A REVERSE HÖLDER TYPE INEQUALITY FOR THE LOGARITHMIC MEAN AND GENERALIZATIONS

JOHN MALONEY ${ }^{1}$, JACK HEIDEL ${ }^{1}$ and JOSIP PEC̆ARIĆ ${ }^{2}$

(Received 4 October 1995; revised 6 July 1998)

Abstract

An inequality involving the logarithmic mean is established. Specifically, we show that $$
L(c, x)^{\frac{\ln (c, c x)}{\ln (c / a)}} L(x, a)^{\frac{\ln (x / f)}{\ln (l a)}}<L(c, a),
$$ where $0<a<x<c$ and $L(x, y)=\frac{y-x}{\ln x-\ln y}, 0<x<y$. Then several generalizations are given.

1. Introduction

The logarithmic mean,

$$
L(x, y)=\frac{y-x}{\ln x-\ln y}, \quad 0<x<y
$$

has many applications in statistics and economics [9]. It is well known, and easily established $[1,3,7,10]$ that

$$
G(x, y) \leq L(y, x) \leq A(y, x)
$$

where $G(y, x)=\sqrt{x y}$ is the geometric mean and $A(x, y)=(x+y) / 2$ is the arithmetic mean. In fact, writing $A(x, y)=M_{1}(y, x)$, where

$$
M_{p}(y, x)=\left(\frac{y^{p}+x^{p}}{2}\right)^{1 / p}
$$

[^0]it is known [7] that $M_{p_{1}}(y, x) \leq M_{p_{2}}(y, x)$ for $p_{1} \leq p_{2}$. It is also known [4-6,9, 12] that
$$
L(y, x) \leq M_{1 / 3}(y, x)
$$

On the other hand, Hölder's inequality states that

$$
M_{1}\left(y_{1} y_{2}, x_{1} x_{2}\right) \leq M_{p}\left(y_{1}, x_{1}\right) M_{q}\left(y_{2}, x_{2}\right)
$$

if $1 / p+1 / q=1$ with $p, q>0$. It is thus curious that the logarithmic mean $L(y, x)$ satisfies the inequality

$$
\begin{equation*}
L(c, x)^{\frac{\ln (c(x)}{\ln (c / a)}} L(x, a)^{\frac{\ln (x / a)}{\ln (c / a)}}<L(c, a), \tag{1}
\end{equation*}
$$

where $0<a<x<c$ and it is noted that

$$
\frac{\ln (c / x)}{\ln (c / a)}+\frac{\ln (x / a)}{\ln (c / a)}=1
$$

It is the reverse Hölder type inequality (1) which is the subject of this note and will be established below. Relation (1) arises in a parameter identification problem for a fractal Michaelis-Mention equation [8].

In the following, use will be made of Jensen's inequality [11] which we now state for the reader's convenience.
JENSEN'S INEQUALITY. If,
(1) $w_{i}>0 \forall i=1,2, \ldots, n$,
(2) $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in R$,
(3) $\Phi:[0, \infty) \rightarrow R$ is a strictly convex function,
then

$$
\left(\sum_{i=1}^{n} w_{i}\right) \Phi\left(\frac{\sum_{i=1}^{n} w_{i} \alpha_{i}}{\sum_{i=1}^{n} w_{i}}\right) \leq \sum_{i=1}^{n} w_{i} \Phi\left(\alpha_{i}\right)
$$

and the inequality is strict unless $\alpha_{0}=\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}$.

2. Main result

LEmma 2.1. Let $g(u)=\frac{\ln u}{u-1}$, where $g(1)=1$. Then for all $u>0$
(i) g is a strictly decreasing function of u,
(ii) $\lim _{u \rightarrow 0^{+}} g(u)=\infty, \lim _{u \rightarrow \infty} g(u)=0, \lim _{u \rightarrow 1} g(u)=1$,
(iii) $g(1 / u)=u g(u)$.

Proof.

$$
g^{\prime}(u)=\frac{1-(1 / u)-\ln u}{(1-u)^{2}}
$$

Set $z(u)=1-(1 / u)-\ln u$. Then $z^{\prime}(u)=(1 / u)(1 / u-1)$ which is positive for $0<u<1$ and negative for $u>1$. Thus $z(u)$ increases from $-\infty$ at $u=0$ to 0 at $u=1$ and then decreases to $-\infty$ as u tends to ∞. Thus $g^{\prime}(u)$ is negative except at $u=1$. This establishes (i). The limits in (ii) can be computed in the usual fashion using L'Hôpital's rule. For (iii) we have

$$
g(1 / u)=\frac{\ln (1 / u)}{1 / u-1}=u g(u)
$$

Lemma 2.2. Let $f(x)=x-\ln x$. Then
(i) f is decreasing on $(0,1)$ and increasing on $(1, \infty)$,
(ii) $\lim _{x \rightarrow 0^{+}} f(x)=\infty, f(1)=1$ and $\lim _{x \rightarrow \infty} f(x)=\infty$,
(iii) if $\alpha>0, x>0$ then $f(\alpha x)=f(x)$ for $x=g(\alpha)$ so that $f(\alpha g(\alpha))=$ $f(g(\alpha))$.

Proof. Parts (i) and (ii) can be established in the usual way. For (iii) we have

$$
f(\alpha x)=f(x) \Rightarrow \alpha x-\ln (\alpha x)=x-\ln x \Rightarrow(\alpha-1) x=\ln \alpha \Rightarrow x=g(\alpha)
$$

Let $y(x)$ denote the left-hand side of (1), and set $\alpha=\ln c-\ln a$. Note that $y(x)>0$ $\forall a<x<c$. Then

$$
\begin{aligned}
\alpha \ln y= & {[\ln c-\ln x][\ln (c-x)-\ln (\ln c-\ln x)] } \\
& +[\ln x-\ln a][\ln (x-a)-\ln (\ln x-\ln a)]
\end{aligned}
$$

and so

$$
\begin{aligned}
\frac{\alpha y^{\prime}}{y}= & -\frac{1}{x}[\ln (c-x)-\ln (\ln c-\ln x)]+[\ln c-\ln x]\left[\frac{-1}{c-x}-\frac{-1 / x}{\ln c-\ln x}\right] \\
& +\frac{1}{x}[\ln (x-a)-\ln (\ln x-\ln a)]+[\ln x-\ln a]\left[\frac{1}{x-a}-\frac{1 / x}{\ln x-\ln a}\right] \\
= & \frac{1}{x}\left[\ln \left[\frac{x-a}{\ln x-\ln a}\right]\right]+\left[\frac{\ln x-\ln a}{x-a}\right]-\frac{1}{x} \\
& +\frac{1}{x}-\frac{\ln c-\ln x}{c-x}-\frac{1}{x} \ln \left[\frac{c-x}{\ln c-\ln x}\right] \\
= & \frac{1}{x} \ln \left[x \frac{a / x-1}{\ln (a / x)}\right]+\frac{1}{x} \frac{\ln (a / x)}{a / x-1}-\frac{1}{x} \frac{\ln (c / x)}{c / x-1}-\frac{1}{x} \ln \left[x \frac{c / x-1}{\ln (c / x)}\right] \\
= & \frac{1}{x}[f(g(a / x))-f(g(c / x))]=\frac{1}{x} h(x) .
\end{aligned}
$$

Now $f(g(a / x))$ is an increasing function of x while $f(g(c / x))$ is a decreasing function of x so that $h(x)$ is an increasing function of x. Clearly $\alpha y^{\prime} / y$ is zero at exactly one point which implies that y^{\prime} is zero at exactly one point.

Lemma 2.3. y^{\prime} is zero at the point $x=\sqrt{a c}$.
PROOF. Now $f(g(c / x))=f(g(a / x))=f\left(\frac{a}{x} g(a / x)\right)$, from Lemma 2.3 (iii), so that $g(c / x)=(a / x) g(a / x)=g(x / a)$ by Lemma 2.2 (iii). Thus $c / x=x / a$ which gives $x=\sqrt{a c}$.

TheOrem 2.4. For all values of $0<a<x<c$

$$
\begin{equation*}
\left(\frac{c-x}{\ln c-\ln x}\right)^{\ln c-\ln x}\left(\frac{x-a}{\ln x-\ln a}\right)^{\ln x-\ln a}<\left(\frac{c-a}{\ln c-\ln a}\right)^{\ln c-\ln a} \tag{2}
\end{equation*}
$$

Proof. The result holds if and only if

$$
\begin{aligned}
&(\ln c-\ln x) \ln \left(\frac{c-x}{\ln c-\ln x}\right)+(\ln x-\ln a) \ln \left(\frac{x-a}{\ln x-\ln a}\right) \\
&<(\ln c-\ln a) \ln \left(\frac{c-a}{\ln c-\ln a}\right)
\end{aligned}
$$

Setting $x_{0}=a, x_{1}=x, x_{2}=c$ and letting $w_{i}=\ln x_{i}-\ln x_{i-1}, \alpha_{i}=\frac{x_{i}-x_{i-1}}{\ln x_{i}-\ln x_{i-1}}$ and $\Phi(x)=-\ln x$, the result follows from the Jensen's inequality with \leq rather than $<$.

But

$$
\alpha y^{\prime}=\frac{y}{x}[f(g(a / x))-f(g(c / x))]
$$

so that y^{\prime} is negative on $[a, \sqrt{a c}]$ and positive on $[\sqrt{a c}, c]$. Strict inequality in Theorem 2.4 now follows from the previous results since the derivative is strictly negative on $[a, \sqrt{a c}]$ and positive on the interval $[\sqrt{a c}, c]$. Thus equality holds only at a and c.

3. Convexity

THEOREM 3.1. The function

$$
\begin{equation*}
y(x)=\left(\frac{c-x}{\ln c-\ln x}\right)^{\frac{\ln c-\ln x}{\ln c-\ln a}}\left(\frac{x-a}{\ln x-\ln a}\right)^{\frac{\ln x-\ln a}{\ln c-\ln \alpha}} \tag{3}
\end{equation*}
$$

is log-convex, and hence convex, on the interval $[a, \sqrt{a c}]$.

PROOF. Let $w=\alpha \ln y$; then $w^{\prime}=\alpha y^{\prime} / y$ and hence from (2) $x w^{\prime}=f(g(a / x))-$ $f(g(c / x))$ is an increasing function so that $w^{\prime}+x w^{\prime \prime} \geq 0$. Thus $x w^{\prime \prime} \geq-w^{\prime}$. Now on $[a, \sqrt{a c}], w^{\prime} \leq 0$ and so $w^{\prime \prime} \geq 0$ so that w is convex (and hence log-convex) on the interval $[a, \sqrt{a c}]$.

Figure 1. Graph of equation (1) with $a=1, c=9$.
Figure 1 indicates that the function is also probably convex on the interval $[\sqrt{a c}, c]$. However we have not been able to establish this even with the aid of the next result.

Lemma 3.2. The curve

$$
y(x)=\left(\frac{c-x}{\ln c-\ln x}\right)^{\frac{\ln c-\ln x}{\ln c-\ln a}}\left(\frac{x-a}{\ln x-\ln a}\right)^{\frac{\ln x-\ln a}{\ln c-\ln a}}
$$

is invariant under the transformation $x \rightarrow a c / x$.
PROOF.

$$
\begin{align*}
z(x) & =\left(\frac{c-a c / x}{\ln c-\ln (a c / x)}\right)^{\frac{\ln c-\ln (a c / x)}{\ln c-\ln a}}\left(\frac{a c / x-a}{\ln (a c / x)-\ln a}\right)^{\frac{\ln (a c /()-\ln a}{\ln c-\ln a}} \\
& =\left(\frac{c(x-a) / x}{\ln c-\ln a-\ln c+\ln x}\right)^{\frac{\ln c-\ln (a c)+\ln x}{\ln c-\ln a}}\left(\frac{a(c-x) / x}{\ln (a c)-\ln x-\ln a}\right)^{\frac{\ln (a c)-\ln x-\ln a}{\ln c-\ln a}} \\
& =\left(\frac{c(x-a) / x}{\ln x-\ln a}\right)^{\frac{\ln x-\ln a}{\ln c-\ln a}}\left(\frac{a(c-x) / x}{\ln c-\ln x}\right)^{\frac{\ln c-\ln x}{\ln c-\ln a} \ln (c)} \\
& =(c / x)^{\frac{\ln x-\ln a}{\ln c-\ln a}}(a / x)^{\frac{\ln c-\ln x}{\ln c-\ln a}} y(x) . \tag{4}
\end{align*}
$$

Now,

$$
\frac{\ln x-\ln a}{\ln c-\ln a}+\frac{\ln c-\ln x}{\ln c-\ln a}=1
$$

Thus, from (4)

$$
\begin{aligned}
&(c / x)^{\frac{\ln x-\ln a}{\ln c-\ln \alpha}(a / x)^{\frac{\ln c-\ln x}{\ln c-\ln a}}}=(c / x)^{\frac{\ln x-\ln a}{\ln c-\ln a}}(a / x)^{1-\frac{\ln x-\ln a}{\ln c-\ln a}} \\
&=\frac{(c / x)^{\frac{\ln x-\ln a}{\ln -\ln \alpha}}}{(a / x)^{\frac{\ln x}{} \ln a} \frac{a}{x}} \\
&=(a / x)(c / a)^{\ln (x / a) / \ln (c / a)} \\
&=\frac{a}{x} \frac{x}{a}=1 \quad \text { since } b^{x}=e^{x \ln b}
\end{aligned}
$$

Thus $z(x)=y(x)$ and the lemma is proved.

4. Generalizations and applications

The following theorems follow directly from Jensen's inequality and are generalizations of Theorem 2.1.

Theorem 4.1. If
(1) $\Phi:[0, \infty) \rightarrow R$ is a function,
(2) $f, g:[0, \infty) \rightarrow R$ are increasing functions,
(3) $A_{0} \leq A_{1} \leq \cdots \leq A_{n}$,
then
(1) if Φ is convex then

$$
\begin{aligned}
& \left(g\left(A_{n}\right)-g\left(A_{0}\right)\right) \Phi\left(\frac{f\left(A_{n}\right)-f\left(A_{0}\right)}{g\left(A_{n}\right)-g\left(A_{0}\right)}\right) \\
& \quad \leq \sum_{i=1}^{n}\left(g\left(A_{i}\right)-g\left(A_{i-1}\right)\right) \Phi\left(\frac{f\left(A_{i}\right)-f\left(A_{i-1}\right)}{g\left(A_{i}\right)-g\left(A_{i-1}\right)}\right)
\end{aligned}
$$

(2) if Φ is concave then

$$
\begin{aligned}
& \left(g\left(A_{n}\right)-g\left(A_{0}\right)\right) \Phi\left(\frac{f\left(A_{n}\right)-f\left(A_{0}\right)}{g\left(A_{n}\right)-g\left(A_{0}\right)}\right) \\
& \quad \geq \sum_{i=1}^{n}\left(g\left(A_{i}\right)-g\left(A_{i-1}\right)\right) \Phi\left(\frac{f\left(A_{i}\right)-f\left(A_{i-1}\right)}{g\left(A_{i}\right)-g\left(A_{i-1}\right)}\right)
\end{aligned}
$$

(3) if Φ is log-convex then

$$
\Phi\left(\frac{f\left(A_{n}\right)-f\left(A_{0}\right)}{g\left(A_{n}\right)-g\left(A_{0}\right)}\right)^{\left(g\left(A_{n}\right)-g\left(A_{0}\right)\right)} \leq \prod_{i=1}^{n} \Phi\left(\frac{f\left(A_{i}\right)-f\left(A_{i-1}\right)}{g\left(A_{i}\right)-g\left(A_{i-1}\right)}\right)^{\left(g\left(A_{i}\right)-g\left(A_{i-1}\right)\right)}
$$

(4) if Φ is log-concave then

$$
\Phi\left(\frac{f\left(A_{n}\right)-f\left(A_{0}\right)}{g\left(A_{n}\right)-g\left(A_{0}\right)}\right)^{\left(g\left(A_{n}\right)-g\left(A_{0}\right)\right)} \geq \prod_{i=1}^{n} \Phi\left(\frac{f\left(A_{i}\right)-f\left(A_{i-1}\right)}{g\left(A_{i}\right)-g\left(A_{i-1}\right)}\right)^{\left(g\left(A_{i}\right)-g\left(A_{i-1}\right)\right)}
$$

Proof. In Jensen's inequality set $w_{i}=g\left(A_{i}\right)-g\left(A_{i-1}\right)$ and $\alpha_{i}=\frac{f\left(A_{i}\right)-f\left(A_{i-1}\right)}{g\left(A_{i}\right)-g\left(A_{i-1}\right)}$ and the result follows.

As a first application let $M, N: R \rightarrow R$ be differentiable functions with N strictly monotone. Given any two numbers a and b, there is a number c, according to the mean value theorem, such that

$$
\frac{M(b)-M(a)}{N(b)-N(a)}=\frac{M^{\prime}(c)}{N^{\prime}(c)}
$$

for some $c, a<c<b$. If c is uniquely determined then it is called the (M.N) mean-value mean of a and b [2]. In this case let H be the inverse of M^{\prime} / N^{\prime} and write

$$
c=H\left(\frac{M(b)-M(a)}{N(b)-N(a)}\right) .
$$

If M and N are both increasing and H is either log-convex or log-concave, we can apply one of the inequalities in Theorem 4.1 to write

$$
H\left(\frac{M\left(A_{n}\right)-M\left(A_{0}\right)}{N\left(A_{n}\right)-N\left(A_{0}\right)}\right) \leq \prod_{i=1}^{n} H\left(\frac{M\left(A_{i}\right)-M\left(A_{i-1}\right)}{N\left(A_{i}\right)-N\left(A_{i-1}\right)}\right)^{\frac{N\left(A_{i}\right)-N\left(A_{i-1}\right)}{N\left(A_{n}\right)-N\left(A_{0}\right)}}
$$

or

$$
H\left(\frac{M\left(A_{n}\right)-M\left(A_{0}\right)}{N\left(A_{n}\right)-N\left(A_{0}\right)}\right) \geq \prod_{i=1}^{n} H\left(\frac{M\left(A_{i}\right)-M\left(A_{i-1}\right)}{N\left(A_{i}\right)-N\left(A_{i-1}\right)}\right)^{\frac{N\left(A_{i}\right)-N\left(A_{i-1}\right)}{N\left(A_{n}\right)-N\left(A_{0}\right)}}
$$

where we have made the associations that $\Phi=h, f=M, g=N, A_{n}=b, A_{0}=a$.
Now specializing to the case of $\Phi(x)=x$ (log-concave Φ) in Theorem 4.1 we obtain

$$
\frac{f\left(A_{n}\right)-f\left(A_{0}\right)}{g\left(A_{n}\right)-g\left(A_{0}\right)} \geq \prod_{i=1}^{n}\left(\frac{f\left(A_{i}\right)-f\left(A_{i-1}\right)}{g\left(A_{i}\right)-g\left(A_{i-1}\right)}\right)^{\frac{g\left(A_{i}\right)-g\left(A_{i-1}\right)}{g\left(A_{n}\right)-g\left(A_{0}\right)}}
$$

and interchanging f and g we can write

$$
\frac{f\left(A_{n}\right)-f\left(A_{0}\right)}{g\left(A_{n}\right)-g\left(A_{0}\right)} \leq \prod_{i=1}^{n}\left(\frac{f\left(A_{i}\right)-f\left(A_{i-1}\right)}{g\left(A_{i}\right)-g\left(A_{i-1}\right)}\right)^{\frac{\frac{\left(A_{i}\right)-f\left(A_{i-1}\right)}{f\left(A_{n}\right)-f\left(A_{0}\right)}}{}} .
$$

From these expressions we can obtain inequalities for Stolarsky's $[2,13]$ extended mean value

$$
E_{r, s}(a, b)=\left(\frac{r\left(a^{s}-b^{s}\right)}{s\left(a^{r}-b^{r}\right)}\right)^{\frac{1}{s-r}}
$$

by setting $f(x)=x^{s} / s, g(x)=x^{r} / r, A_{n}=b, A_{0}=a$ and then raising both sides to the power $1 /(s-r)$. For $r s>0$

$$
\begin{aligned}
\left(\frac{b^{s}-u^{s}}{b^{r}-u^{r}}\right)^{\frac{b^{r}-u^{r}}{b^{r}-a^{r}}}\left(\frac{u^{s}-a^{s}}{u^{r}-a^{r}}\right)^{\frac{r^{r^{\prime}-a^{r}}}{b^{r}-a^{r}}} & \leq \frac{b^{s}-a^{s}}{b^{r}-a^{r}} \\
& \leq\left(\frac{b^{s}-u^{s}}{b^{r}-u^{r}}\right)^{\frac{b^{s}-u^{s}}{b^{r}-a^{s}}}\left(\frac{u^{s}-a^{s}}{u^{r}-a^{r}}\right)^{\frac{u^{s}-a^{s}}{b^{s}-a^{s}}}
\end{aligned}
$$

where $a<u<b$.
If $r s<0, f(x)=x^{s} / s$ and $g(x)=x^{r} / r$ are still both increasing functions and we have a similar inequality

$$
\begin{aligned}
\left(\frac{r\left(b^{s}-u^{s}\right)}{s\left(b^{r}-u^{r}\right)}\right)^{\frac{b^{r}-u^{r}}{b^{r}-a^{r}}}\left(\frac{r\left(u^{s}-a^{s}\right)}{s\left(u^{r}-a^{r}\right)}\right)^{\frac{u^{r}-a^{r}}{b^{r}-a^{r}}} & \leq \frac{r\left(b^{s}-a^{s}\right)}{s\left(b^{r}-a^{r}\right)} \\
& \leq\left(\frac{r\left(b^{s}-u^{s}\right)}{s\left(b^{r}-u^{r}\right)}\right)^{\frac{b^{s}-u^{s}}{b^{r}-a^{s}}}\left(\frac{r\left(u^{s}-a^{s}\right)}{s\left(u^{r}-a^{r}\right)}\right)^{\frac{u^{s}-a^{s}}{b^{s}-a^{s}}}
\end{aligned}
$$

where it is now necessary to include r / s or else reverse the inequality.
A further application is obtained by setting $f(x)=x$ and $g(x)=\ln x$ above to obtain

$$
\left(\frac{A_{n}-A_{0}}{\ln \left(A_{n}\right)-\ln \left(A_{0}\right)}\right)^{\ln \left(A_{n}\right)-\ln \left(A_{0}\right)} \geq \prod_{i=1}^{n}\left(\frac{A_{i}-A_{i-1}}{\ln \left(A_{i}\right)-\ln \left(A_{i-1}\right)}\right)^{\ln \left(A_{i}\right)-\ln \left(A_{i-1}\right)}
$$

and

$$
\left(\frac{A_{n}-A_{0}}{\ln \left(A_{n}\right)-\ln \left(A_{o}\right)}\right)^{A_{n}-A_{0}} \leq \prod_{i=1}^{n}\left(\frac{A_{i}-A_{i-1}}{\ln \left(A_{i}\right)-\ln \left(A_{i-1}\right)}\right)^{A_{i}-A_{i-1}}
$$

These two inequalities provide a direct generalization and converse to the main inequality (2) discussed in this paper.

References

[1] E. F. Beckenbach and R. Bellman, Inequalities, second ed. (Springer, Berlin, 1965).
[2] P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and their inequalities (D. Reidel Publishing Co., Dordrecht, 1988).
[3] F. Burk, "By all means", Amer. Math. Monthly 92 (1985) 50.
[4] B. C. Carlson, "The logarithmic mean", Amer. Math. Monthly 79 (1972) 615-618.
[5] W. E. Diewart, "Superlative index numbers and consistency in aggregation", Econometrika 46 (1978) 883-900.
[6] H. Van Haeringen, "Convex fuzzy sets, unimodal functions, and inequalities for the logarithmic mean", Delft Progress Report 8 (1983) 173-179.
[7] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities (Cambridge University Press, Great Britain, 1967).
[8] J. Heidel and J. Maloney, "An analysis of a fractal Michaelis-Menton equation", J. Austral. Math. Soc. Ser. B , 41 (2000) 410-422.
[9] G. Lorenzen, "Log-ratios and the logarithmic mean", Stat. Papers 30 (1989) 61-75.
[10] D. S. Mitrinović, Analytic inequalities (Springer, Berlin, 1970).
[11] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and new inequalities in analysis (Kluwer Academic Publishers, Dordrecht, 1993).
[12] D. Ruthing, "Eine Allgemeine Logarithmische Ungleichung", El. Math. 41 (1996) 14-16.
[13] K. B. Stolarsky, "The power and generalized logarithmic means", Amer. Math. Monthly 87 (1980) 545-548.

[^0]: ${ }^{1}$ Department of Mathematics, University of Nebraska at Omaha, Omaha Nebraska 68182, USA
 ${ }^{2}$ Faculty of Textile Technology, Zagreb Croatia
 (c) Australian Mathematical Society 2000, Serial-fee code 0334-2700/00

