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1. Introduction. The critical point theory for smooth functions in a Banach space
is by now well established and excellent monographs devoted to various aspects of it are
already available; see for instance [10, 12, 7, 3, 11]. Starting with the famous Mountain
Pass Theorem (briefly, MPT) by Ambrosetti–Rabinowitz [10, Theorem 2.2], several
other meaningful results have been obtained. Let us mention here

(a) some ‘dual versions’ of the MPT; vide [10, Theorem 3.2] and, as regards the
more general case of linking subsets, [6, Theorem 2.2].

(b) the Saddle Point Theorem [10, Theorem 4.6].
(c) the Generalized MPT [10, Theorem 5.3].
(d) the results where the strict inequality occurring in the MPT is weakened to

allow also equality; see e.g. [6, Theorem 2.1].
(e) Benci–Rabinowitz’s theorem [10, Theorem 5.29], which unifies (b) and (c).
In 1981, through techniques of nonsmooth analysis previously introduced by

Clarke [5], K.-C. Chang developed a critical point theory for locally Lipschitz functions
in a Banach space, extending both the MPT and (b) to this more general framework;
vide Theorems 3.4 and 3.3 of [4], respectively. Later on, in 1997, D. Motreanu and C.
Varga made the same for Du’s result mentioned in (d); see [9, Theorem 2.1]. However,
to the best of our knowledge, no locally Lipschitz version of (a) and (c) can be found in
the literature. The main purpose of the present paper is to simply fill in such a gap, thus
improving the analogy between the two theories. The approach of [9] is adopted here.
Consequently, we work in the case of linkings and with the strict inequality weakened
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to permit also equality; vide Theorems 3.1 and 4.1 below. The latter result is then
employed to solve an elliptic hemivariational inequality patterned after Problem 5.1
in [10]. Let us also note that Theorem 4.1 might actually be reformulated for a wider
class of nonsmooth functions by using [8, Theorem 3.1]. Finally, possible extensions
of (e) as well as applications will be examined in a future paper.

2. Preliminaries. Let (X, ‖ · ‖) be a real Banach space. If ρ > 0, we define Bρ =
{x ∈ X : ‖x‖ < ρ}, B̄ρ = {x ∈ X : ‖x‖ ≤ ρ}, and ∂Bρ = {x ∈ X : ‖x‖ = ρ}. Given
x, z ∈ X , the symbol [x, z] indicates the line segment joining x to z, i.e.

[x, z] = {(1 − t)x + tz : t ∈ [0, 1]}.
We denote by X∗ the dual space of X , while 〈·, ·〉 stands for the duality pairing between
X∗ and X . A function g : X → � is called locally Lipschitz when to every x ∈ X there
correspond a neighbourhood Ux of x besides a constant Lx ≥ 0 such that

|g(z) − g(w)| ≤ Lx‖z − w‖ ∀z, w ∈ Ux.

If x, z ∈ X , the symbol g0(x; z) indicates the generalized directional derivative of g at
the point x along the direction z, namely

g0(x; z) = lim sup
w→x,t→0+

g(w + tz) − g(w)
t

.

It is known [5, Proposition 2.1.1] that g0 turns out upper semicontinuous on X × X .
Moreover, for locally Lipschitz g1, g2 : X → � one evidently has

(g1 + g2)0(x; z) ≤ g0
1(x; z) + g0

2(x; z) x, z ∈ X.

We denote by ∂g(x) the generalized gradient of g at x, i.e.

∂g(x) = {x∗ ∈ X∗ : 〈x∗, z〉 ≤ g0(x; z) ∀z ∈ X}.
Proposition 2.1.2 in [5] ensures that the set ∂g(x) is nonempty, convex, and weak∗

compact. Hence, it makes sense to write

mg(x) = min{‖x∗‖X∗ : x∗ ∈ ∂g(x)}.
The following compactness condition (see [4, Definition 2]) of Palais–Smale type will
be adopted throughout the paper.

(PS)g Every sequence {xn} ⊆ X satisfying g(xn) → d ∈ � and mg(xn) → 0 possesses
a convergent subsequence.

We say that x ∈ X is a critical point of g when 0 ∈ ∂g(x), which clearly means
g0(x; z) ≥ 0 for all z ∈ X . Finally, given a real number d, define

gd = {x ∈ X : g(x) ≤ d} gd = {x ∈ X : g(x) ≥ d},
Kd(g) = {x ∈ X : g(x) = d, x is a critical point of g}.

We conclude with the deformation results below. The first of them was established
by K.-C. Chang [4, Theorem 3.1], while the other is due to Motreanu–Varga [9,
Theorem 1.1].
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LEMMA 2.1. Let X be reflexive and let g : X → � be locally Lipschitz. Assume g
fulfils (PS)g, d ∈ �, while U denotes any neighbourhood of Kd(g). Then to every ε0 > 0
there correspond ε ∈]0, ε0[ besides a homeomorphism η : X → X such that

1. η(x) = x for all x ∈ X\g−1(]d − ε0, d + ε0]).
2. η(gd+ε\U) ⊆ gd−ε.

3. η(gd+ε) ⊆ gd−ε provided Kd(g) = ∅.

LEMMA 2.2. Let X, g, and d be as in Lemma 2.1. Suppose A, B are nonempty closed
subsets of X with the following properties:

A ∩ B = ∅; A ⊆ gd ; B ⊆ gd ; B ∩ Kd(g) = ∅.

Then there exist ε > 0 and a homeomorphism η : X → X such that
1. η(x) = x for every x ∈ A.
2. η(B) ⊆ gd−ε.

3. A dual version of the MPT with possibly ‘zero altitude’. It is known that the
Mountain Pass Theorem [10, Theorem 2.2] has a dual version, which also holds when
the ‘mountain ring’ possesses a ‘zero altitude’; see for instance [10, Chapter 4] and,
as regards the more general framework of linking subsets, [6, Theorem 2.2]. In this
section we shall prove that the same is true for locally Lipschitz functions.

The next definition of linking is adopted here; vide [9, Section 3]. Let (X, ‖ · ‖) be
a real reflexive Banach space and let Q, Q0, S be nonempty closed subsets of X such
that Q0 ⊆ Q. Write

� := {
γ ∈ C0(Q, X) : γ |Q0 = id|Q0

}
.

The pair (Q, Q0) is said to link with S provided Q0 ∩ S = ∅ and for every γ ∈ � it
results γ (Q) ∩ S �= ∅.

Now, as in [6, Theorem 2.2], we put

�∗ := {
γ ∗ ∈ C0(X, X) : γ ∗ is a homeomorphism, γ ∗|Q0 = id|Q0

}
.

THEOREM 3.1. Suppose (Q, Q0) links with S while the locally Lipschitz function f :
X → � satisfies the following assumptions in addition to (PS)f .

(f1) supx∈Q f (x) < +∞.
(f2) Q0 ⊆ fa and S ⊆ f a for some a ∈ �.

Then, setting

b := sup
γ ∗∈�∗

inf
x∈S

f (γ ∗(x)), c := inf
γ∈�

sup
x∈Q

f (γ (x))

one has
(i1) a ≤ b ≤ c,
(i2) Kb(f )\Q0 �= ∅,
(i3) Kb(f ) ∩ S �= ∅ if a = b.

Proof. We first note that c < +∞ because the function γ = id|Q belongs to � while
(f1) gives supx∈Q f (γ (x)) < +∞. Moreover, a ≤ b. In fact, γ ∗ = id ∈ �∗ and through
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(f2) we get

a ≤ inf
x∈S

f (γ ∗(x)) ≤ b.

Since (Q, Q0) links with S, for every γ ∈ �, γ ∗ ∈ �∗ there exists z ∈ Q such that
γ ∗−1(γ (z)) ∈ S. This forces

inf
x∈S

f (γ ∗(x)) ≤ f (γ ∗(γ ∗−1(γ (z)))) = f (γ (z)) ≤ sup
x∈Q

f (γ (x)).

As γ, γ ∗ were arbitrary, we actually have b ≤ c, and (i1) follows.
When a < b, by (f2) again it results Kb(f )\Q0 = Kb(f ). To show (i2) suppose on

the contrary that Kb(f ) = ∅ and define g = −f, d = −b, ε0 = (b − a)/2. Evidently, the
function g fulfils (PS)g while Kd(g) = ∅. Thus, using Lemma 2.1 we can find ε ∈]0, ε0[
besides a homeomorphism η : X → X such that

η(x) = x ∀x ∈ X\ f −1([(a + b)/2, (−a + 3b)/2[), (1)

b + ε ≤ f (η(x)) ∀x ∈ f b−ε. (2)

The definition of b produces γ ∗
ε (S) ⊆ f b−ε for some γ ∗

ε ∈ �∗. Hence, owing to (2),

b + ε ≤ inf
x∈S

f (η(γ ∗
ε (x))).

Since (f2) and (1) yield η ◦ γ ∗
ε ∈ �∗, the preceding inequality leads to b + ε ≤ b, which

is clearly impossible.
Finally, let a = b. The conclusion will be achieved once we verify (i3), because Q0 ∩

S = ∅. Suppose on the contrary that Kb(f ) ∩ S = ∅ and put, as before, g = −f, d =
−b, A = Q0, B = S. One immediately has A ⊆ gd, B ⊆ gd, Kd(g) ∩ B = ∅, while the
function g satisfies (PS)g. Then, by Lemma 2.2, there exist ε > 0 and a homeomorphism
η : X → X such that

η(x) = x ∀x ∈ Q0, (3)

b + ε ≤ f (η(x)) ∀x ∈ S. (4)

Through (3) we get η ∈ �∗. Therefore, due to (4),

b + ε ≤ inf
x∈S

f (η(x)) ≤ b,

a contradiction. This completes the proof. �
REMARK 3.1. The preceding result improves Theorem 2.2 in [6]. Moreover, it can

be regarded as the dual version of [9, Theorem 2.1].

REMARK 3.2. For bounded S, the conclusion of Theorem 3.1 remains true also
when condition (PS)f is replaced by the following weaker one:

(C)f Every sequence {xn} ⊆ X such that {f (xn)} turns out bounded and

lim
n→+∞(1 + ‖xn‖)mf (xn) = 0

possesses a convergent subsequence.
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In fact, by using the same arguments introduced in the proof of [4, Theorem 3.1] we
see that Lemma 2.1 holds with (C)f in place of (PS)f . Further, since S is bounded,
(C)f implies the Palais–Smale condition adopted in [9, Theorem 2.1].

4. The Generalized MPT and application. This section begins with a version
of the Generalized Mountain Pass Theorem [10, Theorem 5.3] for locally Lipschitz
functions.

Keep the same notation used in Section 3 and suppose further that X = V ⊕ E,
where V is finite dimensional, S ⊆ E, while Q = QV ⊕ [0, Re] with QV closed subset
of V, R > 0, e ∈ ∂B1 ∩ E.

THEOREM 4.1. Under the assumptions of Theorem 3.1 assertions (i1) − (i3) hold and,
moreover,

(i4) Kc(f )\Q0 �= ∅,
(i5) Kc(f ) ∩ S �= ∅ if a = c.

Proof. Since (i5) immediately follows from (i1) and (i3), it remains to show (i4) only.
When a = c, conclusion (i4) is a consequence of (i5) because Q0 ∩ S = ∅. So, let a < c.
In this case Kc(f )\Q0 = Kc(f ) by (f2). If Kc(f ) = ∅ then, using Lemma 2.1, we can find
ε ∈]0, (c − a)/2[ besides a homeomorphism η : X → X such that

η(x) = x ∀x ∈ X\ f −1(](a + c)/2, (−a + 3c)/2]), (5)

f (η(x)) ≤ c − ε ∀x ∈ fc+ε. (6)

The definition of c produces γε(Q) ⊆ fc+ε for some γε ∈ �. Hence, owing to (6),

sup
x∈Q

f (η(γε(x)) ≤ c − ε.

As (f2) and (5) yield η ◦ γε ∈ �, the above inequality leads to c ≤ c − ε, which is clearly
impossible. �

REMARK 4.1. A meaningful special case of Theorem 4.1 occurs when QV = V ∩
B̄R, Q0 = ∂Q (the boundary of Q relative to V ⊕ span {e}), while S = ∂Bρ ∩ E with
0 < ρ < R; vide [10, Theorem 5.3]. If V = {0}, namely X = E, Q0 = {0, Re}, ρ ∈]0, R[,
and S = ∂Bρ then the preceding result reduces to [9, Corollary 2.2].

REMARK 4.2. By means of [8, Theorem 3.1] we can easily reformulate Theorem 4.1
for functions f on X satisfying the structural hypothesis
(H)f f = � + α, where � : X → � is locally Lipschitz while α : X →]−∞,+∞] is
convex, proper, besides lower semicontinuous.

We now apply Theorem 4.1 to solve an elliptic hemivariational inequality patterned
after Problem (5.1) in [10].

Let 	 be a nonempty, bounded, open subset of the real Euclidean N-space
(�N, | · |), N ≥ 3, having a smooth boundary ∂	. The symbol |	| stands for the
Lebesgue measure of 	, while H1

0 (	) indicates the closure of C∞
0 (	) with respect

to the norm

‖u‖ :=
(∫

	

|∇u(x)|2 dx
)1/2

.
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Denote by 2∗ the critical exponent for the Sobolev embedding H1
0 (	) ⊆ Lp(	). Recall

that 2∗ = 2N
N − 2 , if p ∈ [1, 2∗] then there exists a constant cp > 0 fulfilling

‖u‖L p(	) ≤ cp‖u‖ ∀u ∈ H1
0 (	), (7)

and the embedding is compact whenever p ∈ [1, 2∗[; see e.g. [10, Proposition B.7].
Given a function a ∈ L∞(	) with

ess inf
x∈	

a(x) > 0, (8)

consider the Sturm–Liouville eigenvalue problem
{−
u = λa(x)u in 	,

u = 0 on ∂	.
(9)

It is well known (we refer for instance to [1, Theorem 0.6]) that (9) possesses a sequence
of eigenvalues {λn} which satisfies 0 < λ1 < λ2 ≤ · · · ≤ λn ≤ · · · (the number of times an
eigenvalue appears in the sequence equals its multiplicity) besides limn→+∞λn = +∞.
Let {ϕn} be a corresponding sequence of eigenfunctions normalized as follows:

‖ϕn‖2 = 1 = λn

∫
	

a(x)ϕn(x)2 dx, n ∈ �;
(10)∫

	

∇ϕm(x) · ∇ϕn(x) dx =
∫

	

a(x)ϕm(x)ϕn(x) dx = 0 provided m �= n.

If j : 	 × � → � fulfils the conditions
(j1) j is measurable with respect to each variable separately,
(j2) there exist a1 > 0, p ∈]2, 2∗[ such that

| j(x, t)| ≤ a1(1 + |t|p−1) ∀(x, t) ∈ 	 × �, (11)

then the function J : 	 × � → � defined by

J(x, ξ ) =
∫ ξ

0
−j(x, t) dt, (x, ξ ) ∈ 	 × �,

turns out well defined, J(·, ξ ) is measurable, while J(x, ·) is locally Lipschitz. So it
makes sense to consider its generalized directional derivative J0

x with respect to the
variable ξ . For our application, we will further assume
(j3) limξ→0

j(x,ξ )
ξ

= 0 uniformly in x ∈ 	,
(j4) there are constants µ > 2, a2 ∈ � such that

J0
x(ξ ; ξ ) ≤ µJ(x, ξ ) + a2 ∀(x, ξ ) ∈ 	 × �,

(j5) J(x, ξ ) ≤ min{0, a3(1 − |ξ |µ)} in 	 × � where a3 > 0.
Given λ ∈ �, denote by (Pλ) the following elliptic hemivariational inequality:

Find u ∈ H1
0 (	) satisfying

−
∫

	

∇u(x) · ∇v(x) dx + λ

∫
	

a(x)u(x)v(x) dx ≤
∫

	

J0
x(u(x); v(x)) dx

for all v ∈ H1
0 (	).
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REMARK 4.3. When j ∈ C0(	 × �) the above inequality takes the form

−
∫

	

∇u(x) · ∇v(x) dx + λ

∫
	

a(x)u(x)v(x) dx =
∫

	

−j(x, u(x))v(x) dx, v ∈ H1
0 (	).

Therefore, in this case, a function u ∈ H1
0 (	) solves (Pλ) if and only if it is a weak

solution to the eigenvalue problem
{−
u = λa(x)u + j(x, u) in 	,

u = 0 on ∂	,

namely Problem (5.1) of [10].

THEOREM 4.2. Suppose ( j1)–( j5) hold. Then for every λ ∈ �, (Pλ) possesses a
nontrivial solution u ∈ H1

0 (	).

Proof. Choose X = H1
0 (	) and define

f (u) = 1
2

∫
	

(|∇u(x)|2 − λa(x)u(x)2) dx +
∫

	

J(x, u(x)) dx ∀u ∈ X.

By (j2) the function f turns out locally Lipschitz. Moreover, one has

lim
u→0

1
‖u‖2

∫
	

J(x, u(x)) dx = 0. (12)

In fact, integrating (11) yields

|J(x, ξ )| ≤ a1

(
|ξ | + |ξ |p

p

)
≤ a1(|ξ | + |ξ |p) ≤ 2a1 max{|ξ |, |ξ |p} (13)

for all (x, ξ ) ∈ 	 × �. On account of (j3), given any ε > 0 there is a δ ∈ ]0, 1[ such that
|ξ | ≤ δ implies that

|J(x, ξ )| ≤ ε

2
|ξ |2 ∀x ∈ 	. (14)

Since (13) easily leads to

|J(x, ξ )| <
2a1

δp
|ξ |p whenever |ξ | > δ,

gathering the above inequality and (14) together we obtain

|J(x, ξ )| ≤ ε

2
|ξ |2 + 2a1

δp
|ξ |p ∀(x, ξ ) ∈ 	 × �.

Consequently, by (7),

∣∣∣∣
∫

	

J(x, u(x)) dx
∣∣∣∣ ≤ ‖u‖2

(
ε

2
c2

2 + 2a1cp
p

δp
‖u‖p−2

)
, u ∈ X,

which forces (12) because p > 2.
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Now, fix λ ∈ �. If λ < λ1 then

‖u‖∗ =
[∫

	

(|∇u(x)|2 − λa(x)u(x)2) dx
]1/2

, u ∈ X,

is a norm on X equivalent to the usual one and it results

f (u) = 1
2
‖u‖2

∗ +
∫

	

J(x, u(x)) dx, u ∈ X.

Thus, through (12) we can find ρ > 0 such that f (u) > 0 provided ‖u‖∗ = ρ. Since for
every u ∈ X\{0} hypothesis (j5) implies

f (tu) ≤ 1
2

t2‖u‖2
∗ + a3

(|	| − tµ‖u‖µ

Lµ(	)

) → −∞

as t → +∞, there obviously exist R > ρ besides e ∈ X with ‖e‖∗ = 1 satisfying f (Re) <

0. So, once we set

V = {0}, Q = [0, Re], Q0 = {0, Re}, S = {u ∈ X : ‖u‖∗ = ρ},

assumptions (f1) and (f2) of Theorem 4.1 hold. Let us next verify (PS)f . To this end,
pick a sequence {un} ⊆ X such that

lim
n→+∞ f (un) = c, (15)

lim
n→+∞ mf (un) = 0. (16)

By (15) one has |f (un)| ≤ M(n ∈ �) for some M > 0. Exploiting (16) as well as the
definition of generalized gradient produces a sequence {vn} ⊆ X fulfilling

〈vn, w〉 ≤ f 0(un; w) ∀n ∈ �, w ∈ X, (17)

lim
n→+∞ ‖vn‖ = 0. (18)

Consequently, due to (j4) and formula (2) at p. 77 in [5],

M + 1
µ

‖un‖∗ ≥ M − 1
µ

〈vn, un〉 ≥ f (un) − 1
µ

f 0(un; un)

≥ f (un) − 1
µ

(
‖un‖2

∗ +
∫

	

J0
x(un(x); un(x)) dx

)

≥
(

1
2

− 1
µ

)
‖un‖2

∗ − a2

µ
|	| (19)

for all sufficiently large n, which guarantees that the sequence {un} is bounded. Passing
to a subsequence if necessary, we may thus suppose un ⇀ u in X besides un → u in
Lp(	). From (17) with w = u − un it follows

−‖vn‖∗‖u − un‖∗ + ‖un‖2
∗ ≤ f 0(un; u − un) + 〈un, un〉∗

= 〈un, u〉∗ + h0(un; u − un) ∀n ∈ �,
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where 〈·, ·〉∗ denotes the scalar product related to ‖ · ‖∗ while

h(w) =
∫

	

J(x, w(x)) dx, w ∈ Lp(	).

The upper semicontinuity of h0 and (18) then yield lim supn→+∞ ‖un‖∗ ≤ ‖u‖∗, namely
un → u in X ; vide e.g. [2, Proposition III.30].

Since Proposition 5.9 of [10] ensures that the pair (Q, Q0) links with S, Theorem 4.1
can be applied, and we obtain a point u ∈ X\{0, Re} satisfying f 0(u; v) ≥ 0 for all v ∈ X .
Finally, by formula (2) at p. 77 in [5] it results

∫
	

∇u(x) · ∇v(x) dx − λ

∫
	

a(x)u(x)v(x) dx +
∫

	

J0
x(u(x); v(x)) dx ≥ 0, v ∈ X,

i.e. the function u turns out a nontrivial solution to Problem (Pλ).
Now, let λ ∈ [λk, λk+1[ for some integer k ≥ 1. We define

V = span{ϕ1, . . . , ϕk}, E = V⊥, e = ϕk+1, W = V ⊕ span{e}.

It is evident that X = V ⊕ E while dim(V ) = k < +∞. Moreover, if u ∈ E then u =∑+∞
i=k+1 tiϕi, where ti ∈ �, i ≥ k + 1. On account of (10) we get

f (u) = 1
2

+∞∑
i=k+1

t2
i

(
1 − λ

λi

)
+

∫
	

J(x, u(x)) dx

≥ ‖u‖2

2

(
1 − λ

λk+1
+ 2

‖u‖2

∫
	

J(x, u(x) dx
)

. (20)

So, through (12), the condition λ < λk+1, and (20) one can find ρ, a > 0 fulfilling

∂Bρ ∩ E ⊆ f a ⊆ f 0.

Our next goal is to prove that, for a suitable R > ρ,

f (u) ≤ 0 ∀u ∈ W\BR. (21)

To see this we first fix q ∈]2, min{2∗, µ}[ and note that W is a (finite dimensional)
subspace of Lq(	). Hence,

‖u‖Lq(	) ≥ a4‖u‖, u ∈ W,

where a4 > 0. If u ∈ W then u = ∑k+1
i=1 tiϕi, with t1, . . . , tk+1 ∈ �. From (10), ( j5),

besides the above inequality, it follows

f (u) = 1
2

k+1∑
i=1

t2
i

(
1 − λ

λi

)
+

∫
	

J(x, u(x)) dx

≤ 1
2

t2
k+1

(
1 − λ

λk+1

)
+ a3

(|	| − ‖u‖µ

Lµ(	)

)

≤ 1
2
‖u‖2

(
1 − λ

λk+1

)
+ a3|	|(1 − |	|−µ/qaµ

4 ‖u‖µ
)
,
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which immediately leads to (21) because µ > 2. Finally, write

Q = (V ∩ B̄R) ⊕ [0, Re], Q0 = ∂Q, S = ∂Bρ ∩ E.

Since each u ∈ V ∩ BR can be written as u = ∑k
i=1 tiϕi, where t1, . . . , tk ∈ �, by (10)

and (j5) again one has

f (u) = 1
2

k∑
i=1

t2
i

(
1 − λ

λi

)
+

∫
	

J(x, u(x)) dx ≤ 1
2

k∑
i=1

t2
i

(
1 − λ

λi

)
≤ 0.

Bearing in mind (21) this obviously forces ∂Q ⊆ f0. Therefore, the function f satisfies
assumption (f2) of Theorem 4.1, while (f1) is an immediate consequence of the
compactness of Q. As Proposition 5.9 in [10] ensures that the pair (Q, Q0) links with S,
it remains to verify (PS)f only. Pick a sequence {un} ⊆ X fulfilling (15), (16) and choose
β ∈]µ−1, 2−1[. The same arguments adopted in showing (19) provide here

M + β‖un‖ ≥
(

1
2

− β

)
‖un‖2 − λ

(
1
2

− β

)
‖a‖L∞(	)‖un‖2

L2(	)

+ (1 − βµ)
∫

	

J(x, un(x)) dx − a2β|	|

for all sufficiently large n. Thanks to (j5) it implies

M + β‖un‖ ≥
(

1
2

− β

)
‖un‖2 − λ

(
1
2

− β

)
‖a‖L∞(	)‖un‖2

L2(	)

+ (βµ − 1)a3‖un‖µ
Lµ	 − a5,

where a5 = |	|(a2β + (βµ − 1)a3). Because of Hölder and Young’s inequalities, we
also have

‖u‖2
L2(	) ≤ 2

µ
εµ/2‖u‖µ

Lµ(	) + µ − 2
µ

|	|ε−µ/(µ−2), u ∈ X,

for any ε > 0. Hence,

M + β‖µn‖ ≥
(

1
2

− β

)
‖µn‖2

+
[

(βµ − 1)a3 − λ

(
1
2

− β

)
‖a‖L∞(	)

2
µ

εµ/2
]
‖un‖µ

Lµ(	) − a6, (22)

with a6 = a5 + λ(2−1 − β)‖a‖L∞(	)(µ − 2)µ−1|	|ε−µ/(µ−2). Since βµ > 1, choosing ε

so small that

(βµ − 1)a3 − λ

(
1
2

− β

)
‖a‖L∞(	)

2
µ

εµ/2 > 0,

from (22) it follows

M + β‖un‖ ≥
(

1
2

− β

)
‖un‖2 − a6
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for all sufficiently large n, namely the sequence {un} is bounded. The same technique
exploited in the case λ < λ1 then ensures that it possesses a strongly convergent
subsequence. At this point Theorem 4.1 can be applied, and the proof goes on exactly
as before. �

REMARK 4.4. Theorem 4.1 actually gives two nontrivial solutions to Problem (Pλ)
whenever b < c.
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