppose that t = 0 is a DuVal section S of X containing T and T intersects
Ey in the fundamental cycle of S. Then a Dy section of X containing T does not

exist iff f3(v, z, 1) = g, z, DI, z, 1).

Proof. According to Proposition 4.7, in suitable coordinates I' C X is given by
X2 +y22 +270 4 tp-,(y,z, 1) =0,
and Ir = (x, z, t). The cubic term then of the above equation is

q3(.y’ Z, l) = )/ZZ + l(,bz(y, z, t)

From the proof of the first part of Proposition 4.7 it follows that a D, section
exists iff q3(y,z, 1) # g(y, z, OH*(y, z, 1), for any g(y,z, 1), h(y,z, t), which is the
condition claimed by the Lemma. O
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