J. Austral. Math. Soc. (Series A) 41 (1986), 51-58

A VARIATIONAL METHOD FOR THE CONSTRUCTION OF CONVERGENT ITERATIVE SEQUENCES

ZALMAN RUBINSTEIN

(Received 20 June 1984; revised 3 September 1984)

Communicated by J. H. Chabrowski

Abstract

Convergent iterative sequences are constructed for the polynomials $f_m = z + z^m$, $m \ge 2$, with initial point the lemniscate $\{z: |f'_m(z)| \le 1\}$. In the particular case m = 2 convergent iterative sequences are constructed also for $f_m^{-1}(z)$ with an arbitrary initial point. The method is based on a certain variational principle which allows reducing the problem to the well known situation of an analytic function mapping a simply connected domain into a proper subset of itself and possessing a fixed point in the domain.

1980 Mathematics subject classification (Amer. Math. Soc.): 30 C 10; secondary 39 B 10.

1. Introduction

The following easy consequence of Schwarz's lemma and the Riemann mapping theorem was applied in [3] for the construction of convergent iterative radicals.

LEMMA 1. Let f be an analytic mapping of a simply connected region G of the complex plane into one of its proper subsets. If f has a fixed point $p \in G$, then for every $z_0 \in G$ the sequence $z_{n+1} = f(z_n)$, n = 0, 1, ..., converges to p as $n \to \infty$.

The restriction of $p \in G$ is essential for the proof of Lemma 1. However, in many applications it appears that p is on the boundary of G. We then apply Lemma 1 to a perturbed function f_{ϵ} which depends on a positive parameter ϵ and

^{© 1986} Australian Mathematical Society 0263-6115/86 \$A2.00 + 0.00

Zalman Rubinstein

show that the perturbed sequences $\{w_n(\varepsilon)\}_{n=0}^{\infty}, w_n(\varepsilon) = f_{\varepsilon}(w_{n-1}(\varepsilon))$, converge to $\{z_n\}_{n=0}^{\infty}$ as $\varepsilon \to 0$ eventually uniformly in *n* (see Lemma 3). We apply this procedure to the construction of a convergent iterative polynomial sequence of arbitrary degree $m(m \ge 2)$, where $f = z + z^m$, and where G is a component of the lemniscate $\{z: |f'(z)| < 1\}$. In the particular case m = 2 the variational method is also applied to an analytic branch of f^{-1} in a suitable G to construct convergent sequences with an arbitrary z_0 . Certain open problems are mentioned. For a general existence theorem of convergent cyclic sequences formed by f and f^{-1} , see [1].

2. Several lemmas

Throughout this note $f(z) = z + z^m$, $m \ge 2$, and $R = \{z: |f'(z)| < 1\}$; R consists of m - 1 simply connected components having a joint boundary point at the origin. Each component has two tangents at the origin which make an angle of $\alpha = \pi/(m-1)$. Two adjacent components are separated by a sector of aperture α . Let R_m be the component of R which is symmetric with respect to the ray arg $z = \alpha$.

LEMMA 2. $f(z): R_m \to R_m$.

PROOF. (a) We show first f(z): $R \to R$. We have to show that for $z \in R$

$$\left|\left(z+z^{m}\right)^{m-1}+\frac{1}{m}\right|<\frac{1}{m},$$

or, setting $w = 1/m + z^{m-1}$, that

$$h(w) = \left(w - \frac{1}{m}\right) \left(w + 1 - \frac{1}{m}\right)^{m-1} + \frac{1}{m}$$

has modulus less than 1/m for |w| < 1/m. Now

$$h(w) = \sum_{k=2}^{m} \frac{(m-1)^{m-k-1}}{m^{m-k}} \Big[(m-1) \binom{m-1}{k-1} - \binom{m-1}{k} \Big] w^{k} + \frac{1}{m} \Big[1 - \Big(\frac{m-1}{m} \Big)^{m-1} \Big].$$

Denote the first sum by $h_1(w)$. $h_1(w)$ has positive coefficients, so that $|h_1(w)| < h_1(1/m)$ for |w| < 1/m. Now a direct calculation shows that

$$h_1\left(\frac{1}{m}\right) = \frac{\left(m-1\right)^{m-1}}{m^m}.$$

Therefore,

(1)
$$|h(w)| < h_1\left(\frac{1}{m}\right) + \frac{1}{m} - \frac{(m-1)^{m-1}}{m^m} = \frac{1}{m}$$

(b) Now let $z \in R_m$. Then

$$\arg f(z) = \arg z + \arg(1 + z^{m-1}).$$

Also,

$$1 + z^{m-1} = \frac{m-1}{m} + \rho e^{i\phi}, \qquad 0 \le \rho \le \frac{1}{m},$$

so that $\theta = \arg(1 + z^{m-1})$ satisfies $|tg\theta| \le 1/(m(m-2))^{1/2} < \pi/(m-1)$ for $m \ge 3$. Now the various components of R are separated by angles of $\pi/(m-1)$, so that $f(z) \in R_m$. For m = 2, we have $R_m = R$, so that part (a) of the proof is sufficient.

REMARK. It is clear from the inequality $|h(w)| \leq 1/m - h_1(1/m) + |h_1(w)|$ that |h(w)| = 1/m can occur only when $|h_1(w)| = h_1(1/m)$, or w = 1/m, if m > 2, that is, at z = 0. If $S_m = f(R_m)$, then $S_m \subset R_m$ and the boundaries of S_m and R_m intersect only at the origin. For m = 2 this can be verified directly. Indeed the above equality occurs for $w = \pm 1/m$, which values correspond to z = 0 and z = -1. Both of these points are mapped by f to the origin. One concludes that a sufficiently small translation of S_m in the direction of the axis of symmetry of R_m will still be a subset of R_m ; that is, if

(2)
$$f_{\varepsilon} = f + \varepsilon \exp\left(\frac{\pi i}{m-1}\right),$$

then $f_{\epsilon}(\overline{R}_m) \subset R_m$ for all sufficiently small $\epsilon > 0$. f_{ϵ} has a single fixed point $p_m = \epsilon^{1/m} \exp(\pi i/(m-1))$ in R_m .

For a fixed $\varepsilon > 0$, let z_0 , $w_0 \in R_m$, $z_n = f(z_{n-1})$, and $w_n = f_{\varepsilon}(w_{n-1})$, $n = 1, 2, \dots$

LEMMA 3. For all sufficiently small $\varepsilon > 0$, there is an integer N such that, for all $n \ge N$,

(3)
$$|w_{n+1} - z_{n+1}| \leq |w_n - z_n| (1 - \frac{1}{2} \varepsilon^{(m-1)/m}) + \varepsilon.$$

PROOF. By Lemma 1, $w_n \to p_m$ as $n \to \infty$. Choose N such that

with $|t_n| < \varepsilon$ for n > N. Also, since $z_n \in R_m$, we have $z_n^{m-1} = -1/m + r_m$, $|r_m| < 1/m$, and

(5)
$$\frac{\pi}{2(m-1)} < \arg z_n < \frac{3\pi}{2(m-1)}.$$

[3]

By (4), for $j \ge 1$, we have (6) $w_n^j = p_m^j + O(\varepsilon^{1+(j-1)/m})$

as $\varepsilon \to 0$. Since arg $p_m = \pi/(m-1)$, we have

$$\arg w_n^j = \frac{\pi j}{(m-1)} + O(\varepsilon^{1-1/m}).$$

By (5) and (6), for $1 \le k \le m - 1$, we have

$$\frac{\pi}{2} \left[\frac{m+k-1}{m-1} + O(\varepsilon^{1-1/m}) \right] \leq \arg \left(z_n^{m-k-1} w_n^k \right)$$
$$\leq \frac{3\pi}{2} \left[\frac{3(m-1)-k}{3(m-1)} + O(\varepsilon^{1-1/m}) \right].$$

It follows that for sufficiently small $\varepsilon > 0$, $\arg(z_n^{m-k-1}w_n^k)$ and hence also

$$\arg\left(\sum_{k=1}^{m-2} z_n^{m-k-1} w_n^k\right) = \arg \zeta_m$$

satisfy

(7)
$$\frac{\pi}{2} + \delta \leq \arg \zeta_m \leq \frac{3\pi}{2} - \delta, \qquad \delta > 0.$$

Now by (6),
(8)

$$|f(w_n) - f(z_n)| = |w_n - z_n| \left| 1 + w_n^{m-1} + w_n^{m-2} z_n + \dots + z_n^{m-1} \right|$$

 $\leq |w_n - z_n| \left\{ \left| 1 - \frac{1}{m} - \varepsilon^{(m-1)/m} + r_m + \zeta_m \right| + O(\varepsilon^{1 + (m-2)/m}) \right\}$

and, for sufficiently small ε , by (4) and (7), we have

(9)
$$\left| \left(1 - \frac{1}{m} - \varepsilon^{(m-1)/m} \right) + \zeta_m \right| + |r_m| \leq \left| 1 - \frac{1}{m} - \varepsilon^{(m-1)/m} \right| + |r_m| \leq 1 - \varepsilon^{(m-1)/m}.$$

So by (8) and (9),

$$|f(w_n) - f(z_n)| \leq |w_n - z_n| \{ (1 - \varepsilon^{(m-1)/m}) + O(\varepsilon^{1 + (m-2)/m}) \}$$

$$\leq |w_n - z_n| (1 - \frac{1}{2} \varepsilon^{(m-1)/m}).$$

The result now follows by the last inequality and the relation

$$|w_{n+1}-z_{n+1}| \leq |f(w_n)-f(z_n)|+\varepsilon.$$

We turn now our attention to the reverse sequence

(10)
$$\zeta_n = f^{-1}(\zeta_{n-1}), \quad n = 1, 2, \dots,$$

where f^{-1} is one of the possible values of the multiple-valued inverse function of f. Wherever necessary the exact choice of f^{-1} will be indicated.

LEMMA 4. The sequence $\{\zeta_n\}_{n=0}^{\infty}$ is bounded for every choice of ζ_0 . In particular

(11)
$$|\zeta_n| \leq \operatorname{Max}(2^{1/(m-1)}, |\zeta_0|).$$

PROOF. Write (10) in the form

(12)
$$\zeta_n^m + \zeta_n = \zeta_{n-1}.$$

By Cauchy's theorem [2, p. 122], the zeros ζ_n of (12) are bounded in modulus by the only positive zero r_n of the polynomial

$$p(x) = x^m - x - r_{n-1} = 0, \qquad r_{n-1} = |\zeta_{n-1}|.$$

(a) If $r_{n-1} > 2^{1/(m-1)}$, then $x^m - x > x > r_{n-1}$ for $x > r_{n-1}$. Therefore $r_n \le r_{n-1}$.

(b) If $r_{n-1} \leq 2^{1/(m-1)}$, then $r_n \leq 2^{1/(m-1)}$ because $p(2^{1/(m-1)}) \geq 0$. Thus if $|\zeta_0| \leq 2^{1/(m-1)}$, then $|\zeta_n| \leq 2^{1/(m-1)}$, and if $|\zeta_0| > 2^{1/(m-1)}$, then we have (11).

REMARK. Lemma 4 implies that for $K > 2^{1/(m-1)}$, if $|\zeta_0| < K$, then also $|\zeta_n| < K$ for all n.

Consider the particular case m = 2. Let $g(w) = f^{-1}(w) = -\frac{1}{2} + \sqrt{w + \frac{1}{4}}$, where we assume Im $g(w) \ge 0$. If

$$G_0 = \{ w: \operatorname{Im} w > 0 \} \cap \{ w: |w| < K \}, \qquad K > 2^{1/(m-1)}$$

then $g: G_0 \to G_0$. The function $g_{\epsilon} = f + i\epsilon$ satisfies also $g_{\epsilon}: G_0 \to G_0$ for all sufficiently small $\epsilon > 0$ and has the unique fixed point $w_{\epsilon} = i\epsilon + \sqrt{i\epsilon}$ in G_0 . We shall need the following lemma.

LEMMA 5. For $\varepsilon > 0$ sufficiently small, there is an integer N such that, for all $n \ge N$, the sequences $w_n = g_{\varepsilon}(z_{n-1}), z_0, w_0 \in G_0, z_n = g(z_{n-1})$ satisfy

 $|w_{n+1}-z_{n+1}| \leq M|w_n-z_n|+\varepsilon,$

where $M = 2/(2 + \sqrt{\epsilon})$.

PROOF. Let $\rho_n = |w_n - z_n|$. Then we have

(13)
$$\rho_{n+1} = \left| \sqrt{w_n + \frac{1}{4}} - \sqrt{z_n + \frac{1}{4}} + i\varepsilon \right| \leq \frac{\rho_n}{|A|} + \varepsilon,$$

where $A = \sqrt{w_n + \frac{1}{4}} + \sqrt{z_n + \frac{1}{4}}$. Let $\sqrt{z_n + \frac{1}{4}} = a_n + i\alpha_n$, $\sqrt{w_n + \frac{1}{4}} = b_n + i\beta_n$. First we show that $a_n \ge \frac{1}{2}$ for all $n \ge n_1$. Indeed, if $z_n = x_n + iy_n$ then we have

(14)
$$(2x_{n+1}+1)y_{n+1} = y_{n+1}$$

and

(15)
$$x_{n+1}^2 + x_{n+1} = x_n + y_{n+1}^2.$$

Zalman Rubinstein

[6]

Since $y_n \ge 0$, $x_{n+1} \ge -\frac{1}{2}$. By (15), $x_n \ge 0$ implies that $x_{n+1} \ge 0$. On the other hand, if $x_n \le 0$ for all *n*, then by (14), y_n increases to a finite positive limit, say y_0 . (14) then implies that $x_n \to 0$, so that $y_n \to 0$ by (15). Thus $y_0 = 0$, and we have a contradiction.

Secondly, we verify that

$$\sqrt{w_{\varepsilon}+\frac{1}{4}} = \frac{1}{2} + \sqrt{\frac{1}{2}\varepsilon} + i\sqrt{\frac{1}{2}\varepsilon}$$

Since, by Lemma 1, $w_n \to w_{\epsilon}$ as $n \to \infty$, it follows that, for $n \ge n_2$, we have

$$\sqrt{w_n + \frac{1}{4}} = \frac{1}{2} + \sqrt{\frac{1}{2}\varepsilon} + i\sqrt{\frac{1}{2}\varepsilon} + O(\varepsilon).$$

Thus, for $n \ge Max(n_1, n_2)$, we have

$$\operatorname{Re} A \ge 1 + \sqrt{\frac{1}{2}\varepsilon} + O(\varepsilon) \ge 1 + \frac{1}{2}\sqrt{\varepsilon}$$

for all sufficiently small ε . By (13),

(16)
$$\rho_{n+1} \leqslant M\rho_n + \varepsilon,$$

where $M = 2/(2 + \sqrt{\epsilon})$ and $n \ge N(\epsilon)$. This completes the proof.

REMARK. Solving inequality (16), we obtain for k = 1, 2, ...,

(17)
$$\rho_{N+k} \leq M^k \rho_N + \varepsilon \frac{1-M^k}{1-M} \leq M^k \rho_N + 3\sqrt{\varepsilon} \,.$$

3. The main theorems

THEOREM 1. For every $z_0 \in \overline{R}$ the sequence $z_{n+1} = f(z_n)$ converges to zero.

PROOF. Assume $z_0 \in \overline{R}_m$. Let $\tau_n = |w_n - z_n|$. By Lemma 3, for k = 1, 2, ..., for $N = N(\varepsilon)$, and for ε sufficiently small, we have $\tau_{N+k} \leq M_1^k \tau_N + \varepsilon(1 - M_1^k)/(1 - M_1)$, where $M_1 = 1 - \frac{1}{2}\varepsilon^{(m-1)/m}$. This leads to

(18)
$$\tau_{N+k} \leq M_1^k \tau_N + 2\varepsilon^{1/m}.$$

By Lemmas 1 and 2, $\{w_n\}$ is a convergent sequence, so that $|w_{N_1+k} - w_{N_1+l}| < \varepsilon$ for k, l = 1, 2, ..., and for N_1 sufficiently large. Assuming $N_1 \ge N$, we now have, by (18),

$$|z_{N_1+k}-z_{N_1+l}| \leq \tau_{N_1+k}+\tau_{N_1+l}+\varepsilon \leq \tau_{N_1}(M_1^k+M_1^l)+4\varepsilon^{1/m}+\varepsilon.$$

Therefore

(19)
$$\overline{\lim_{m,n\to\infty}} |z_m - z_n| = \overline{\lim_{k,l\to\infty}} |z_{N_1+k} - z_{N_1+l}| \leq 4\varepsilon^{1/m} + \varepsilon.$$

Inequality (19) implies that $\{z_n\}$ is a Cauchy sequence and thus converges to the origin as $n \to \infty$. This completes the proof of Theorem 1.

THEOREM 2. For every fixed $w_0 \in C$ the sequence $z_{n+1} = g(z_n)$ tends to zero.

PROOF. It is enough to prove Theorem 2 for $w_0 \in G_0$, since the argument carries over for the reflection of G_0 with respect to the real axis. For real w_0 the result then follows directly.

By Lemmas 4 and 1, and by (17), we have, for $n \ge N_2(\varepsilon)$ sufficiently large, and for k, l = 1, 2, ...,

$$\begin{aligned} |z_{N_2+k} - z_{N_2+l}| &\leq \rho_{N_2+k} + \rho_{N_2+l} + |w_{N_2+k} - w_{N_2+l}| \\ &\leq \rho_{N_2}(M^k + M^l) + 6\sqrt{\varepsilon} + \varepsilon. \end{aligned}$$

Hence

$$\overline{\lim_{m,n\to\infty}} |z_n - z_m| = \overline{\lim_{l,k\to\infty}} |z_{N_2+k} - z_{N_2+l}| \le 6\sqrt{\varepsilon} + \varepsilon.$$

Therefore $\{z_n\}$ is a convergent sequence and thus tends to the origin.

COROLLARY. If m = 2, then for every $z_0 \in \overline{R}$ there exists a sequence $\{z_n\}_{n=-\infty}^{\infty}$ such that $z_{n+1} = f(z_n)$, and $z_n \to 0$, $z_{-n} \to 0$ as $n \to \infty$. In addition, the sequences $\{z_n\}_{n=0}^{\infty}$ and $\{z_{-n}\}_{n=0}^{\infty}$ are essentially disjoint (except for a finite number of elements).

PROOF. This is a direct result of Theorems 1 and 2, and of the relations $\operatorname{Re} z_{-n} \ge 0$ for $n \ge n_1$, and $\operatorname{Re} z_n < 0$ for $n \ge 0$, if $z_0 \ne 0$.

We conclude with two conjectures.

CONJECTURE 1. Let $f(z) = z + z^m$, $m \ge 2$. There exists a determination of $f^{-1}(z)$ such that for every $z_0 \in C$ the sequence $z_n = f^{-1}(z_{n-1})$ tends to zero as $n \to \infty$.

If this conjecture is true, then by the previous results it would be possible to construct cyclic sequences for a polynomial of arbitrary degree $m \ge 2$.

CONJECTURE 2. Let $f(z) = z + a_2 z^2 + \cdots + a_m z^m$ be of degree $m \ge 2$, and assume that $a_k \ge 0$ for all k. Then for every z_0 such that $|f'(z_0)| \le 1$, the sequence $z_{n+1} = f(z_n)$ converges.

Zalman Rubinstein

Acknowledgement

The author thanks the referee for several valuable suggestions.

References

- [1] I. N. Baker and Z. Rubinstein, 'Simultaneous iteration by entire or rational functions and their inverses', J. Austral. Math. Soc. Ser. A 34 (1983), 364–367.
- [2] M. Marden, 'Geometry of polynomials', (Mathematical Surveys Number 3, Amer. Math. Soc., Providence, R.I., 1966).
- [3] Peter L. Walter, 'Iterated complex radicals', The Mathematical Gazette 67 (1983), 269-273.

Department of Mathematics University of Colorado Boulder, Colorado 80309 U.S.A. Department of Mathematics University of Haifa Mount Carmel, Haifa Israel