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Abstract . The problems of modeling of the rotational motion of the Earth are 
considered in the framework of general relativity. Both, rigid and deformable bodies 
are discussed. Rigorous definitions of the tensor of inertia, Tisserand-like axes 
and the angular velocity of rotation of an extended deformable body moving and 
rotating in external gravitational fields are proposed in the first post-Newtonian 
approximation. The implications of these post-Newtonian definitions on modeling 
of Earth rotation are analyzed. 

1. Introduct ion 

Rotational motion of extended bodies in general relativity is a complicated 
problem which has no complete solution up to now. On the other hand the 
observational accuracy of modern geodynamical observations is gradually 
approaching a level of 10 microarcsecond which forces us to think of theo­
retical models of Ear th rotation having an accuracy of 1 microarcsecond. 
This makes it indispensable to have a rigorous description of Earth rotation 
in the framework of general relativity. 

The concept of spatial rotation is intimately related to the symmetries 
of 3-dimensional Euclidean space of Newtonian mechanics and cannot be 
generalized in a physically meaningful way onto general relativity which 
deals with curved 4-dimensional space-time. Although in some special cases 
the space-time of general relativity does have an axis of symmetry and 
spatial rotation could be rigorously defined, this is certainly not the case 
when we consider the translational and rotational motion of the Earth in 
the gravitational field of other bodies of the Solar system. 

It is well known tha t a description of any observable physical process 
in general relativity must be coordinate-independent to be physically mea-
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ningful. However, modern methods of monitoring Earth rotation are based 
on determination of positions of Earth-based observing sites with respect to 
some reference system and subsequent investigation of the time-dependence 
of the positions. Therefore, relativistic modeling of Ear th dynamics should 
necessarily refer to a relativistic reference system, and we do not have to 
elaborate a coordinate-independent approach to describe Earth rotation. 
On the contrary, it is quite sufficient to agree about what we call Earth ro­
tation in the reference system which we use to describe the coordinates of 
the observing sites. In tha t case, we can say tha t the Earth orientation pa­
rameters, which describe Earth rotation, are defined operationally (that is 
by the procedure of measurements) and are aimed at an ad hoc description 
of Earth rotation only in tha t particular reference system. 

2. P o s t - N e w t o n i a n Rotat iona l Equat ions of M o t i o n 

The starting point for a discussion of Earth rotation in both general re­
lativity and Newtonian mechanics is the rotational equations of motion 
relating the angular momentum of the body and the torque. Rotational 
equations of motion of extended bodies in the post-Newtonian approxi­
mation of general relativity have been investigated by many authors (see 
Fock, 1959; Brumberg, 1972; Damour, Soffel and Xu, 1993; Klioner, 1996). 
Provided tha t a physically adequate geocentric reference (t, xl) is used, the 
post-Newtonian rotational equations of motion of the Earth can be repre­
sented as (see Brumberg and Kopeikin, 1989; Damour, Soffel and Xu, 1993; 
Klioner, 1996 for a definition of the reference system and further technical 
details) > 

±Si = F* + 0{c-A), (1) 

where 5* is the post-Newtonian spin defined as 

5!' = Sijk l xjQkdx3 + 0 ( c " 4 ) , (2) 
Jv 

^ ( ^ ( i + f / ^ , , * ^ ^ ) 

c2 a = -^Taa, a{ = -Toi. (5) 
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Here TaP is the energy-momentum tensor of the matter , and V is the 3-
volume covering the Ear th . The right-hand side of (1) represents the post-
Newtonian torque 

F1' = eijk I (r(tt x) x> f dx3 + 0{c~% (6) 
Jv 

where fk is a post-Newtonian external tidal force (see Damour, Soffel 
and Xu, 1993; Klioner, 1996). In analogy to Newtonian physics the post-
Newtonian torque (6) vanishes for isolated bodies. Let us note tha t the 
post-Newtonian rotational equations of motion (1) are not unique. Some 
terms can be transferred from the right-hand side of (1) into the left-hand 
side leading to another definition of the post-Newtonian spin S' and the 
torque F*. The representation ( l ) - (6) has the advantage that the spin 5 s 

is explicitly proportional to the time-space components T 0 ' of the energy-
momentum tensor which plays an important role below. 

3 . Angular Ve loc i ty and Tensor of Inert ia 

Standard way to split the spin into an angular velocity and a tensor of 
inertia in Newtonian mechanics is to consider a rigid body. A rigid body is 
usually defined as a system consisting of a number of point masses which 
do not move with respect to each other. For a rigid body we can introduce 
a rigidly rotating reference system in which all the particles of the body 
are at rest. The angular velocity of the rotating reference system relative 
to the inertial one is called angular velocity of rotation of the body. The 
angular velocity and the spin (both of which are uniquely defined) define 
uniquely a tensor of inertia. 

In general relativity it is not trivial to define a rigid body in a physically 
meaningful way (see Dixon, 1979 for a review). It is completely meaningless 
to say tha t the coordinate distances between particles of the body should 
be constant in some reference system, since it is always possible to con­
sider another reference system, in which the distances would depend on 
time, and all reference systems covering the space-time region under con­
sideration are equivalent. However, we can define the body to be rigid if 
physical, coordinate-independent distances between all pairs of the partic­
les are constant. This is the so called Born rigidity, which is sometimes 
called kinematical rigidity since it is based only on the internal velocity 
distribution within the body and ignores stresses and energy fluxes con­
tributing to TaP (Dixon, 1979). Another approach, which could be called 
dynamical rigidity, consists in constraining the energy-momentum tensor of 
the body Ta® and/or gravitational field produced by the body to satisfy 
some specific conditions (Dixon, 1979; Thorne and Giirsel, 1983). Thus, 
Thorne and Giirsel (1983) (see also Soffel, 1994) constructed a mathemati-
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cally self-consistent rigid body model by constraining T01^ to satisfy 

<** = \TOi = ^T°°sijk^(t)xk + ±TiseajkJ(t)xk + 0(u2) + 0{c~A), (7) 

where ul (t) can be considered as angular velocity of rotation of the body. 
According to (2)-(3) this condition makes the post-Newtonian spin S1 pro­
portional to the angular velocity w* and defines the relativistic tensor of 
inertia (see Thorne and Giirsel, 1983; Soffel, 1994). 

Rigorously speaking a rigid body in general relativity can never change 
its angular velocity, since this would violate the basic postulate of relativity 
stating tha t no physical interaction can propagate at infinite velocity. Howe­
ver, for practical purposes it is much more interesting to consider precessing 
rigid bodies. For this purpose Thorne and Giirsel (1983) have suggested to 
neglect everywhere the terms 0(ui2) of the second order with respect to an­
gular velocity of the body. There are two kinds of such terms: the terms of 
order of ei = u2L2/c2 and those of order of Si = u>2L/g = 6\ • L/m, where 
L is the typical linear size of the body, g is the gravitational acceleration on 
the surface of the body and m = GM/c2 is the gravitational radius of the 
body. For pulsars with a period of order of 1 second (for which the approach 
was initially invented) the small parameter £ = max(£i,£2) ~ 1 0 - 7 . Howe­
ver, for the Earth e ~ 4 • 1 0 - 3 which means that the approach allows to 
calculate at most 2 digits of the relativistic effects in the rotational motion. 
Moreover, for Jupiter s ~ 0.1 and for a typical millisecond pulsar e ~ 0.2 
which makes the whole approach (at least in its present form) inapplicable 
to those objects. 

Although the concept of a rigid body is very attractive, real celestial 
bodies including the Earth deviate significantly from rigidity. The prin­
ciple idea to deal with deformable bodies in general relativity is to treat 
relativistic effects in internal motion within the body as additional defor­
mations and to treat the deformable body in basically the same way as we 
do in Newtonian mechanics: introduce a rigidly rotating reference system 
in which the body appears to be at rest on an average in one sense or 
another and then ascribe the angular velocity of rotation of that reference 
system to the body itself (see Dixon, 1979; Voinov, 1988; Klioner, 1996). 
This procedure is quite analogous to the definitions of Tisserand axes and 
principal axes of inertia of a deformable body in Newtonian mechanics. 

Representing formally the time-space component of the energy-momen­
tum tensor as 

ai = l y w = 7fi+ 1 r o o £ijkJ(t)x
k + \piaesjkJ(t)xk + 0(c-4) (8) 

c <r c* 

(where u(t) is an arbitrary function of time, and ptJ is the Newtonian stress 
tensor of the matter) we get 

Si = 'Si + Ciiui + 0(c-4), (9) 
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Cij(t) =f p(l + ^pj (6^xsxs - x^dx3 + ^eiakejba f xaxbpksdx3 

- ^ (7SiJaSS ~ 7<*ij + P). P = ^T°°- (io) 

<*ij(t)= f f pit^pMj^-dx'tdx3, (11) 
Jv Jv l x - x I 

p® = ! I p(t,x)pM{XX*'Y{**/ydx«dx3, (12) 
Jv Jv |x - x |° 

where U is the Newtonian gravitational potential and 5* is defined by (2 ) -
(3) where o* is formally substituted for a\ The representation (8) has been 
chosen such tha t C%3 for a deformable body coincide with the tensor of 
inertia for a rigid body in the sense of Thorne and Giirsel (see SofFel, 1994) 
up to terms 0(ui2). Some other advantages of (8) are noted in Klioner 
(1996). Possible definitions of oj(t) are 

1) Post-Newtonian Tisserand axes: 

5*(0 = 0 (13) 

2) Post-Newtonian principal axes of inertia: 

_ (A{t) 0 0 \ 
&>(t) = Pia(t)Pih(t)'gA{t), Ca\t)=\ 0 B{t) 0 , (14) 

V 0 0 C(t)J 

where orthogonal matrix P*i(t) is defined by 

W = \enkPmjPmk. (15) 

The question about the uniqueness of the condition (7) and the represen­
tation (8) remains open. 

4. Astronomica l Impl icat ions 

Having fixed a relativistic reference system to be used to model the motion 
of the Earth-based sites relative to the Ear th 's center of mass, we could ad­
opt any a priori assumptions on the internal structure of the Earth relative 
to that reference system. Usually, these assumptions are aimed to simplify 
the equations of motion. Observations should verify to what extent these 
assumptions reflect the reality. In this respect general relativity gives no 
further complications as compared to Newtonian physics. The assumptions 
can be of kinematical or dynamical nature. For example, the assumption of 
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:Cij (t) = eikau
k(t)Cai(t) + ejkau

k(t)Cai(t). (18) 

a Newtonian-like rigid-body velocity distribution within the Earth in the 
geocentric reference system 

jtx
i
a(t)=eijkJ(t)xk

a(t) (16) 

is closer to the reality than similar assumption in a relativistic barycentric 
reference system (t, xl) 

| ( z l ( £ ) - 4 ( f ) ) = eijku>i(i)(xk
a(t) - *j.(t)) (17) 

where il
E(i) is the barycentric position of the Ear th 's center of mass (see 

Brumberg, 1995 for a discussion of (16)—(17)). On the other hand, we could 
adopt some dynamical assumptions. For example, we can suppose that the 
post-Newtonian tensor of inertia C11 (t) rotates rigidly 

It 
Let us note tha t the three assumptions (16), (17) and (18) being quite 
different in general relativity are equivalent in Newtonian mechanics. 

We have seen above tha t the post-Newtonian rotational equations of 
motion of the Earth with respect to the relativistic geocentric reference sy­
stem can be represented formally similar to their Newtonian counterparts. 
This means tha t many of the Newtonian results concerning Earth rotation 
with respect to its center of mass are also true in the post-Newtonian appro­
ximation of general relativity. Let us discuss some aspects of the rotational 
equations of motion specific to general relativity. 

4.1. POST-NEWTONIAN TERMS IN THE TENSOR OF INERTIA CIJ 

According to the definition (10), the post-Newtonian tensor of inertia C , J 

has several explicit relativistic contributions. Assuming the Earth to be 
spherically symmetric in order to estimate these relativistic terms, one gets 
(Klioner, 1995) 

\\c% - C N I I * L 9 * 1 0 " 9 5 i j c + t e r m s o f o r d e r o f ~ iO" 1 2 ^ , (19) 

where C is the maximal principal moment of inertia of the Earth. The 
most precisely known parameter related directly to the tensor of inertia is 
probably dynamical ellipticity 

* - « z l £ ± 5 > , ( 2 0 ) 

where A, B, C are principal moments of inertia. Modern observations allow 
to measure the dynamical ellipticity with a precision of 6H/H ~ 1 0 - 5 — 
1 0 - 6 . The post-Newtonian effects in the tensor of inertia C , J give 

| g p N " g N U l . 9 - 1 0 - 9 , (21) 
H 
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which is about 3 orders of magnitudes smaller. In the same time, in some 
recent papers devoted to the rigid-Earth nutation (see, e.g., Hartmann and 
Soffel, 1996), the dynamical ellipticity is fixed formally with 9-10 significant 
digits and, therefore, the last one or two digits are influenced by general 
relativity. Let us note tha t the definition (10) relates the post-Newtonian 
tensor of inertia C , J to mat ter variables (such as mass density, internal 
pressure, etc.). However, in astronomical practice these relations are pro­
bably not of much importance. The equations describing various observing 
quantities can be parameterized in such a way tha t they involve explicitly 
CtJ as a whole. The value of C*J is derived directly from observations and 
its relation to the internal structure of the Earth is not always important . 

4.2. RELATION BETWEEN TENSOR OF INERTIA AND MASS 
QUADRUPOLE 

It can be shown tha t the basic Newtonian relation between Newtonian 
tensor of inertia C$ and Newtonian mass quadrupole M$ 

C # - ^ j C f f = -AfJ?', (22) 

is no longer valid in general relativity 

Cij _ hiJC*s ^ _Mij^ (23) 

where M , J is the post-Newtonian Blanchet-Damour quadrupole moment. 
The difference can be estimated as 

| |C»j _ hiJCss + M , j | | „ 1 0 -12 C > ( 2 4 ) 

o 
The principal observable parameter related to the mass quadrupole of 

the Earth is the second zonal harmonic J-i. Eq. (24) means in particular 
that in the usual definition of Ji 

C'-\{A' + B') . . . . 
J 2 = M # ( 2 5 ) 

one has to consider values A', B', C different from the principal moments 
of inertia used in the definition of dynamical ellipticity (20). 

Again, we have to note tha t Eq. (23) is probably of no importance for 
astronomical practice since the values of H and J2 are derived indepen­
dently and all the relativistic effects are masked by our poor knowledge of 
the Earth 's internal structure. On the other hand, this effect can play an 
important role when modeling pulsar timing da ta (see Thorne and Giirsel, 
1983). 

4.3. POST-NEWTONIAN EFFECTS IN TORQUE 

The post-Newtonian terms in the torque have a direct observable conse­
quence as it has been computed by Voinov (1988) and Bizouard et al. 

https://doi.org/10.1017/S0252921100046844 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046844


390 S.A. KLIONER 

(1992). The order of magnitude of this effect is ~ 1 microarcsecond in the 
Earth orientation parameters. The resulting expressions for this effect are 
different in the two mentioned papers and should be verified. 

We have seen that if we use a physically adequate geocentric reference 
system relativistic effects in Earth rotation are quite small. Nevertheless, it 
is necessary to agree upon the definitions concerning the relativistic mode­
ling of Ear th rotation in order to avoid any possible discrepancy between 
the results coming from various kinds of geodynamical observations as well 
as any ambiguity in determination of the Earth orientation relative to re­
mote quasars with an accuracy of the order of 1 microarcsecond. 
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