THE BANACH-SAKS THEOREM IN $C(S)$

NICHOLAS R. FARNUM

A Banach space X has the Banach-Saks property if every sequence $\left(x_{n}\right)$ in X converging weakly to x has a subsequence ($x_{n k}$) with $(1 / p) \sum_{k=1} x_{n k}$ converging in norm to x. Originally, Banach and Saks [2] proved that the spaces $L^{p}(p>1)$ have this property. Kakutani [4] generalized their result by proving this for every uniformly convex Banach space, and in [9] Szlenk proved that the space L^{1} also has this property.

An alternate version of the Banach-Saks property occurs in the works of other authors who replace "sequence (x_{n}) in X converging weakly to x " by "bounded sequence $\left(x_{n}\right)$ ". Using this version, Nishiura and Waterman [5] proved that every space with the Banach-Saks property is reflexive. Baernstein [1] later gave an example of a reflexive Banach space not having the BanachSaks property.

In either version one asks that the ($C, 1$) means of some subsequence converge in norm. The similar property with the ($C, 1$) method replaced by an arbitrary regular summability method has been studied in $[\mathbf{8}]$ and $[\mathbf{1 0}]$.

Following [7] we denote by $S^{(\alpha)}$ the derived set of order α, where α is any ordinal number. Also, S will denote a compact metric space with metric d, $C(S)$ will be the space of all continuous complex-valued functions on S with norm

$$
\|f\|_{S}=\sup _{s \in S}|f(S)|
$$

and

$$
f_{n} \xrightarrow{w} f
$$

will denote the sequence $\left(f_{n}\right)$ converges weakly to f.
We will use the first version of the Banach-Saks property given above in this paper.

It is easy to show that the space $c=C(\{0,1,1 / 2,1 / 3, \ldots\})$ has the BanachSaks property. However, $C[0,1]$ does not $[\mathbf{6}]$, so it is natural to ask for which topological spaces S does $C(S)$ have the Banach-Saks property. Our main result is contained in the following:

Theorem. $C(S)$ has the Banach-Saks property if and only if $S^{(\omega)}=\emptyset$.
Proof. If $S^{(\omega)} \neq \emptyset$, Proposition 2 shows that $C(S)$ does not have the BanachSaks property.

Received August 9, 1972 and in revised form, June 19, 1973.

Conversely, if $S^{(\omega)}=\emptyset$ we know that $\bigcap_{i=1}^{\infty} S^{(i)}=\emptyset$. Since S is compact and $S^{(i)} \supseteq S^{(i+1)}$. we conclude that there is a smallest integer i_{0} for which $\bigcap_{i=1}^{i_{0}+1} S^{(i)}=\emptyset$. Then $S^{\left(i_{0}\right)}$ must be a finite set and we have

$$
S^{\left(i_{0}\right)} \subseteq S^{\left(i_{0}-1\right)} \subseteq \ldots \subseteq S^{(2)} \subseteq S^{(1)} \subseteq S
$$

It is easy to see that $C\left(S^{\left(i_{0}\right)}\right)$ has the Banach-Saks property and by using Proposition $1 i_{0}$ times we see that $C(S)$ has the Banach-Saks property.

We must establish the propositions used in the proof of the Theorem.
Proposition 1. If $C\left(S^{(1)}\right)$ has the Banach-Saks property, then so does $C(S)$.
Proof. Suppose

$$
f_{n} \xrightarrow{w} f \text { in } C(S)
$$

Replacing f_{n} with $f_{n}-f$ we may assume

$$
f_{n} \xrightarrow{w} 0 .
$$

By [3, p. 265] we see that

$$
f_{n} \xrightarrow{w} 0 \text { implies that }\left|f_{n}\right| \xrightarrow{w} 0 .
$$

If we replace f_{n} by $\left|f_{n}\right|$ and use

$$
\left\|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}\right\|_{S} \leqq\left\|\frac{1}{p} \sum\left|f_{n_{k}}\right|\right\|_{S},
$$

we may assume that each $f_{n} \geqq 0$.
If $S=S^{(1)}$ there is nothing to prove so we assume $S \neq S^{(1)}$. Then there is some point $s_{0} \in S \backslash S^{(1)}$ such that $d\left(s_{0}, S^{(1)}\right)=\delta>0$. The set

$$
F_{1}=\left\{s \in S \mid d\left(s, S^{(1)}\right) \leqq \delta / 2\right\}
$$

is not empty. From the compactness of S we see that F_{1} has finitely many points. Since $\lim _{n \rightarrow \infty} f_{n}(s)=0$ for each $s \in S$ [3, p. 265], given any $\epsilon_{1}>0$ there is an integer n_{1} such that $\left|f_{n_{1}}(s)\right| \leqq \epsilon_{1}$ for all $s \in F_{1}$. The uniform continuity of $f_{n_{1}}$ on S yields a $\lambda_{1}>0$ such that $\left|f_{n_{1}}(s)-f_{n_{1}}(t)\right| \leqq \epsilon_{1}$ for $d(s, t) \leqq \lambda_{1}$. Let $\delta_{1}=\min \left(\lambda_{1}, \delta / 2^{2}\right)$.

We continue this process inductively. Suppose, then, that n_{k-1} and δ_{k-1} have been determined and let $F_{k}=\left\{s \in S \mid d\left(s, S^{(1)}\right) \geqq \delta_{k-1}\right\}$. As before we see that F_{k} is a finite set so, given any $\epsilon_{k}>0$, we can find an integer $n_{k}>n_{k-1}$ such that $\left|f_{n_{k}}(s)\right| \leqq \epsilon_{k}$ for $s \in F_{k}$. The uniform continuity of $f_{n_{k}}$ on S yields a $\lambda_{k}>0$ such that $\left|f_{n_{k}}(s)-f_{n_{k}}(t)\right| \leqq \epsilon_{k}$ for $d(s, t) \leqq \lambda_{k}$. Let $\delta_{k}=\min \quad\left(\lambda_{k}\right.$, $\delta / 2^{k+1}$).

Let $u \in S \backslash S^{(1)}$ and let p be any positive integer. Since $\lim _{k \rightarrow \infty} \delta_{k}=0$ there exists a smallest integer k for which $d\left(u, S^{(1)}\right) \geqq \delta_{k}$. Denote this integer by k_{0}. Then, for $k \geqq k_{0}, d\left(u, S^{(1)}\right) \geqq \delta_{k}$ so $u \in F_{k}$ and hence $\left|f_{n_{k}}(u)\right| \leqq \epsilon_{k}$. By the compactness of $\{u\}$ and $S^{(1)}$ we can find a point $v \in S^{(1)}$ such that $d(u, v)=$
$d\left(u, S^{(1)}\right)$. Thus $d(u, v) \leqq \delta_{k}$ for $k=1,2, \ldots, k_{0}-1$. We now proceed to calculate a bound for $\left\|(1 / p) \sum_{k=1}^{p} f_{n_{k}}\right\|_{s}$.

First, suppose $p \leqq k_{0}-1$. Then,

$$
\left|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}(u)-\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}(v)\right| \leqq \frac{1}{p} \sum_{k=1}^{p}\left|f_{n_{k}}(u)-f_{n_{k}}(v)\right| \leqq \frac{1}{p} \sum_{k=1}^{p} \epsilon_{k}
$$

and thus

$$
\left|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}(u)\right| \leqq \frac{1}{p} \sum_{k=1}^{p} \epsilon_{k}+\left|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}(v)\right| \leqq \frac{1}{p} \sum_{k=1}^{p} \epsilon_{k}+\left\|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}\right\|_{S^{(1)}} .
$$

Next, suppose $p \geqq k_{0}$. Then,

$$
\begin{aligned}
& \left|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}(u)-\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}(v)\right| \leqq \frac{1}{p} \sum_{k=1}^{k_{0}-1}\left|f_{n_{k}}(u)-f_{n_{k}}(v)\right|+\frac{1}{p} \sum_{k=k_{0}}^{p}\left|f_{n_{k}}(u)\right| \\
& +\frac{1}{p} \sum_{k=k_{0}}^{p}\left|f_{n_{k}}(v)\right| \leqq \frac{1}{p} \sum_{k=1}^{k_{0}-1} \epsilon_{k}+\frac{1}{p} \sum_{k=k_{0}}^{p} \epsilon_{k}+\frac{1}{p} \sum_{k=k_{0}}^{p} f_{n_{k}}(v) \leqq \frac{1}{p} \sum_{k=1}^{p} \epsilon_{k}+\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}(v) .
\end{aligned}
$$

Hence

$$
\left|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}(u)\right| \leqq \frac{1}{p} \sum_{k=1}^{p} \epsilon_{k}+2\left|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}(v)\right| \leqq \frac{1}{p} \sum_{k=1}^{p} \epsilon_{k}+2\left|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}\right|_{S(1)} .
$$

We have

$$
\left|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}(u)\right| \leqq \frac{1}{p} \sum_{k=1}^{p} \epsilon_{k}+2\left\|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}\right\|_{S^{(1)}}
$$

for all $u \in S \backslash S^{(1)}$ and, obviously, for all $u \in S^{(1)}$ so we conclude that

$$
\begin{equation*}
\left\|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}\right\|_{S} \leqq \frac{1}{p} \sum_{k=1}^{p} \epsilon_{k}+2\left\|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k}}\right\|_{S^{(1)}} . \tag{1}
\end{equation*}
$$

If the restriction of $f_{n k}$ to $S^{(1)}$ is denoted by $g_{n_{k}}$ then

$$
g_{n_{k}} \xrightarrow{w} 0 \text { in } C\left(S^{(1)}\right) .
$$

By hypothesis there exists a subsequence $\left(g_{n_{k(i)}}\right)$ such that

$$
\left\|\frac{1}{p} \sum_{i=1}^{p} g_{n_{k(i)}}\right\|_{S(1)} \rightarrow 0
$$

Arguing as above, we find

$$
\begin{equation*}
\left\|\frac{1}{p} \sum_{k=1}^{p} f_{n_{k(i)}}\right\|_{S} \leqq \frac{1}{p} \sum_{i=1}^{p} \epsilon_{k_{i}}+2\left\|\frac{1}{p} \sum_{i=1}^{p} f_{n_{k(i)}}\right\|_{S^{(1)}} \tag{2}
\end{equation*}
$$

It suffices to choose $\epsilon_{\boldsymbol{k}}$ so that $\lim _{k \rightarrow \infty} \epsilon_{k}=0$ and to notice that

$$
\left\|(1 / p) \sum_{i=1}^{p} f_{n_{k}(i)}\right\| s_{s^{(1)}} \rightarrow 0
$$

in order to conclude $\left\|(1 / p) \sum_{i=1}^{p} f_{n_{k(i)}}\right\|_{s} \rightarrow 0$. This establishes the proposition.

The next proposition is essentially a generalization of the result of Schreier [6] and repeatedly uses some simple topological facts which we provide in the following lemmas.

Lemma 1. Let $\left(s_{n}\right),(n=1,2, \ldots)$, be a sequence of distinct points of S which converge to $s_{\infty} \in S$. Let O be any open set containing each s_{n} and s_{∞}. Let ϵ_{k} be a sequence of positive numbers such that $\epsilon_{k} \rightarrow 0$. Then, there is a subsequence $\left(s_{n_{k}}\right),(k=1,2, \ldots)$ of $\left(s_{n}\right)$ and a sequence of open discs O_{n} (centered at $s_{n_{k}}$) satisfying the following conditions:
(1) $n_{k} \neq n_{j} \Rightarrow O_{n_{k}} \cap O_{n_{j}}=\emptyset$;
(2) $O_{n_{k}} \subseteq O$ for all k;
(3) the radius $r_{n_{k}}$ of $O_{n_{k}}$ satisfies $r_{n_{k}} \leqq \epsilon_{k}$;
(4) $s_{\infty} \notin O_{n_{k}}$ for all k.

The proof is elementary.
Lemma 2. Let $\left(E_{n}\right),(n=1,2, \ldots)$, be a sequence of closed subsets of S such that:
(1) each $E_{n} \subseteq O_{n}$, where O_{n} is an open disc of radius $r_{n}>0$;
(2) $r_{n} \rightarrow 0$;
(3) the discs O_{n} are mutually disjoint;
(4) the centers x_{n} of the discs O_{n} converge to a point x.

Then $F=\cup_{n=1}^{\infty} E_{n} \cup\{x\}$ is a closed set in S.
Proof. Let $y \in S \backslash F$. Then there is a disc $D_{\delta}(y)$ and a disc $D_{\lambda}(x)$ such that $D_{\delta}(y) \cap D_{\lambda}(x)=\emptyset$. Take n_{0} such that $r_{n} \leqq \lambda / 4$ for $n \geqq n_{0}$ and take n_{1} such that $d\left(x, x_{n}\right) \leqq \lambda / 4$ for $n \geqq n_{1}$. Letting $n_{2}=\max \left(n_{0}, n_{1}\right)$ we have $O_{n} \subseteq D_{\lambda}(x)$ for all $n \geqq n_{2}$. Then $\bigcup_{n=1}^{n_{2}-1} E_{n}$ is a closed set not containing y so by normality we can find mutually disjoint open sets U, V containing $\cup_{n=1}^{n_{2}-1} E_{n}$ and y, respectively. Let $W=D_{\delta}(y) \cap V$. Then W is an open set containing y which does not meet F. Since y was an arbitrary point of $S \backslash F$, we conclude that $S \backslash F$ is open and hence F is closed.

Proposition 2. If $S^{(\omega)} \neq \emptyset$, then $C(S)$ does not have the Banach-Saks property.
Proof. Here, ω represents the first countable ordinal number so the condition $S^{(\omega)} \neq \emptyset$ is equivalent to $\bigcap_{i=1}^{\infty} S^{(i)} \neq 0$. This forces each $S^{(i)}$ to be infinite, so we can find a sequence of distinct points $\left(s_{i}\right),(i=1,2, \ldots)$, with s_{i} in $S^{(i)}$ for each i.

By compactness of S, the sequence $\left(s_{i}\right)$ has a limit point s_{∞}. Passing to a subsequence, if necessary, we may assume $s_{i} \rightarrow s_{\infty}$. Notice that passing to a subsequence does not alter the fact that s_{i} is in $S^{(i)}$, because $S^{(i)} \supseteq S^{(i+1)}$ for all i.

Let (ϵ_{k}) be any sequence of positive numbers converging to 0 . Using Lemma 1 with $O=S$ we obtain a subsequence of $\left(s_{n}\right)$ which we denote by $s(3, \infty)$, $s(4, \infty, \infty), s(5, \infty, \infty, \infty) \ldots$ and $\operatorname{discs} D(3, \infty), D(4, \infty, \infty) \ldots$ centered at these points, which satisfy the four conditions of Lemma 1 .

The point $s(3, \infty)$ is in $S^{(1)}$ so there is some sequence of points of S converging to $s(3, \infty)$. We may assume this sequence lies within $D(3, \infty)$. Using Lemma 1 with $O=D(3, \infty)$ we obtain a subsequence, which we denote by $s(3,4)$, $s(3,5), s(3,6) \ldots$ and discs $D(3,4), D(3,5) \ldots$ centered at these points satisfying the four conditions of Lemma 1.

Similarly, $s(4, \infty, \infty)$ is in $S^{(2)}$ so there is some sequence of points of $S^{(1)}$ which lie within $D(4, \infty, \infty)$ and converge to $s(4, \infty, \infty)$. Applying Lemma 1 with $O=D(4, \infty, \infty)$ we obtain the points $s(4,5, \infty), s(4,6, \infty), s(4,7, \infty) \ldots$ and discs $D(4,5, \infty), D(4,6, \infty) \ldots$ satisfying the conditions of Lemma 1 . Now, each $s(4, k, \infty)$ is in $S^{(1)}$ for $k=5,6,7, \ldots$ so in each $D(4, k, \infty)$ we may repeat the argument of the preceeding paragraph, thus obtaining discs $D(4, k, k+1), D(4, k, k+2) \ldots$ centered at points $s(4, k, k+1)$, $s(4, k, k+2) \ldots$ satisfying the four conditions of Lemma 1 .

In general, $s(n, \infty, \infty, \ldots, \infty)$ is in $S^{(n-2)}$ so, using Lemma 1 with $O=$ $D(n, \infty, \infty, \ldots, \infty)$ we can find $\operatorname{discs} D(n, n+j, \infty, \infty, \ldots, \infty),(j=1$, $2, \ldots)$, centered at points $s(n, n+j, \infty, \ldots, \infty),(j=1,2, \ldots)$, such that each $s(n, n+j, \infty, \ldots, \infty)$ belongs to $S^{(n-3)}, s(n, n+j, \infty, \ldots, \infty)$ converges to $s(n, \infty, \ldots, \infty)$ as $j \rightarrow \infty$, and such that these discs and points satisfy the conditions of Lemma 1. Note that each parenthesis $n, n+j, \infty$, $\infty, \ldots \infty$,) has $n-1$ entries. We can apply Lemma 1 to each disc $D(n, n+j$, $\infty, \ldots, \infty)$ to obtain subdiscs $D(n, n+j, n+j+k, \infty, \infty, \ldots, \infty)$, ($k=1,2, \ldots$), centered at points $s(n, n+j, n+j+k, \infty, \ldots, \infty)$ in $S^{(n-4)}$ such that these points converge to $s(n, n+j, \infty, \ldots, \infty)$. In other words, given a disc whose center lies in some $S^{(i)}$ we use Lemma 1 to construct a sequence of subdiscs whose centers are in $S^{(i-1)}$. Since we initially have a point in $S^{(n-2)}$, we can only repeat this process $n-2$ times. The method of indexing the discs indicates the inclusion relations between the discs in the sense that in the $\operatorname{disc} D(n, \infty, \infty, \infty, \ldots, \infty)$
(1) $D\left(n, m_{1}, m_{2}, \ldots, m_{k}, \infty, \infty, \ldots, \infty\right)$ contains all thus constructed discs whose associated parentheses begin with $n, m_{1}, m_{2}, \ldots, m_{k}$, and only these discs. We summarize the other properties of these discs as follows:
(2) each parenthesis has length $n-1$;
(3) the entries in each parenthesis form a strictly increasing sequence;
(4) if $n, m_{1}, m_{2}, \ldots, m_{k}$ are fixed, then the discs
$D\left(n, m_{1}, \ldots, m_{k}, m_{k}+j, \infty, \ldots, \infty\right),(j=1,2, \ldots)$, with centers $s\left(n, m_{1}\right.$, $\left.\ldots, m_{k}, m_{k}+j, \infty, \ldots, \infty\right)$ satisfy the four conditions of Lemma 1.

Let $D\left(n, m_{1}, m_{2}, \ldots, m_{n-2}\right)$ represent the general subdisc constructed as above and then let $K\left(n, m_{1}, m_{2}, \ldots, m_{n-2}\right)$ be the set of centers of all thus constructed subdiscs, including $D\left(n, m_{1}, m_{2}, \ldots, m_{n-2}\right)$, contained in $D(n$, $\left.m_{1}, \ldots, m_{n-2}\right)$. We now prove that each $K\left(n, m_{1}, m_{2}, \ldots, m_{n-2}\right)$ is closed in S. To this end, suppose all the entries in ($n, m_{1}, m_{2}, \ldots, m_{n-2}$) are finite. Then $K\left(n, m_{1}, \ldots, m_{n-2}\right)$ is just the single point $s\left(n, m_{1}, \ldots, m_{n-2}\right)$ and is obviously closed. Now suppose some of the entries ($n, m_{1}, m_{2}, \ldots, m_{n-2}$) are ∞ and let m_{k} denote the last finite entry. To show $K\left(n, m_{1}, \ldots, m_{k}, \infty, \ldots, \infty\right)$ is
closed, it suffices by (4) and Lemma 2, to show each $K\left(n, m_{1}, \ldots, m_{k}, m_{k}+j\right.$, $\infty, \ldots, \infty)$ is closed. By (4) and Lemma 2 we will have each $K\left(n, m_{1}, \ldots\right.$, $\left.m_{k}, m_{k}+j, \infty, \ldots, \infty\right)$ closed if we know that each $K\left(n, m_{1}, \ldots, m_{k}, m_{k}+j\right.$, $\left.m_{k}+j+i, \infty, \ldots, \infty\right)$ is closed. After a finite number of such reductions we find that it is sufficient to prove that each $K\left(n, m_{1}, \ldots, m_{n-2}\right)$ is closed if each entry in ($n, m_{1}, \ldots, m_{n-2}$) is finite. But this has already been established.

Now, let Z_{i} be the set of centers of all discs constructed as above in whose associated parentheses the integer i occurs. Notice that

$$
Z_{i} \subseteq \bigcup_{k=3}^{i} D(k, \infty, \ldots, \infty)
$$

For $3 \leqq k<i$ let $L_{p}{ }^{k}$ denote the finite union of all possible $K\left(k, m_{1}, m_{2}, \ldots\right.$, $\left.m_{p-2}, i, \infty, \infty, \ldots, \infty\right)$ where i occurs in the p th position. Let $O_{p}{ }^{k}$ be the corresponding union of all $D\left(k, m_{1}, m_{2}, \ldots, m_{p-2}, i, \infty, \ldots, \infty\right)$. The preceeding paragraph allows us to conclude that $L_{p}{ }^{k}$ is closed for $3 \leqq k<i$, so, since $Z_{i} \cap D(k, \infty, \ldots, \infty)=\bigcup_{p=2}^{k-1} L_{p}{ }^{k}$ for $3 \leqq k<i$ and $Z_{i} \cap D(i, \infty, \ldots$, $\infty)=K(i, \infty, \ldots, \infty)$ we see that $Z_{i} \cap D(k, \infty, \ldots, \infty)$ is closed for $k=3,4, \ldots, i$ and hence $Z_{i}=\bigcup_{k=3}^{i}\left\{Z_{i} \cap D(k, \infty, \ldots, \infty)\right\}$ is closed in S for every $i \geqq 3$.

Let

$$
U_{i}=D(i, \infty, \ldots, \infty) \cup\left\{\bigcup_{k=3}^{i-1} \quad \bigcup_{p=2}^{k-1} O_{p}^{k}\right\}
$$

Then U_{i} is an open set containing Z_{i} for $i \geqq 3$. Therefore, $U_{i}{ }^{c}$ is closed and $U_{i}{ }^{c} \cap Z_{i}=\emptyset$. By Urysohn's lemma, we can find f_{i} in $C(S)$ such that $f_{i}\left(Z_{i}\right)=$ $1, f_{i}\left(U_{i}{ }^{c}\right)=0$, and $0 \leqq f_{i} \leqq 1$ for every $i \geqq 3$. We now proceed to show that

$$
f_{i} \xrightarrow{w} 0 \text { in } C(S)
$$

Since $\left\|f_{i}\right\| \leqq 1$ for $i \geqq 3$, we need only show [$\left.3, \mathrm{p} .265\right]$ that $f_{i}(s)$ converges to 0 for every s in S. If a point s lies within no $D(i, \infty, \infty, \ldots, \infty)$ then, in particular, s is in $U_{i}{ }^{c}$ for $i \geqq 3$ and thus $f_{i}(s)=0$ for $i \geqq 3$. So we assume s is a point lying in some $\operatorname{disc} D\left(i_{0}, \infty, \infty, \ldots, \infty\right)$. Let $D\left(i_{0}, m_{1}, m_{2}, \ldots, m_{i_{0}-2}\right)$ be the smallest subdisc of $D\left(i_{0}, \infty, \ldots, \infty\right)$ in which s lies and let m_{k} be the last finite entry in ($i_{0}, m_{1}, m_{2}, \ldots, m_{i_{0}-2}$). Then for every $i>m_{k}$ we see, by property (1), that amongst all subdiscs of $D\left(i_{0}, \infty, \ldots, \infty\right)$ whose associated parentheses contain i, none contain $D\left(i_{0}, m_{1}, m_{2}, \ldots, m_{i_{0}-2}\right)$. Also, by the way in which $D\left(i_{0}, m_{1}, m_{2}, \ldots, m_{i_{0}-2}\right)$ was chosen, s does not lie in any subdisc of it whose associated parenthesis contains an i. Thus, for $i>m_{k}, s$ is in $U_{i}{ }^{c}$ and hence $f_{i}(s) \rightarrow 0$.

The sequence $\left(f_{i}\right),(i=3,4, \ldots)$, has been shown to converge weakly to 0 . We now show that there is no subsequence $\left(f_{n_{k}}\right)$ with $\left\|(1 / p) \sum_{1}^{p} f_{n_{k}}\right\|$ converging to 0 .

Take $n_{1}, n_{2}, n_{3}, \ldots$ to be any strictly increasing sequence of natural numbers and let k be any natural number. Since $n_{k+1} \geqq k+1$ all k numbers $n_{k+1}, n_{k+2}, \ldots, n_{2 k}$ occur simultaneously in at least one parenthesis (m_{1}, m_{2}, $\left.\ldots, m_{m_{1-1}}\right)$ constructed above. Let $s_{0}=s\left(m_{1}, m_{2}, \ldots, m_{m 1-1}\right)$. Then s_{0} is in $Z_{n j}$ for $k+1 \leqq j \leqq 2 k$ and hence $f_{n j}\left(s_{0}\right)=1$ for $k+1 \leqq j \leqq 2 k$. Thus

$$
\left\|\frac{1}{2 k} \sum_{j=1}^{2 k} f_{n_{j}}\right\| \geqq\left|\frac{1}{2 k} \sum_{j=1}^{2 k} f_{n_{j}}\left(s_{0}\right)\right| \geqq \frac{1}{2 k} \sum_{j=k+1}^{2 k} f_{n_{j}}\left(s_{0}\right)=\frac{1}{2}
$$

so

$$
\varlimsup_{p \rightarrow \infty}\left\|\frac{1}{p} \sum_{j=1}^{p} f_{n_{j}}\right\| \geqq \frac{1}{2} .
$$

This concludes the proof.
It has been brought to the author's attention by a personal communication that, using less direct methods than those employed here, the main result oi this paper remains true when S is a non-metrizable compact Hausdorff space.

References

1. A. Baernstein, On reflexivity and summability, Studia Math. 42 (1972), 91-94.
2. Banach et Saks, Sur la convergence forte dans les champs L^{p}, Studia Math. 2 (1930), 51-57.
3. N. Dunford and J. T. Schwartz, Linear operators (Interscience, New York-London, 1967).
4. S. Kakutani, Weak convergence in uniformly convex spaces, Tôhoku Math. J. 45 (1938), 188-193.
5. T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963), 53-57.
6. J. Schreier, Ein Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), 58-62.
7. W. Sierpinski, General topology (University of Toronto Press, Toronto, 1961).
8. I. Singer, A remark on reflexivity and summability, Studia Math. 26 (1965), 113-114.
9. W. Szlenk, Sur les suites faiblement convergentes dans l'espace L, Studia Math. 25 (1965), 337-341.
10. D. Waterman, Reflexivity and summability. II, Studia Math. 32 (1969), 61-63.

University of California, Irvine,
Irvine, California

