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Abstract

In this paper we investigate the ‘local’properties of a random mapping model, T D̂
n , which

maps the set {1, 2, . . . , n} into itself. The random mapping T D̂
n , which was introduced

in a companion paper (Hansen and Jaworski (2008)), is constructed using a collection of
exchangeable random variables D̂1, . . . , D̂n which satisfy

∑n
i=1 D̂i = n. In the random

digraph, GD̂
n , which represents the mapping T D̂

n , the in-degree sequence for the vertices
is given by the variables D̂1, D̂2, . . . , D̂n, and, in some sense, GD̂

n can be viewed as an
analogue of the general independent degree models from random graph theory. By local
properties we mean the distributions of random mapping characteristics related to a given
vertex v of GD̂

n —for example, the numbers of predecessors and successors of v in GD̂
n .

We show that the distribution of several variables associated with the local structure of
GD̂

n can be expressed in terms of expectations of simple functions of D̂1, D̂2, . . . , D̂n. We
also consider two special examples of T D̂

n which correspond to random mappings with
preferential and anti-preferential attachment, and determine, for these examples, exact
and asymptotic distributions for the local structure variables considered in this paper.
These distributions are also of independent interest.
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1. Introduction

The study of random mapping models was initiated independently by several authors in the
1950s (see the companion paper [9] and the references therein) and the properties of these
models have received much attention in the literature. In particular, these models have been
useful as models for epidemic processes, and have natural applications in cryptology (see, for
example, [3], [4], [7], [8], [12], [13], [18], [20], and [21]). To date, the most widely studied
models have been special cases of a general model, denoted by Tp(n), which can be defined
as follows. Let [n] denote the set of integers {1, 2, . . . , n}, and let Mn denote the set of all
mappings from [n] into [n]. For each n ≥ 1, let p(n) = {pij(n)}n×n be an array such that
pij(n) ≥ 0 for 1 ≤ i, j ≤ n and

∑n
j=1 pij(n) = 1 for every 1 ≤ i ≤ n, and let Xn

1 , Xn
2 , . . . , Xn

n

be independent random variables such that Pr{Xn
i = j} = pij(n) for all 1 ≤ i, j ≤ n. Then the

random mapping Tp(n) : [n] → [n] is defined (in terms of the variables Xn
1 , Xn

2 , . . . , Xn
n) by

Tp(n)(i) = j if and only if Xn
i = j (1.1)
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184 J. C. HANSEN AND J. JAWORSKI

for all 1 ≤ i, j ≤ n. It follows from (1.1) that the distribution of Tp(n) is given by

Pr{Tp(n) = f } =
n∏

i=1

pif (i)(n)

for each f ∈ Mn. Any mapping f ∈ Mn can be represented as a directed graph G(f ) on a
set of vertices labelled 1, 2, . . . , n, such that there is a directed edge from vertex i to vertex
j in G(f ) if and only if f (i) = j . So Gp(n) ≡ G(Tp(n)) is a random directed graph on a
set of vertices labelled 1, 2, . . . , n which represents the action of the random mapping Tp(n)

on [n]. We note that, since each vertex in Gp(n) has out-degree 1, the components of Gp(n)

consist of directed cycles with directed trees attached. Also, it follows from the definition of
Tp(n) that the variables Xn

1 , Xn
2 , . . . , Xn

n can be interpreted as the independent ‘choices’ of the
vertices 1, 2, . . . , n in the random digraph Gp(n) (see, in addition, [11] and [17]). The special
case of Tp(n) which is best understood is the uniform random mapping, Tn ≡ Tp(n), where
pij(n) = 1/n for all 1 ≤ i, j ≤ n (see, for example, [2] and the monograph [15], and the
references therein).

The key feature in the model discussed above is that each vertex in Gp(n) ‘chooses’ the
vertex that it is mapped to independently of the ‘choices’ made by all other vertices. In
this paper we consider the properties of a new random mapping model, T D̂

n , which was
introduced in the companion paper [9], and which has the property that the vertex ‘choices’
are not necessarily independent. The model is introduced in Section 2, and is constructed by
first specifying the in-degrees D̂1, D̂2, . . . , D̂n of the vertices labelled 1, 2, . . . , n, and then
selecting a random mapping uniformly from all mappings with the given in-degree sequence
D̂1, D̂2, . . . , D̂n. In the context of applications, the exact and asymptotic distributions for local
structure characteristics such as the number of predecessors and the number of successors of
a vertex in Gp(n) have received much attention in the literature for many special cases of the
model Tp(n) (see [3]–[7], [12], [13], [16], and [18]). In Section 3 we show that the distributions
and first moments of these and other random mapping statistics for the local structure of GD̂

n ,
the random digraph which represents T D̂

n , can be computed as expectations of functions of
the (random) in-degree sequence D̂1, D̂2, . . . , D̂n. In Section 4 we apply these results to two
special examples—the preferential and anti-preferential attachment models—which turn out to
be equivalent to special cases of T D̂

n .

2. The model

In order to define the model T D̂
n , we adopt the following notation. For n ≥ 1, suppose that

f ∈ Mn. Then, for 1 ≤ i ≤ n, we let di(f ) denote the in-degree of vertex i in the digraph
G(f ) which represents the mapping f , and define �d(f ) ≡ (d1(f ), . . . , dn(f )). Also, given a
vector �d ≡ (d1, d2, . . . , dn) of nonnegative integers such that

∑n
i=1 di = n, define

Mn( �d) ≡ {f ∈ Mn : �d(f ) = �d}

to be the set of all mappings f ∈ Mn with in-degree sequence �d.

To define T D̂
n , we start with a collection of nonnegative integer-valued, exchangeable random

variables D̂1, D̂2, . . . , D̂n such that D̂1 + D̂2 + · · · + D̂n = n. Given the event {D̂i = di, i =
1, 2, . . . , n} (with Pr{D̂i = di, i = 1, 2, . . . , n} > 0), we define the conditional distribution of
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Local properties of random mappings 185

T D̂
n by

Pr{T D̂
n = f | D̂i = di, i = 1, 2, . . . , n } =

⎧⎪⎨
⎪⎩

∏n
i=1 di !
n! if di(f ) = di, i = 1, 2, . . . , n,

0 otherwise.
(2.1)

In other words, given (D̂1, D̂2, . . . , D̂n) = (d1, d2, . . . , dn) = �d, T D̂
n is uniformly distributed

over Mn( �d). It follows from (2.1) that, for any f ∈ Mn,

Pr{T D̂
n = f } =

∏n
i=1(di(f ))!

n! Pr{D̂i = di(f ), 1 ≤ i ≤ n}.
Given the random mapping T D̂

n , let GD̂
n ≡ G(T D̂

n ) denote the random digraph on n labelled
vertices that represents T D̂

n . We note that it follows, from the exchangeability of the variables
D̂1, D̂2, . . . , D̂n and (2.1), that, for any permutation σ : [n] → [n], we have

σ ◦ T D̂
n

d∼ T D̂
n ◦ σ

d∼ T D̂
n .

In other words, the distribution of the corresponding digraph GD̂
n is invariant under relabelling of

the vertices of the graph. An important class of examples can be constructed as follows. Suppose
that D1, D2, . . . , Dn are independent and identically distributed (i.i.d.), nonnegative integer-
valued random variables with Pr{∑n

i=1 Di = n} > 0, and let D̂1, D̂2, . . . , D̂n be a sequence
of random variables with joint distribution given by

Pr{D̂i = di, 1 ≤ i ≤ n} = Pr

{
Di = di, 1 ≤ i ≤ n

∣∣∣∣
n∑

i=1

Di = n

}
.

Clearly, the variables D̂1, D̂2, . . . , D̂n are exchangeable with
∑n

i=1 D̂i = n, so we can use
D̂1, D̂2, . . . , D̂n to construct T D̂

n and GD̂
n . We note that it is easy to check that if D1, D2, . . . , Dn

are i.i.d. Poisson variables then D̂1, D̂2, . . . , D̂n have a multinomial distribution with parameters
n and (1/n, 1/n, . . . , 1/n), and the corresponding random mapping T D̂

n is just the usual uniform
random mapping. There are interesting interpretations of T D̂

n in the cases where the underlying
i.i.d. variables D1, D2, . . . , Dn have (i) a generalised negative binomial distribution, and (ii) a
binomial Bin(m, p) distribution. In particular, case (i) corresponds to a random mapping with
‘preferential attachment’ and case (ii) corresponds to a random mapping with ‘anti-preferential
attachment’.

In this paper we consider some local properties of the random digraph GD̂
n , which represents

the random mapping T D̂
n . By local properties we mean the distributions of random mapping

characteristics related to a given vertex v—for example, the numbers of predecessors and
successors of v in GD̂

n . To investigate such variables, we introduce some further notation and
definitions. For any f ∈ Mn and any positive integer k, let f (k) denote the kth iterate of f and,
for every i ∈ [n], define f (0)(i) ≡ i. We say that i ∈ [n] is a cyclic vertex of f if, for some
k > 0, f (k)(i) = i. In particular, if i is a cyclic vertex of f then vertex i lies on a cycle in the
digraph G(f ). We also note that every component of G(f ) consists of a directed cycle with
trees, directed towards the cycle, attached to it. For any f ∈ Mn, let L(f ) denote the set of
cyclic vertices in the component of G(f ) which contains the vertex 1. Define �(f ) = |L(f )|,
and define h(f ), the height of vertex 1 in G(f ), by

h(f ) = min{k ≥ 0 : f (k)(1) ∈ L(f )}.
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Next, let
P (f ) ≡ {j ∈ [n] : f (k)(j) = 1 for some k ≥ 0}

denote the predecessors of vertex 1 under f , and let

S(f ) ≡ {j ∈ [n] : f (k)(1) = j for some k ≥ 0}
denote the successors of vertex 1 under f . We define p(f ) = |P (f )| and s(f ) = |S(f )|. In
this paper we are interested in the local properties of GD̂

n , which are described by the random

variables �D̂
n ≡ �(T D̂

n ), hD̂
n ≡ h(T D̂

n ), pD̂
n ≡ p(T D̂

n ), and sD̂
n ≡ s(T D̂

n ). We mention here that
the distributions for the number of cyclic vertices, the number of components, and the size of
a typical component of GD̂

n have been determined in the companion paper [9].

3. Results

In this section we derive general formulae for the distributions and first moments of the
variables �D̂

n , hD̂
n , pD̂

n , and sD̂
n described above. The joint distribution of hD̂

n and �D̂
n is given

by Theorem 3.1, below, and the distributions for sD̂
n , hD̂

n , and �D̂
n are respectively obtained as

Corollaries 3.1, 3.2, and 3.3, below.

Theorem 3.1. For 0 ≤ x, y ≤ n − 1,

Pr{hD̂
n = x, �D̂

n = y + 1} = 1

n
E[D̂1(D̂1 − 1)D̂2 · · · D̂x+y] 1{x 
=0, x+y+1≤n}

+ 1

n
E[D̂1D̂2 · · · D̂y+1] 1{x=0} .

Proof. First suppose that 1 ≤ x ≤ n − 1 and 0 ≤ y ≤ n − x − 1. Let k = x + y, then
we have

Pr{hD̂
n = x, �D̂

n = y + 1} =
∑

C⊆[n]\{1}
|C|=k

Pr{SD̂
n = C ∪ {1}, hD̂

n = x, �D̂
n = y + 1}

=
(

n − 1

k

)
Pr{SD̂

n = C′ ∪ {1}, hD̂
n = x, �D̂

n = y + 1}, (3.1)

where C′ = {2, 3, . . . , k + 1} and SD̂
n ≡ S(T D̂

n ). We note that the second equality holds since
the distribution of GD̂

n is invariant under the relabelling of its vertices. Next, let �(k) denote
the set of all permutations, σ , of {2, 3, . . . , k + 1} and, for any σ ∈ �(k), let

Aσ = {(T D̂
n )(m)(1) = σ(m + 1) for 1 ≤ m ≤ k and (T D̂

n )(k+1)(1) = σ(x + 1)}.
Then we have

Pr{SD̂
n = C′ ∪ {1}, hD̂

n = x, �D̂
n = y + 1} =

∑
σ∈�(k)

Pr{Aσ } = k! Pr{Aid}. (3.2)

Again, the second equality follows from the invariance of the distribution of GD̂
n under the

relabelling of its vertices. To determine Pr{Aid}, we write

Pr{Aid} =
∑
di≥0∑
di=n

Pr{Aid | D̂i = di, 1 ≤ i ≤ n} Pr{D̂i = di, 1 ≤ i ≤ n}. (3.3)
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We note that
Pr{Aid | D̂i = di, 1 ≤ i ≤ n} 
= 0

if and only if di ≥ 1 for 2 ≤ i ≤ k + 1 and, in addition, dx+1 ≥ 2. In this case it follows, from
(2.1) and straightforward counting arguments, that

Pr{Aid | D̂i = di, 1 ≤ i ≤ n}
= (n − k − 1)!

d1! (d2 − 1)! · · · (dx+1 − 2)! · · · (dk+1 − 1)! dk+2! · · · dn!
d1! · · · dn!

n!
= d2d3 · · · dx+1(dx+1 − 1) · · · dk+1

n(n − 1) · · · (n − k)
. (3.4)

Observe that (3.4) is still valid when di = 0 for some 2 ≤ i ≤ k +1 or dx+1 = 1. So it follows,
from (3.3) and (3.4), that

Pr{Aid} = E[D̂2 · · · D̂x+1(D̂x+1 − 1) · · · D̂k+1]
n(n − 1) · · · (n − k)

= E[D̂1(D̂1 − 1)D̂2 · · · D̂k]
n(n − 1) · · · (n − k)

. (3.5)

The last equality holds by the exchangeability of D̂1, D̂2, . . . , D̂n. So, combining (3.1), (3.2),
and (3.5), we obtain

Pr{hD̂
n = x, �D̂

n = y + 1} = 1

n
E[D̂1(D̂1 − 1)D̂2 · · · D̂x+y],

since k = x + y. Next, suppose that x = 0 and 1 ≤ y ≤ n − 1. Then, as above, we have

Pr{hD̂
n = 0, �D̂

n = y + 1} =
∑

C⊆[n]\{1}
|C|=y

Pr{SD̂
n = C ∪ {1}, hD̂

n = 0, �D̂
n = y + 1}

=
(

n − 1

y

)
Pr{SD̂

n = C′ ∪ {1}, hD̂
n = 0, �D̂

n = y + 1}, (3.6)

where C′ = {2, 3, . . . , y + 1}. Again, let �(y) denote the set of all permutations, σ , of C′ and,
for any σ ∈ �(y), let

Bσ = {(T D̂
n )(m)(1) = σ(m + 1) for 1 ≤ m ≤ y and (T D̂

n )(y+1)(1) = 1}.
Then, as above, we have

Pr{SD̂
n = C′ ∪ {1}, hD̂

n = 0, �D̂
n = y + 1} =

∑
σ∈�(y)

Pr{Bσ } = k! Pr{Bid}. (3.7)

We write

Pr{Bid} =
∑
di≥0∑
di=n

Pr{Bid | D̂i = di, 1 ≤ i ≤ n} Pr{D̂i = di, 1 ≤ i ≤ n},

and we note that
Pr{Bid | D̂i = di, 1 ≤ i ≤ n} 
= 0
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if and only if di ≥ 1 for 1 ≤ i ≤ y + 1. In this case it follows, from (2.1) and counting
arguments, that

Pr{Bid | D̂i = di, 1 ≤ i ≤ n}
= (n − y − 1)!

(d1 − 1)! (d2 − 1)! · · · (dy+1 − 1)! dy+2! · · · dn!
d1! · · · dn!

n!
= d1d2 · · · dy+1

n(n − 1) · · · (n − y)
. (3.8)

Observe that (3.8) is still valid when di = 0 for some 1 ≤ i ≤ y + 1. So, combining (3.6),
(3.7), and (3.8), we obtain

Pr{hD̂
n = 0, �D̂

n = y + 1} = 1

n
E[D̂1D̂2 · · · D̂y+1]. (3.9)

Finally, for x = y = 0, we have

Pr{hD̂
n = 0, �D̂

n = 1}
= Pr{sD̂

n = 1}
= Pr{T D̂

n (1) = 1}
=

∑
di≥0∑
di=n

Pr{T D̂
n (1) = 1 | D̂i = di, 1 ≤ i ≤ n} Pr{D̂i = di, 1 ≤ i ≤ n}. (3.10)

We note that Pr{T D̂
n (1) = 1 | D̂i = di, 1 ≤ i ≤ n} 
= 0 if and only if d1 ≥ 1, and in this case

we have

Pr{T D̂
n (1) = 1 | D̂i = di, 1 ≤ i ≤ n} = (n − 1)! d1! · · · dn!

(d1 − 1)! (d2)! · · · dn! n! = d1

n
. (3.11)

Equation (3.11) remains valid when d1 = 0. So it follows, from (3.10) and (3.11), that

Pr{hD̂
n = 0, �D̂

n = 1} = E[D̂1]
n

,

and (3.9) holds in the case in which y = 0.

Corollary 3.1. For 0 ≤ k ≤ n − 1,

Pr{sD̂
n = k + 1} = k

n
E[D̂1(D̂1 − 1)D̂2 · · · D̂k] + 1

n
E[D̂1D̂2 · · · D̂k+1].

Proof. The corollary follows from Theorem 3.1 and the observation that, for 0 ≤ k ≤ n−1,

Pr{sD̂
n = k + 1} =

k∑
x=0

Pr{hD̂
n = x, �D̂

n = k − x + 1}.

We also immediately obtain the following results from Theorem 3.1.
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Corollary 3.2. For 1 ≤ x ≤ n − 1,

Pr{hD̂
n = x} = 1

n

n−x−1∑
y=0

E[D̂1(D̂1 − 1)D̂2 · · · D̂x+y]

and

Pr{hD̂
n = 0} = 1

n

n−1∑
y=0

E[D̂1D̂2 · · · D̂y+1].

Corollary 3.3. For 0 ≤ y ≤ n − 1,

Pr{�D̂
n = y + 1} = 1

n

n−y−1∑
x=1

E[D̂1(D̂1 − 1)D̂2 · · · D̂x+y] + 1

n
E[D̂1D̂2 · · · D̂y+1],

where the sum above is interpreted as 0 if y = n − 1.

Next, we consider the distribution of pD̂
n , the number of predecessors of vertex 1 in GD̂

n .
In order to determine this distribution, we need to count the number of directed trees, rooted
at 1, with a specified degree sequence. To state the required tree counting lemma, we adopt
some notation. First, for any k ≥ 2, let Tk denote the set of all labelled trees on the vertices
1, 2, . . . , k such that each tree τ ∈ Tk is rooted at vertex 1 and the edges of τ are oriented so
that the (shortest) path from any vertex v to the root 1 is directed towards 1. For any τ ∈ Tk and
any vertex v ∈ τ , let dv(τ ) denote the in-degree of v in τ . Note that we must have d1(τ ) ≥ 1
and

∑k
i=1 di(τ ) = k − 1. Finally, for any nonnegative integers d1, d2, . . . , dk such that d1 ≥ 1

and
∑k

i=1 di = k − 1, let

Tk(d1, d2, . . . , dk) = {τ ∈ Tk : di(τ ) = di, 1 ≤ i ≤ k},
and let τk(d1, d2, . . . , dk) = |Tk(d1, d2, . . . , dk)|. Then we have the following result.

Lemma 3.1. Suppose that k ≥ 2 and that d1, d2, . . . , dk are nonnegative integers such that
d1 ≥ 1 and

∑k
i=1 di = k − 1. Then

τk(d1, d2, . . . , dk) = (k − 2)!
(d1 − 1)! d2! · · · dk! .

Proof. Suppose that k ≥ 2 and d1, d2, . . . , dk are nonnegative integers such that d1 ≥ 1
and

∑k
i=1 di = k − 1, and let S(d1, d2, . . . , dk) denote the set of all sequences of length k − 1

such that, for any s ∈ S(d1, d2, . . . , dk) and for any 1 ≤ i ≤ k, the integer i appears di times
in s and the sequence s ends with the integer 1. To prove the equation in Lemma 3.1, we use a
Prüfer tree code [19] to construct a bijection between S(d1, d2, . . . , dk) and Tk(d1, d2, . . . , dk).
Specifically, the Prüfer encoding constructs a sequence s ∈ S(d1, d2, . . . , dk) for every τ ∈
Tk(d1, d2, . . . , dk) as follows.

1. Suppose that τ is a labelled, directed tree rooted at 1. Suppose that v is the smallest
vertex in τ such that the in-degree dv(τ ) = 0, and suppose that v → w is a directed edge
in τ . Delete vertex v from τ and add w to the sequence s.

2. If τ is the trivial tree consisting only of vertex 1, stop. Otherwise, go to step 1 and repeat.
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The Prüfer decoding constructs a tree τ ∈ Tk(d1, d2, . . . , dk) for every s ∈ S(d1, d2, . . . , dk)

as follows.

1. Start with k labelled isolated vertices, and let K = (1, 2, . . . , k) denote the ordered list
of numbers 1, 2, . . . , k.

2. Suppose that i is the smallest number in list K which does not appear in sequence s, and
suppose that j is the first number in sequence s. Add the directed edge i → j to the
graph and remove i from list K and j from sequence s.

3. If K = (1), stop. Otherwise, go to step 2 and repeat.

The Prüfer encoding and decoding are inverse operations (see [19]), so

|Tk(d1, d2, . . . , dk)| = |S(d1, d2, . . . , dk)| = (k − 2)!
(d1 − 1)! d2! · · · dk! ,

as desired.

Given Lemma 3.1, we can prove the following result.

Theorem 3.2. For 0 ≤ k ≤ n − 1,

Pr{pD̂
n = k + 1} = n − k

n(k + 1)
Pr

{k+1∑
i=1

D̂i = k

}
+ 1

n
Pr

{k+1∑
i=1

D̂i = k + 1

}
.

Proof. First, suppose that 1 ≤ k ≤ n − 1. Then we have

Pr{pD̂
n = k + 1} =

∑
C⊆[n]\{1}

|C|=k

Pr{P D̂
n = C ∪ {1}} =

(
n − 1

k

)
Pr{P D̂

n = C′ ∪ {1}}, (3.12)

where C′ = {2, 3, . . . , k + 1} and P D̂
n ≡ P (T D̂

n ). Next, observe that

Pr{P D̂
n = C′ ∪ {1}}
=

∑
di≥0∑
di=n

Pr{P D̂
n = C′ ∪ {1} | D̂i = di, 1 ≤ i ≤ n} Pr{D̂i = di, 1 ≤ i ≤ n}

=
∑
di≥0∑
di=n

n∑
�=1

Pr{P D̂
n = C′ ∪ {1}, T D̂

n (1) = � | D̂i = di, 1 ≤ i ≤ n}

× Pr{D̂i = di, 1 ≤ i ≤ n}. (3.13)

Now suppose that �d = (d1, d2, . . . , dn) such that
∑n

i=1 di = n and, for 1 ≤ � ≤ n, let

Mn( �d, C′, �) = {f ∈ Mn : �d(f ) = �d, P (f ) = C′ ∪ {1}, f (1) = �}.
Then it follows from (2.1) that, for 1 ≤ � ≤ n,

Pr{P D̂
n = C′ ∪ {1}, T D̂

n (1) = � | D̂i = di, 1 ≤ i ≤ n} = |Mn( �d, C′, �)|
n! (∏n

i=1 di !)−1
. (3.14)
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So, to determine Pr{P D̂
n = C′ ∪ {1}, T D̂

n (1) = � | D̂i = di, 1 ≤ i ≤ n}, we need to count the
set Mn( �d, C′, �). There are three cases to consider.

First, suppose that 1 < � ≤ k + 1. If P D̂
n = C′ ∪ {1} and T D̂

n (1) = � then 1 is a cyclic
vertex of T D̂

n and the vertex set of the connected component in GD̂
n which contains 1 is just

{1, 2, . . . , k + 1}. Hence, we have

Pr{P D̂
n = C′ ∪ {1}, T D̂

n (1) = � | D̂i = di, 1 ≤ i ≤ n} 
= 0

if and only if
∑k+1

i=1 di = k + 1, d� ≥ 1, and d1 ≥ 1. So, suppose that
∑k+1

i=1 di = k + 1,
d� ≥ 1, and d1 ≥ 1, and let f ∈ Mn( �d, C′, �). If the directed edge from 1 to � in G(f )

is deleted, we obtain a directed tree on the vertices 1, 2, . . . , k + 1 with in-degree sequence
d1, . . . , d� − 1, . . . , dk+1 and root at vertex 1, and a random mapping graph on the vertices
k + 2, . . . , n with in-degree sequence dk+2, . . . , dn. It follows that to count Mn( �d, C′, �) it is
enough to count certain trees and certain random mapping graphs, i.e.

|Mn( �d, C′, �)| = τk+1(d1, . . . , d� − 1, . . . , dk+1)
(n − k − 1)!
dk+2! · · · dn! . (3.15)

Substituting (3.15) into (3.14) and appealing to Lemma 3.1, in this case we obtain

Pr{P D̂
n = C′ ∪ {1}, T D̂

n (1) = � | D̂i = di, 1 ≤ i ≤ n}
= (k − 1)! (n − k − 1)!

n! d1d� 1{∑k+1
i=1 di=k+1} . (3.16)

We note that (3.16) remains valid when d1 = 0 or d� = 0, and so it holds for all in-degree
sequences d1, d2, . . . , dn such that

∑n
i=1 di = n. Similarly, in the case in which � = 1, we

have
Pr{P D̂

n = C′ ∪ {1}, T D̂
n (1) = 1 | D̂i = di, 1 ≤ i ≤ n} 
= 0

if and only if
∑k+1

i=1 di = k + 1 and d1 ≥ 2. Now, provided that
∑k+1

i=1 di = k + 1 and d1 ≥ 2,
we have, by the same argument as given above,

|Mn( �d, C′, 1)| = τk+1(d1 − 1, d2, . . . , dn)
(n − k − 1)!
dk+2! · · · dn! . (3.17)

Again, substituting (3.17) into (3.14) and appealing to Lemma 3.1, we obtain

Pr{P D̂
n = C′ ∪ {1}, T D̂

n (1) = 1 | D̂i = di, 1 ≤ i ≤ n}
= (k − 1)! (n − k − 1)!

n! d1(d1 − 1) 1{∑k+1
i=1 di=k+1} . (3.18)

Again, we note that (3.18) remains valid when d1 = 0 or d1 = 1, and so it holds for all in-degree
sequences d1, d2, . . . , dn such that

∑n
i=1 di = n.

Finally, suppose that � > k + 1. If P D̂
n = C′ ∪ {1} and T D̂

n (1) = � then 1 is not a cyclic

vertex of T D̂
n and the graph induced by T D̂

n on the vertex set C′ ∪ {1} is a directed tree, rooted
at 1. Hence, we have

Pr{P D̂
n = C′, T D̂

n = � | D̂i = di, 1 ≤ i ≤ n} 
= 0

if and only if
∑k+1

i=1 di = k, d� ≥ 1, and d1 ≥ 1. So, suppose that
∑k+1

i=1 di = k, d� ≥ 1,
d1 ≥ 1, and f ∈ Mn( �d, C′, �). If the directed edge from 1 to � in G(f ) is deleted, we obtain a
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directed tree on the vertices 1, 2, . . . , k + 1 with in-degree sequence d1, d2, . . . , dk+1 and root
at vertex 1, and a random mapping graph on the vertices k + 2, . . . , n with in-degree sequence
dk+2, . . . , d� − 1, . . . , dn. So, in this case we have

|Mn( �d, C′, �)| = τk+1(d1, d2, . . . , dk+1)
(n − k − 1)!

dk+2! · · · (d� − 1)! · · · dn! . (3.19)

Substituting (3.19) into (3.14) and appealing to Lemma 3.1, we obtain

Pr{P D̂
n = C′ ∪ {1}, T D̂

n (1) = � | D̂i = di, 1 ≤ i ≤ n}
= (k − 1)! (n − k − 1)!

n! d1d� 1{∑k+1
i=1 di=k} . (3.20)

We note that (3.20) remains valid when d1 = 0 or d� = 0, and so it holds for all in-degree
sequences d1, d2, . . . , dn such that

∑n
i=1 di = n.

It follows, from (3.13), (3.16), (3.18), (3.20), and the identities

(
d1(d1 − 1) +

k+1∑
�=2

d1d�

)
1{∑k+1

i=1 di=k+1} = kd1 1{∑k+1
i=1 di=k+1}

and
n∑

�=k+2

d1d� 1{∑k+1
i=1 di=k} = (n − k)d1 1{∑k+1

i=1 di=k},

that

Pr{P D̂
n = C′ ∪ {1}}

=
∑
di≥0∑
di=n

k+1∑
�=1

Pr{P D̂
n = C′ ∪ {1}, T D̂

n (1) = � | D̂i = di, 1 ≤ i ≤ n}

× Pr{D̂i = di, 1 ≤ i ≤ n}

+
∑
di≥0∑
di=n

n∑
�=k+2

Pr{P D̂
n = C′ ∪ {1}, T D̂

n (1) = � | D̂i = di, 1 ≤ i ≤ n}

× Pr{D̂i = di, 1 ≤ i ≤ n}
= k! (n − k − 1)!

n!
∑
di≥0∑
di=n

d1 1{∑k+1
i=1 di=k+1} Pr{D̂i = di, 1 ≤ i ≤ n}

+ (k − 1)! (n − k)!
n!

∑
di≥0∑
di=n

d1 1{∑k+1
i=1 di=k} Pr{D̂i = di, 1 ≤ i ≤ n}
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= k! (n − k − 1)!
n! E

[
D̂1

∣∣∣∣
k+1∑
i=1

D̂i = k + 1

]
Pr

{k+1∑
i=1

D̂i = k + 1

}

+ (k − 1)! (n − k)!
n! E

[
D̂1

∣∣∣∣
k+1∑
i=1

D̂i = k

]
Pr

{k+1∑
i=1

D̂i = k

}

= k! (n − k − 1)!
n! Pr

{k+1∑
i=1

D̂i = k + 1

}
+ k! (n − k)!

n! (k + 1)
Pr

{k+1∑
i=1

D̂i = k

}
. (3.21)

The last equality follows since, by the exchangeability of D̂1, . . . , D̂k+1,

E

[
D̂1

∣∣∣∣
k+1∑
i=1

D̂i = k + 1

]
= 1 and E

[
D̂1

∣∣∣∣
k+1∑
i=1

D̂i = k

]
= k

k + 1
.

So, in the case in which 1 ≤ k ≤ n − 1, the result follows from (3.12) and (3.21). Finally, for
the case in which k = 0, we have

Pr{pD̂
n = 1} = Pr{D̂1 = 0} + Pr{D̂1 = 1, T D̂

n (1) = 1}
= Pr{D̂1 = 0} + Pr{T D̂

n (1) = 1 | D̂1 = 1} Pr{D̂1 = 1}
= Pr{D̂1 = 0} + 1

n
Pr{D̂1 = 1},

as required.

In Proposition 3.1 and Corollaries 3.4 and 3.5, below, we give formulae for the expected
values of the random variables considered above.

Proposition 3.1. We have

E[pD̂
n ] = E[sD̂

n ] =
n∑

k=1

(
1 − k

n

)
E[D̂1D̂2 · · · D̂k] + 1.

Proof. Let i, j ∈ [n], i 
= j , 1 ≤ k ≤ n−1, and let Ai,j (k, n) be the event that ‘there exists
a path of length k from i to j in GD̂

n ’. Next we note that

Pr{A1,2(k, n)} =
(

n − 2

k − 1

)
(k − 1)! Pr{Ã1,2(k, n)},

where Ã1,2(k, n) is the event that ‘the path 1 → 3 → 4 → · · · → k + 1 → 2 exists in GD̂
n ’.

Using the same reasoning as in the proof of Theorem 3.1, we can check that, for all sequences
(d1, d2, . . . , dn) such that d1 + d2 + · · · + dn = n and di ≥ 1 for i = 2, 3, . . . , k + 1,

Pr{Ã1,2(k, n) | D̂i = di, 1 ≤ i ≤ n}
= (n − k)!

d1! (d2 − 1)! · · · (dk+1 − 1)! dk+2! · · · dn!
d1! · · · dn!

n!
= (n − k)!

n! d2d3 · · · dk+1. (3.22)
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Since (3.22) holds even when di = 0 for some i = 2, 3, . . . , k + 1, we have

Pr{Ai,j (k, n)}
= Pr{A1,2(k, n)}
= (n − 2)!

(n − k − 1)!
∑
di≥0∑
di=n

Pr{Ã1,2(k, n) | D̂i = di, 1 ≤ i ≤ n} Pr{D̂i = di, 1 ≤ i ≤ n}

= n − k

n(n − 1)
E[D̂2D̂3 · · · D̂k+1]

= 1

n − 1

(
1 − k

n

)
E[D̂1D̂2 · · · D̂k]. (3.23)

Let Ii,j (n) be the indicator variable corresponding to the event Ai,j (n) = ⋃n−1
k=1 Ai,j (k, n)

(i.e. the event that ‘there exists a path from i to j in GD̂
n ’). Note that

Pr{I1,j (n) = 1} = Pr{A1,j (n)} = Pr{Aj,1(n)} = Pr{Ij,1(n) = 1},
and, therefore,

E[pD̂
n ] = E

[ n∑
j=2

Ij,1(n) + 1

]
= E

[ n∑
j=2

I1,j (n) + 1

]
= E[sD̂

n ]. (3.24)

The result now follows from (3.23) and (3.24).

Corollary 3.4. We have

E[�D̂
n ] = 1

2
+ 1

2

n∑
j=1

E[D̂1D̂2 · · · D̂j ].

Proof. It follows, from Corollary 3.2 and Corollary 3.3, that

E[�D̂
n ] − E[hD̂

n ] = 1

n

n∑
j=1

j E[D̂1D̂2 · · · D̂j ]. (3.25)

Conversely, the definition of sD̂
n and Proposition 3.1 imply that

E[�D̂
n ] + E[hD̂

n ] = E[sD̂
n ] = 1 +

n∑
j=1

E[D̂1D̂2 · · · D̂j ] −
n∑

j=1

j

n
E[D̂1D̂2 · · · D̂j ]. (3.26)

Equations (3.25) and (3.26) immediately give the formula for the expected value of �D̂
n .

Finally, Corollary 3.4 and (3.25) imply the formula for the expected value of hD̂
n .

Corollary 3.5. We have

E[hD̂
n ] = 1

2
+ 1

2

n∑
j=1

E[D̂1D̂2 · · · D̂j ] −
n∑

j=1

j

n
E[D̂1D̂2 · · · D̂j ].
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4. Examples

In this section we consider the preferential and anti-preferential attachment models which
are defined below. In a companion paper [9] it was shown that these models are equivalent
to special cases of T D̂

n . Using this equivalence, we apply the results obtained in Section 3 to
investigate the local properties of these models.

4.1. A preferential attachment model

We begin by defining T
ρ
n : [n] → [n], a random mapping with ‘preferential attachment’,

where ρ > 0 is a fixed parameter. For 1 ≤ k ≤ n, we define T
ρ
n (k) = ξ

(ρ,n)
k , where

ξ
(ρ,n)
1 , ξ

(ρ,n)
2 , . . . , ξ

(ρ,n)
n is a sequence of random variables whose distributions depend on the

evolution of an urn scheme. The distribution of each ξ
(ρ,n)
k is determined by a (random) n-tuple

of nonnegative weights �a(k) = (a1(k), a2(k), . . . , an(k)), where, for 1 ≤ j ≤ n, aj (k) is the
‘weight’ of the j th urn at the start of the kth round of the urn scheme. Specifically, given
�a(k) = �a = (a1, . . . , an), we define

Pr{ξ (ρ,n)
k = j | �a(k) = �a} = aj∑n

i=1 ai

.

The random weight vectors �a(1), �a(2), . . . , �a(n) associated with the urn scheme are determined
recursively. For k = 1, we set a1(1) = a2(1) = · · · = an(1) = ρ > 0. For k > 1, �a(k)

depends on both �a(k − 1) and the value of ξ
(ρ,n)
k−1 as follows. Given that ξ

(ρ,n)
k−1 = j , we set

aj (k) = aj (k − 1)+ 1 and, for all other i 
= j , we set ai(k) = ai(k − 1) (i.e. if ξ
(ρ,n)
k−1 = j then

a ‘ball’ with weight 1 is added to the j th urn).
The random mapping T

ρ
n as defined above is a preferential attachment model in the following

sense. Since, for 1 ≤ k ≤ n, we have T
ρ
n (k) = ξ

(ρ,n)
k , and since the (conditional) distribution

of ξ
(ρ,n)
k depends on the state of the urn scheme at the start of round k, it is clear that vertex k is

more likely to be mapped to vertex j if the weight aj (k) is (relatively) large, i.e. if several of the
vertices 1, 2, . . . , k−1 have already been mapped to vertex j . Also, the smaller the value of ρ,
the stronger the preferential attachment effect. On the other hand, for values of ρ much larger
than n, the preferential attachment effect is negligible and this model is essentially equivalent
to the uniform random mapping model. The distribution of T

ρ
n is given by Theorem 4.1, below,

and was obtained in [9].

Theorem 4.1. Suppose that Dρ
1 , D

ρ
2 , . . . are i.i.d. random variables with a generalised negative

binomial distribution given by

Pr{Dρ
1 = k} = �(k + ρ)

k! �(ρ)

(
ρ

1 + ρ

)ρ(
1

1 + ρ

)k

for k = 0, 1, . . . ,

whereρ is a positive parameter. Forn ≥ 1, let D̂(ρ, n) = (D̂
ρ
1,n, D̂

ρ
2,n, . . . , D̂

ρ
n,n)be a sequence

of variables with joint distribution given by

Pr{D̂ρ
i,n = di, 1 ≤ i ≤ n} = Pr

{
D

ρ
i = di, 1 ≤ i ≤ n

∣∣∣∣
n∑

i=1

D
ρ
i = n

}
.

Then, for every n ≥ 1, the random mappings T
ρ
n : [n] → [n] and T

D̂(ρ,n)
n : [n] → [n] have the

same distribution.

Since T
ρ
n

d∼ T
D̂(ρ,n)
n , it follows that the random digraphs G

ρ
n ≡ G(T

ρ
n ) and G

D̂(ρ,n)
n have the

same distribution. So, we can investigate the local properties of G
ρ
n by applying Theorem 3.1
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(and its corollaries) and Theorem 3.2 to G
D̂(ρ,n)
n . In the calculations that follow we adopt the

following notation: if g(s) = ∑∞
k=0 aks

k then [sn]g(s) = an, the coefficient of sn in the power
series expansion of g(s). We also use the fact that the probability generating function for D

ρ
1

is given by

E[sD
ρ
1 ] =

(
ρ

1 + ρ − s

)ρ

. (4.1)

We begin by noting that, for any integer 1 ≤ x ≤ n, we have

E[D̂ρ
1,nD̂

ρ
2,n · · · D̂ρ

x,n] = E

[
D

ρ
1 D

ρ
2 · · · Dρ

x

∣∣∣∣
n∑

i=1

D
ρ
i = n

]

= [sn] E[Dρ
1 sD

ρ
1 D

ρ
2 sD

ρ
2 · · · Dρ

x sD
ρ
x sD

ρ
x+1 · · · sD

ρ
n ]

[sn] E[sD
ρ
1 · · · sD

ρ
n ]

= [sn](E[Dρ
1 sD

ρ
1 ])x(E[sD

ρ
1 ])n−x

[sn](E[sD
ρ
1 ])n

. (4.2)

The last equality holds since the variables D
ρ
1 , D

ρ
2 , . . . , D

ρ
n are i.i.d. Now, since

E[Dρ
1 sD

ρ
1 ] = s

(
ρ

1 + ρ − s

)ρ+1

, (4.3)

it follows, from (4.1)–(4.3) and routine calculations, that

E[D̂ρ
1,nD̂

ρ
2,n · · · D̂ρ

x,n] = ρx(n)x

(nρ + x − 1)x
, (4.4)

where (n)x ≡ n(n − 1) · · · (n − x + 1). Similarly, for 1 ≤ x ≤ n − 1, we have

E[D̂ρ
1,n(D̂

ρ
1,n − 1)D̂

ρ
2,n · · · D̂ρ

x,n]

= E

[
D

ρ
1 (D

ρ
1 − 1)D

ρ
2 · · · Dρ

x

∣∣∣∣
n∑

i=1

D
ρ
i = n

]

= [sn] E[Dρ
1 (D

ρ
1 − 1)sD

ρ
1 D

ρ
2 sD

ρ
2 · · · Dρ

x sD
ρ
x sD

ρ
x+1 · · · sD

ρ
n ]

[sn] E[sD
ρ
1 · · · sD

ρ
n ]

= [sn] E[Dρ
1 (D

ρ
1 − 1)sD

ρ
1 ](E[Dρ

1 sD
ρ
1 ])x−1(E[sD

ρ
1 ])n−x

[sn](E[sD
ρ
1 ])n

. (4.5)

Since

E[Dρ
1 (D

ρ
1 − 1)sD

ρ
1 ] =

(
1 + ρ

ρ

)
s2

(
ρ

1 + ρ − s

)ρ+2

,

it follows, from (4.5) and routine calculations, that

E[D̂ρ
1,n(D̂

ρ
1,n − 1)D̂

ρ
2,n · · · D̂ρ

x,n] = ρx(1 + ρ)
(n)x+1

(nρ + x)x+1
. (4.6)

Proposition 4.1, below, now follows.
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Proposition 4.1. Suppose that ρ > 0. Then, for 1 ≤ k ≤ n − 1,

Pr{h(T ρ
n ) = k} = 1

n

n−1∑
x=k

ρx(1 + ρ)(n)x+1

(nρ + x)x+1

and

Pr{h(T ρ
n ) = 0} = 1

n

n∑
x=1

ρx(n)x

(nρ + x − 1)x
.

Moreover,

E[h(T ρ
n )] = 1

2
+

n∑
j=1

n − 2j

2n

ρj (n)j

(nρ + j − 1)j
.

Proof. It follows, from Corollary 3.2, Theorem 4.1, (4.4), and (4.6), that, for ρ > 0 and
1 ≤ k ≤ n − 1,

Pr{h(T ρ
n ) = k} = Pr{hD̂(ρ,n)

n = k}

= 1

n

n−k−1∑
y=0

E[D̂ρ
1,n(D̂

ρ
1,n − 1)D̂ρ

2,n · · · D̂ρ
k+y,n]

= 1

n

n−1∑
x=k

ρx(1 + ρ)(n)x+1

(nρ + x)x+1
.

Similarly,

Pr{h(T ρ
n ) = 0} = 1

n

n∑
x=1

E[D̂ρ
1,nD̂

ρ
2,n · · · D̂ρ

x,n] =
n∑

x=1

ρx(n)x

(nρ + x − 1)x
.

Finally, the formula for the mean follows immediately from Corollary 3.5 and (4.4).

From Proposition 4.1, by the usual asymptotic calculations, we obtain the following result.

Corollary 4.1. For fixed ρ > 0 and k = �x√
n� for some fixed 0 < x < ∞,

Pr{h(T ρ
n ) = k} ∼ 1√

n

∫ ∞

x

(
1 + ρ

ρ

)
exp

(−(1 + ρ)u2

2ρ

)
du.

Moreover,

lim
n→∞ E

[
h(T

ρ
n )√
n

]
= 1

2

√
π

2

ρ

ρ + 1
.

As in the proof of Proposition 4.1, Proposition 4.2, below, follows from Corollary 3.3,
Corollary 3.4, Theorem 4.1, (4.4), and (4.6).

Proposition 4.2. For ρ > 0 and for 0 ≤ k ≤ n − 1,

Pr{�(T ρ
n ) = k + 1} = 1

n

n−1∑
y=k+1

ρy(1 + ρ)(n)y+1

(nρ + y)y+1
+ 1

n

ρk+1(n)k+1

(nρ + k)k+1
.
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Moreover,

E[�(T ρ
n )] = 1

2
+ 1

2

n∑
j=1

ρj (n)j

(nρ + j − 1)j
.

From Proposition 4.2 we obtain the following result.

Corollary 4.2. For fixed ρ > 0 and k = �y√
n� for some fixed 0 < y < ∞,

Pr{�(T ρ
n ) = k + 1} ∼ 1√

n

∫ ∞

y

(
1 + ρ

ρ

)
exp

(−(1 + ρ)u2

2ρ

)
du.

Moreover,

lim
n→∞ E

[
�(T

ρ
n )√
n

]
= 1

2

√
π

2

ρ

ρ + 1
.

We note that it follows, from Corollaries 4.1 and 4.2, that the variables h(T
ρ
n )/

√
n and

�(T
ρ
n )/

√
n converge in distribution to a variable Yα with density

fα(y) =
∫ ∞

y

α exp

(
−αu2

2

)
du for y ∈ (0, ∞)

and parameter α = (ρ + 1)/ρ. The density of Yα can be rewritten as

fα(y) = √
2πα(1 − 
(

√
αy)),

where 
(·) is the standard normal distribution function and E[Yα] = 1
2

√
π/2α. So, the first

moments of h(T
ρ
n )/

√
n and �(T

ρ
n )/

√
n converge to the first moment of Yα with α = (ρ + 1)/ρ.

We also note that f1 is the density for the limiting distributions of h(Tn)/
√

n and �(Tn)/
√

n,
where Tn is the uniform random mapping on [n]. So, for ‘large’ρ (and α close to 1), we obtain
asymptotic distributions which are close to the corresponding distributions obtained for Tn.
Clearly, the smaller ρ, the smaller the mean length (height), but as in the uniform case, the
mean is still of the order

√
n when ρ is fixed as n tends to ∞. In a companion paper [10]

we consider the asymptotic structure of G
D̂(ρ,n)
n when ρ = ρ(n) → 0. Finally, it is not very

surprising that the random variables h(T
ρ
n ) and �(T

ρ
n ) behave asymptotically in the same way.

In particular, it follows, from Theorems 3.1 and 4.1, that given s(T
ρ
n ) = m, where 1 < m ≤ n,

then, for all 1 ≤ k, j ≤ m − 1, Pr{h(T
ρ
n ) = k | s(T

ρ
n ) = m} = Pr{�(T ρ

n ) = j | s(T
ρ
n ) = m}

(i.e. the conditional distributions of h(T
ρ
n ) and �(T

ρ
n ) are equal and uniform, except for one

value).
Next, we obtain Proposition 4.3, below, from Corollary 3.1, Proposition 3.1, Theorem 4.1,

(4.4), and (4.6).

Proposition 4.3. For ρ > 0 and 0 ≤ k ≤ n − 1,

Pr{s(T ρ
n ) = k + 1} = (k(1 + ρ) + ρ)

(n − k)ρk(n)k

n(nρ + k)k+1

= ρk(n − 1)k

(nρ + k − 1)k
− ρk+1(n − 1)k+1

(nρ + k)k+1
.

Moreover,

E[s(T ρ
n )] =

n−1∑
j=1

ρj (n − 1)j

(nρ + j − 1)j
+ 1.

https://doi.org/10.1239/aap/1208358892 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358892


Local properties of random mappings 199

From Proposition 4.3 we obtain the following result.

Corollary 4.3. For fixed ρ > 0 and k = �x√
n� for some fixed 0 < x < ∞,

Pr{s(T ρ
n ) = k + 1} ∼ 1√

n

(ρ + 1)x

ρ
exp

(
−

(
ρ + 1

ρ

)
x2

2

)
.

Moreover,

lim
n→∞ E

[
s(T

ρ
n )√
n

]
=

√
π

2

ρ

ρ + 1
.

The distribution obtained in Corollary 4.3 is the well-known Rayleigh distribution with
parameter σ = √

ρ/(ρ + 1) and mean equal to σ
√

π/2.
Finally, for 0 ≤ k ≤ n − 1, it follows, from Theorem 3.2 and Theorem 4.1, that

Pr{p(T ρ
n ) = k + 1} = n − k

n(k + 1)
Pr

{k+1∑
i=1

D̂
ρ
i,n = k

}
+ 1

n
Pr

{k+1∑
i=1

D̂
ρ
i,n = k + 1

}

= n − k

n(k + 1)
Pr

{k+1∑
i=1

D
ρ
i = k

∣∣∣∣
n∑

i=1

D
ρ
i = n

}

+ 1

n
Pr

{k+1∑
i=1

D
ρ
i = k + 1

∣∣∣∣
n∑

i=1

D
ρ
i = n

}
.

Using routine generating function calculations to compute the conditional probabilities above
and applying Proposition 3.1, we obtain the following result.

Proposition 4.4. Suppose that ρ > 0. Then, for 0 ≤ k ≤ n − 2,

Pr{p(T ρ
n ) = k + 1} = ρn + n − 1

n

(
n

k + 1

)
�(ρ(k + 1) + k)�((ρ + 1)(n − k − 1))�(ρn)

�(ρ(k + 1))�(ρ(n − k − 1))�(ρn + n)

= 1

n

(
n − 1

k

)
ρ

ρ + 1

((ρ + 1)(k + 1) − 1)k((ρ + 1)(n − k − 1))n−k−1

((ρ + 1)(k + 1) − 1)((ρ + 1)n − 2)n−2
,

while

Pr{p(T ρ
n ) = n} = 1

n
.

Moreover,

E[p(T ρ
n )] =

n−1∑
j=1

ρj (n − 1)j

(nρ + j − 1)j
+ 1.

We note that the distribution above is strongly related to the quasi-hypergeometric distribu-
tion I (see [14, Equation (2.122)]). We also obtain from Proposition 4.4, by the usual asymptotic
calculations, the following result.
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Corollary 4.4. For fixed ρ > 0 and k = 0, 1, . . . ,

lim
n→∞ Pr{p(T ρ

n ) = k + 1}

= 1

ρk

(
(ρ + 1)(k + 1)

k

)
1

k + 1

(
(ρ + 1)(k + 1) − k

(ρ + 1)(k + 1) − 1

)(
ρ

ρ + 1

)(ρ+1)(k+1)

= ρ

(ρ + 1)k + ρ

(
(ρ + 1)k + ρ

k

)(
1

ρ + 1

)k(
ρ

ρ + 1

)(ρ+1)k+ρ−k

.

Moreover,

E[p(T ρ
n )] ∼

√
π

2

ρ

ρ + 1
n.

We note that in this case the limiting distribution given above is related to the generalised
binomial distribution (see [14, Equation (2.121)]) and has infinite mean.

4.2. An anti-preferential attachment model

In this subsection we consider
T m

n : [n] → [n],
a random mapping with ‘anti-preferential attachment’, where m ≥ 1 is a fixed integer pa-
rameter. For 1 ≤ k ≤ n, we define T m

n (k) = η
(m,n)
k , where, as in the definition of T

ρ
n , the

variables η
(m,n)
1 , η

(m,n)
2 , . . . , η

(m,n)
n depend on the evolution of an urn scheme. The distri-

bution of each variable η
(m,n)
k is determined by a (random) n-tuple of nonnegative weights

�b(k) = (b1(k), b2(k), . . . , bn(k)), where, for 1 ≤ j ≤ n, bj (k) is the number of balls in the j th
urn at the start of the kth round of the urn scheme. Specifically, given �b(k) = �b = (b1, . . . , bn),
we define

Pr{η(m,n)
k = j | �b(k) = �b} = bj∑n

i=1 bi

.

The random weight vectors �b(1), �b(2), . . . , �b(n) associated with the urn scheme are determined
recursively. For k = 1, we set b1(1) = b2(1) = · · · = bn(1) = m. For k > 1, �b(k)

depends on both �b(k − 1) and the value of η
(m,n)
k−1 as follows. Given that η

(m,n)
k−1 = j , we set

bj (k) = bj (k − 1) − 1 and, for all other i 
= j , we set bi(k) = bi(k − 1) (i.e. if η
(m,n)
k−1 = j

then a ball is removed from the j th urn).
The random mapping T m

n as defined above is an anti-preferential attachment model in the
following sense. Since, for 1 ≤ k ≤ n, we have T m

n (k) = η
(m,n)
k and since the (conditional)

distribution of η
(m,n)
k depends on the state of the urn scheme at the start of round k, it is clear

that vertex k is less likely to ‘choose’ vertex j if the weight bj (k) is (relatively) small, i.e. if
several of the vertices 1, 2, . . . , k − 1 have already been mapped to vertex j . More precisely,
the smaller the value of m, the stronger the anti-preferential effect. For values of m much larger
than n, the anti-preferential effect is negligible and this model is essentially equivalent to the
uniform random mapping model. It is also clear from the definition of T m

n that the in-degree of
any vertex in the random digraph Gm

n ≡ G(T m
n ) is at most m and, for the case in which m = 1,

T 1
n is a (uniform) random permutation. The distribution of T m

n is given by Theorem 4.2, below,
and was obtained in [9].

Theorem 4.2. Suppose that Dm
1 , Dm

2 , . . . are i.i.d. Bin(m, p) variables, where m is a positive
integer parameter. Let D̂(m, n) = (D̂m

1,n, D̂
m
2,n, . . . , D̂

m
n,n) be a sequence of variables with joint
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distribution given by

Pr{D̂m
i,n = di, 1 ≤ i ≤ n} = Pr

{
Dm

i = di, 1 ≤ i ≤ n

∣∣∣∣
n∑

i=1

Dm
i = n

}
.

Then the random mappings T m
n and T

D̂(m,n)
n have the same distribution.

Since T m
n

d∼ T
D̂(m,n)
n , it follows that the random digraphs Gm

n ≡ G(T m
n ) and G

D̂(n,m)
n have

the same distribution. So, as in the case of the preferential attachment model, we can investigate
the local properties of Gm

n by considering the local properties of G
D̂(n,m)
n . We begin by noting

that, for any integer 1 ≤ x ≤ n − 1, we have

E[D̂m
1,n(D̂

m
1,n − 1)D̂m

2,n · · · D̂m
x,n]

= E

[
Dm

1,n(D
m
1,n − 1)Dm

2,n · · · Dm
x,n

∣∣∣∣
n∑

i=1

Dm
i,n = n

]

=
∑

∑n
i=1 di=n

(d1 − 1)d1d2 · · · dx

(
m
d1

) · · · (m
dn

)
(nm

n

)

=
min(n,xm)∑

t=x+1

∑
∑x

i=1 di=t

and
∑n

i=1 di=n

(d1 − 1)d1d2 · · · dx

(
m
d1

) · · · (m
dn

)
(nm

n

)

=
min(n,xm)∑

t=x+1

∑
∑x

i=1 di=t

(d1 − 1)d1d2 · · · dx

(
m
d1

) · · · (m
dx

)(nm−xm
n−t

)
(nm

n

)

= mx(m − 1)

min(n,xm)∑
t=x+1

∑
∑x

i=1 di=t

(
m−2
d1−2

)(
m−1
d2−1

) · · · (m−1
dx−1

)(nm−xm
n−t

)
(nm

n

)

= mx(m − 1)

min(n,xm)∑
t=x+1

(xm−x−1
t−x−1

)(nm−xm
n−t

)
(nm

n

)

= mx(m − 1)

(nm−x−1
n−x−1

)
(nm

n

)
= mx(m − 1)

(n)x+1

(nm)x+1
. (4.7)

In the summations above the sum is always taken over those degree sequences �d for which the
binomial coefficients are defined. We also adopt the formal convention that

(0
0

) = 1. By similar
calculations we also obtain, for 1 ≤ x ≤ n (and m ≥ 2),

E[D̂m
1,nD̂

m
2,n · · · D̂m

x,n] = mx

(nm−x
n−x

)
(nm

n

) = mx (n)x

(nm)x
. (4.8)

As in the case of the preferential attachment model, we obtain Proposition 4.5, below, from
Corollary 3.2, Corollary 3.5, Theorem 4.2, (4.7), and (4.8).
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Proposition 4.5. For m ≥ 2 and 1 ≤ k ≤ n − 1,

Pr{h(T m
n ) = k} = 1

n

n−1∑
t=k

mt (m − 1)(n)t+1

(nm)t+1
and Pr{h(T m

n ) = 0} = 1

n

n∑
t=1

mt (n)t

(nm)t
.

Moreover,

E[h(T m
n )] = 1

2
+

n∑
j=1

n − 2j

2n

mj (n)j

(nm)j
.

We obtain Corollary 4.5, below, from Proposition 4.5, by routine asymptotic calculations.

Corollary 4.5. For fixed m ≥ 2 and k = �x√
n� for some fixed 0 < x < ∞,

Pr{h(T m
n ) = k} ∼ 1√

n

∫ ∞

x

(
m − 1

m

)
exp

(
−

(
m − 1

m

)
u2

2

)
du.

Moreover,

lim
n→∞ E

[
h(T m

n )√
n

]
= 1

2

√
π

2

m

m − 1
.

Likewise, we obtain Proposition 4.6 and Corollary 4.6, below, from Corollary 3.3, Corol-
lary 3.4, Theorem 4.2, (4.7), and (4.8).

Proposition 4.6. For m ≥ 2 and 0 ≤ k ≤ n − 1,

Pr{�(T m
n ) = k + 1} = 1

n

n−1∑
t=k+1

mt(m − 1)(n)t+1

(nm)t+1
+ 1

n
mk+1 (n)k+1

(nm)k+1
.

Moreover,

E[�(T m
n )] = 1

2
+ 1

2

n∑
j=1

mj(n)j

(nm)j
.

Corollary 4.6. For fixed m ≥ 2 and k = �y√
n� for some fixed 0 < y < ∞,

Pr{�(T m
n ) = k + 1} ∼ 1√

n

∫ ∞

y

(
m − 1

m

)
exp

(
−

(
m − 1

m

)
u2

2

)
du.

Moreover,

lim
n→∞ E

[
�(T m

n )√
n

]
= 1

2

√
π

2

m

m − 1
.

It follows, from Corollary 4.5 and Corollary 4.6, that, as in the case of the preferential
model, the variables h(T m

n )/
√

n and �(T m
n )/

√
n converge in distribution to Yα , but with α =

(m − 1)/m in this case, and their expected values converge to E[Yα]. Again, for ‘large’ m, we
obtain limiting distributions which are close to those obtained for uniform random mappings.
The smaller m, the bigger the mean length (height), but since we consider only integers m ≥ 2,
this model is not radically different from the uniform random mapping model.

From Corollary 3.1, Proposition 3.1, Theorem 4.2, (4.7), and (4.8) we obtain the following
result.
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Proposition 4.7. For m ≥ 2 and 0 ≤ k ≤ n − 1,

Pr{s(T m
n ) = k + 1} = mk

n
(k(m − 1) + m)

(n)k+1

(nm)k+1

= mk (n − 1)k

(nm)k
− mk+1 (n − 1)k+1

(nm)k+1
.

Moreover,

E[s(T m
n )] =

n−1∑
j=1

mj(n − 1)j

(nm)j
+ 1.

Proposition 4.7 immediately implies the following result.

Corollary 4.7. For fixed m ≥ 2 and k = �x√
n� for some fixed 0 < x < ∞,

Pr{s(T m
n ) = k + 1} ∼ 1√

n

(m − 1)x

m
exp

(
−

(
m − 1

m

)
x2

2

)
.

Moreover,

lim
n→∞ E

[
s(T m

n )√
n

]
=

√
π

2

m

m − 1
.

As in the preferential case, the distribution obtained in Corollary 4.7 is the Rayleigh distri-
bution, now with parameter σ = √

m/(m − 1).
Finally, we have the following result.

Proposition 4.8. For m ≥ 2 and 0 ≤ k ≤ n − 1,

Pr{p(T m
n ) = k + 1} =

(
n − 1

k

)
m

m(k + 1)

(m(k + 1))k(m(n − k − 1))n−k−1

(mn)n−1
.

Moreover,

E[p(T m
n )] =

n−1∑
j=1

mj(n − 1)j

(nm)j
+ 1.

Proof. It follows, from Theorem 3.2 and Theorem 4.2, that, for m ≥ 2 and 0 ≤ k ≤ n − 1,

Pr{p(T m
n ) = k + 1}

= n − k

n(k + 1)
Pr

{k+1∑
i=1

D̂m
i,n = k

}
+ 1

n
Pr

{k+1∑
i=1

D̂m
i,n = k + 1

}

= n − k

n(k + 1)
Pr

{k+1∑
i=1

Dm
i = k

∣∣∣∣
n∑

i=1

Dm
i = n

}
+ 1

n
Pr

{k+1∑
i=1

Dm
i = k + 1

∣∣∣∣
n∑

i=1

Dm
i = n

}

= n − k

n(k + 1)

(
m(k+1)

k

)(
m(n−k−1)

n−k

)
(mn

n

) + 1

n

(
m(k+1)

k+1

)(
m(n−k−1)

n−k−1

)
(mn

n

)

= (mn − n + 1)
(
m(k+1)

k+1

)(
m(n−k−1)

n−k−1

)
n(mk + m − k)

(mn
n

) .

The formula for the mean follows directly from Proposition 3.1 and (4.8).
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We note that the above distribution is also related to the quasi-hypergeometric distribution I
(see [14, Equation (2.122)]). Straightforward asymptotic calculations establish the following
result.

Corollary 4.8. For m ≥ 2 and k ∈ {0, 1, 2, . . .},

lim
n→∞ Pr{p(T m

n ) = k + 1} = 1

(m − 1)k

(
mk + m

k

)
1

k + 1

(
1 − 1

m

)mk+m

.

Moreover,

E[p(T m
n )] ∼

√
π

2

m

m − 1
n.

We note that the asymptotic distribution for p(T m
n ) is the Consul distribution (see [14, p. 98])

with parameters m and θ = 1/m, and infinite mean.

5. Final remarks

One of the main advantages of the random mapping model T D̂
n is that we have a calculus

for this model which allows us to determine the distributions of several variables associated
with the structure of GD̂

n in terms of expectations of simple functions of D̂1, D̂2, . . . , D̂n. As
we have seen above, in the special case where the variables D̂1, D̂2, . . . , D̂n have the same
distribution as a collection of i.i.d. variables D1, D2, . . . , Dn conditioned on

∑n
i=1 Di = n, it

is straightforward to use this calculus to obtain exact and asymptotic distributions for various
important random variables associated with the local structure of GD̂

n . The calculus for T D̂
n also

illustrates the fundamental importance of the distribution of the underlying degree sequence
D̂1, . . . , D̂n to the structure of the random mapping digraph. This suggests that in various
modelling applications the key to fitting a random mapping model is to fit the joint distribution
of the vertex in-degree data. As an example, we mention the work of [1] on fitting random
mappings with constraints on coalescence to shift register data. In the companion paper [9] we
discuss how T D̂

n provides an easier and more natural model for such data.
In this paper we have also considered the local structure of two special examples, T

ρ
n and

T m
n , for the case where the parameters ρ and m, respectively, are fixed. In another companion

paper [10] we investigate the structure T
ρ
n when ρ is a function of n, and show that the asymptotic

structure of T
ρ
n depends on whether ρn → ∞ or ρn → β > 0, or ρn → 0 as n → ∞. In the

model T m
n the parameter must be a positive integer. Most of our results are given for m ≥ 2

since the case m = 1 corresponds to a uniform random permutation. For the model T m
n , the

case in which m = 2 corresponds to the greatest anti-preferential effect. It would be interesting
to consider an extension, T̃ m

n , where the parameter m is any real number greater than 1 and
is such that T̃ m

n = T m
n when m is an integer. In particular, we would like to study how the

structure of T̃ m
n ‘evolves’ from a random mapping to a (uniform) random permutation as m

decreases to 1.
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