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Results from seven direct and large-eddy simulations of gravity currents on slopes ranging
from 0.14◦ to 2.86◦ that span from the subcritical to the supercritical regime are studied. By
considering a long domain, attention is focused on the near-self-similar state approached
by these currents far downstream. In the self-similar limit, the various shape factors,
local Richardson number, entrainment coefficient, velocity scale and basal drag coefficient
reach a constant value, while the current height, volume and momentum fluxes continue
to increase linearly. Their dependence on slope is presented.
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1. Introduction

Ambient fluid entrainment is an important phenomenon that plays a key role in the
dynamics of unbounded shear flows such as jets and plumes and bounded shear flows
such as gravity currents. The pioneering works of Priestley & Ball (1955), Morton, Taylor
& Turner (1956), Fox (1970) and List & Imberger (1973) and the recent investigations by
Hunt & Kaye (2005), Kaye (2008), Plourde et al. (2008), Taub et al. (2013), Craske &
van Reeuwijk (2015a,b), van Reeuwijk et al. (2016) and van Reeuwijk & Jonker (2018)
have yielded substantial understanding on the turbulent mechanisms of entrainment and
its modelling.

In this work we will focus on entrainment in a gravity current, where a heavier
fluid flows along a sloping bottom underneath a deep layer of quiescent ambient fluid.
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We are interested in the scenario where the current and the ambient are of the same
fluid and the excess density of the current is due to salinity, temperature or suspended
sediments of negligible settling velocity. Owing to the miscible nature of the current,
entrainment plays a crucial role in the continual thickening of the current along the flow
direction.

In a gravity current, flow turbulence is the result of a delicate balance between
production by mean shear and damping by stratification. The higher density of the
current plays the dual role of both driving the turbulent flow and damping through stable
stratification. This balance between stratification-induced damping and shear-induced
production is typically measured in terms of the Richardson number, Ri. The incorporation
of clear ambient fluid into the current is measured through the average vertical velocity in
the far field, which can be modelled as the product of an entrainment coefficient and the
velocity scale as we = −ewU. The entrainment coefficient ew is typically parametrized in
terms of Ri. Based on extensive experimental data, Turner (1986) and Parker et al. (1987)
advanced the following models, respectively:

ew,Tu = (0.08 − 0.1Ri)/(1 + 5Ri) and ew,Pa = 0.075/
√

1 + 718Ri2.4. (1.1a,b)

According to the former, ew becomes zero for Ri ≥ 0.8, which is suggestive of a regime
change to no entrainment beyond a certain stratification (see van Reeuwijk, Holzner &
Caulfield 2019).

A spatially evolving steady gravity current flowing down a very long incline of constant
slope S is characterized by only the buoyancy flux F, which remains a constant along the
length of the current due to the conservative nature of salinity, temperature or non-settling
particles. The volume and momentum flux at the inlet (Qin and Min) affect the evolution
of the current only in the near-inlet region. Sufficiently downstream, the current evolves
into a near-self-similar state that depends only on S. In the near-self-similar state, while
the thickness of the current continues to increase, the velocity scale becomes a constant.
Integral quantities such as Ri, ew and basal drag coefficient depend only on the slope S.
Only the velocity scale U depends on the buoyancy flux as U ∼ F1/3.

Depending on the slope of the bed, three different flow regimes have been identified
(Sequeiros 2012; Salinas et al. 2020, 2021b; Salinas, Balachandar & Cantero 2021a). At
steeper slopes of S � 0.05, the current evolves to a near-self-similar supercritical state,
which is characterized by a turbulent near-wall layer close to the bottom boundary and
a turbulent interface layer where the current vigorously mixes with the ambient (Salinas
et al. 2021a). The two layers are separated at the velocity maximum. At shallow slopes
of S � 0.01, the current evolves to a near-self-similar subcritical state, which is also
characterized by a turbulent near-wall layer but the interface layer remains turbulent-free
without active mixing with the ambient. In fact, the near-wall and interface layers are
separated by an intermediate destruction layer of negative turbulence production, which
acts as a lid and prevents near-wall turbulence from penetrating into the upper layer
(Salinas et al. 2021b). Of particular importance is the appearance of a lutocline, or a
very sharp density gradient, at the top of the subcritical current. The stabilizing effect
of the lutocline prevents mixing and thereby reducing ew to near-zero values for Ri greater
than a critical value in the subcritical regime. We observe that ew does not altogether go
to zero, since fluid momentum continues to diffuse upwards, while the sediment is mostly
sequestered in the bottom driving layer, as discussed in Luchi et al. (2018) using numerical
experiments.

An interesting observation is that the transition from supercritical to subcritical state
is not abrupt. As discussed in Salinas et al. (2020), the transition occurs through a third
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transcritical state, where the flow exhibits a cyclic behaviour by continually transitioning
back and forth between supercritical- and subcritical-like states.

There are fundamental differences between unbounded free shear flows and their
wall-bounded counterparts. In unbounded flows, full self-similarity is observed, with
the velocity and buoyancy taking Gaussian-like profiles. In wall-bounded cases, the flow
separates into an inner region of wall turbulence and an outer region of free shear. While
the growth of the outer layer is linear, the growth of the near-wall layer is much weaker
and slowly approaches a constant height. This multilayer structure of the gravity current
prevents complete self-similarity. Nevertheless, as the current flows downstream, the inner
wall layer becomes an ever-decreasing portion of the overall current. It is in this sense that
the flow approaches a self-similar state, which we refer to as near-self-similarity.

The effect of stratification varies with slope and, as a result, the near-self-similar
state is a function of S. The purpose of this paper is to establish the properties of this
near-self-similar state in terms of the velocity and concentration profiles in both the
supercritical and subcritical regimes. To the leading order, the flow in the near-self-similar
state will be characterized by integral parameters such as Ri, ew and basal drag coefficient.
Establishing the dependence of these parameters on bed slope is an important quest of this
paper. In doing so, we will obtain a relation between Ri and ew in the near-self-similar state,
which will be compared with the relations proposed by Turner (1986) and Parker et al.
(1987). Of particular importance are the works of Craske & van Reeuwijk (2015a,b) and
van Reeuwijk et al. (2016), which we follow to derive an energy-consistent entrainment
relation for gravity currents. In the near-self-similar state, the entrainment relation
simplifies and places a constraint on the dependence of Ri, ew, drag coefficient and other
shape factors of velocity and concentration profiles.

In the present work we analyse results from direct numerical simulations (DNS) and
large-eddy simulations (LES) performed for a range of bed slopes. The corresponding
Ri extends from 0.22 in the supercritical regime to 1.94 in the subcritical regime. Here
we seek to elucidate on the flow conditions in the self-similar state. More specifically,
we present the relations for flow velocity, bulk Richardson number and ambient fluid
entrainment as a function of bed slope. The approach to self-similarity is slow and
thus the simulations require a very long computational domain that extends over several
hundred current heights along the streamwise direction. In § 2, we present the ensemble-
and depth-averaged equations that govern the current’s evolution. The relative shape of
the mean velocity and buoyancy profiles, along with the shapes of the Reynolds stress
and Reynolds flux profiles, are analysed in terms of the shape factors (profile factors in
Craske & van Reeuwijk (2015a)). In § 2.1, we present the self-similar evolution of the flow
variables. The energy-consistent entrainment relation is presented in § 2.2. Over a range
of bed slopes, the implications of mean momentum and energy balances on entertainment
are explored in § 2.3. Finally, we present conclusions in§ 3.

2. Ensemble-averaged equations

Consider a gravity current that is heavier than the ambient fluid of density ρa flowing
down a flat featureless bed of constant slope S = tan α (where α is the angle of the bed).
The cross-section is a wide channel, whose side effects can be ignored. The turbulent
source or inlet condition is kept statistically stationary. Therefore, the current is statistically
stationary and planar. Turbulent statistics depends only on streamwise and bed-normal
directions (i.e. on x and z). We allow the head of the current that forms at the beginning
to travel downslope and exit the computational domain. As a result, the simulation models
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Figure 1. Scaled span-averaged concentration for (a) supercritical and (b) subcritical cases. White contours
denote c̃ = 0.01. Scaled momentum balance contributions together with turbulent structures and interface for
supercritical (R20 – left panels, c,e,g) and subcritical (R200 – right panels, d, f,h) cases. Each panel contains: (i)
section of the current showing the corresponding term of the momentum balance in volumetric representation
(left of each panel); and (ii) turbulent structures and interface represented by isosurface of constant λ̃ci = 0.06
(coloured by z̃) and concentration c̃ = 0.01, respectively (in yellow). Also shown are: ũmax, the location of the
velocity maximum; and z̃|P̄=0, planes of zero turbulent kinetic energy production (light pink and violet planes).
L and G indicate loss and gain of momentum, respectively.

a streamwise section of the long body of a current, away from the energetic front and the
weak tail. The excess weight of the current is due to an agent of volumetric concentration
c(x, t), whose effect on local density is expressed as ρ(x, t) = cρp + (1 − c)ρa, where ρp
is the density of the agent. We assume the scaled density difference R = (ρp − ρa)/ρa to
be small such that the Boussinesq approximation applies. Figure 1 shows span-averaged
concentration at one instant in time for (a)supercritical and (b)subcritical currents.
Quantities with tilde ( ·̃ ) denote variables scaled with bulk inlet parameters.

We solve the mass, momentum and concentration equations (Salinas et al. 2021a)
using the highly scalable, higher-order spectral element solver Nek5000. We enforce
a no-slip condition at the bottom boundary for the velocity field, and a zero gradient
in the bed-normal direction for the concentration field. At the top (z = Lz) and the
outflow (Lx) boundaries, we use open boundary conditions (Hu 1996). Finally, we use
periodic boundary conditions in the spanwise direction y. The domain is discretized using
hexahedral elements with Gauss–Lobatto–Legendre (GLL) grid points on each element.
We present details on domain size and grid resolution for each simulation in table 1,
together with the inlet Richardson number Riin. For all cases, inlet Reynolds number
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Case Riin L̃x × L̃y × L̃z Ne,x × Ne,y × Ne,z Np Ntotal

R20 0.153 48π × (4/3)π × 10 336 × 15 × 44 83–163 114 × 106 − 908 × 106

R20L 0.153 144π × (4/3)π × 10 504 × 8 × 27 83 56 × 106

R150L 1.276 48π × (4/3)π × 10 168 × 8 × 27 83 19 × 106

R200 1.496 48π × (4/3)π × 10 336 × 15 × 44 83–163 114 × 106 − 908 × 106

R200L 1.496 144π × (4/3)π × 10 504 × 8 × 27 83 56 × 106

R400 2.346 96π × (4/3)π × 5 672 × 15 × 34 83 176 × 106

R400L 2.346 144π × (4/3)π × 10 504 × 8 × 27 83 56 × 106

Table 1. Details of simulations performed: case name, inlet Richardson number, domain size, number of
spectral elements, number of GLL points per element, and total number of grid points.

Rein = Qin/ν = 5620. DNS and LES are named ‘RX’ and ‘RXL’, respectively, where
X is 1/S. LES were performed using a modal explicit filtering for numerical stability.

Towards the goal of obtaining a reduced-order representation, we start with the
following time- and span-averaged mass, agent concentration, streamwise momentum and
mean kinetic energy equations:

∂u
∂x

+ ∂w
∂z

= 0,
∂uc
∂x

+ ∂wc
∂z

= −∂〈u′c′〉
∂x

− ∂〈w′c′〉
∂z

, (2.1a,b)

∂u2

∂x
+ ∂uw

∂z
= − 1

ρ

∂p
∂x

− ∂〈u′2〉
∂x

− ∂〈u′w′〉
∂z

+ ν

(
∂2u
∂x2

)
+ ν

(
∂2u
∂z2

)
+ Rcg sin θ, (2.2)

1
2

∂u3

∂x
+ 1

2
∂u2w
∂z

= − 1
ρ

∂pu
∂x

− ∂u〈u′2〉
∂x

− ∂u〈u′w′〉
∂z

+ ν

2

(
∂2u2

∂x2 + ∂2u2

∂z2

)
+ p

ρ

∂u
∂x

+ 〈u′2〉∂u
∂x

+ 〈u′w′〉∂u
∂z

− ν

((
∂u
∂x

)2

+
(

∂u
∂z

)2
)

+ Rcug sin θ,

(2.3)

where u = {u, v, w} is the velocity and p is the pressure. Quantities within 〈·〉 are averages
over y and t; we drop them for first-order statistics to simplify notation (i.e. u = 〈u〉).
Perturbations are denoted with a prime; ν is the constant kinematic viscosity of the fluid;
and g is acceleration due to gravity. The underlined terms are discussed in§ 2.1.

We define streamwise fluxes of mass, momentum and buoyancy as

Q(x) =
∫ ∞

0
u dz , M(x) =

∫ ∞

0
u2 dz , F(x) =

∫ ∞

0
Rcug sin θ dz. (2.4a–c)

In the simulations, the upper limit is replaced with a large value of z that extends far
upwards into the ambient, where the current velocity and buoyancy vanish. The fluxes
are used to define current height, mean velocity and buoyancy scales as (Craske & van
Reeuwijk 2015a)

H(x) = Q2/M, U(x) = M/Q, B(x) =
∫ ∞

0
Rcg sin θ dz = FQ/(θmM). (2.5a–c)

A conserved current is defined as one where the total amount of excess weight of the
current remains independent of x and the buoyancy flux remains a constant. The buoyancy
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scale B(x) varies along the streamwise direction. The shape factor θm = 1 when the
z-variation of both velocity and concentration are the same. Thus, θm /= 1 is a measure of
the difference in the vertical structure of u(z) and c(z). In the case of an unbounded plume,
where both u(z) and c(z) are Gaussian, (θm − 1) is a measure of the difference in their
Gaussian width. In a gravity current, although the shapes of the velocity and concentration
profiles are different, we observe θm ≈ 1.

We integrate the averaged equations in the z-direction to obtain

dQ
dx

= ew
M
Q

,
dθgF

dx
= 0,

dβgM
dx

= −CD
M2

Q2 + FQ
θmM

,
dγgM2/Q

dx
= F + δg

M3

Q3 .

(2.6a–d)

These are equivalent to the integral equations proposed by Parker, Fukushima & Pantin
(1986), except in that: (i)no ‘boundary-layer approximation’ (i.e. u 
 w and ∂/∂z 
 ∂/∂x)
and (ii)no ‘top-hat’ assumption (i.e. simplified shape factors) have been used above. In the
mass balance we have used the central assumption of entrainment that we(x, z → ∞) =
−ew(x)U(x). In the momentum equation, the drag coefficient is defined as

CD
M2

Q2 = CDU2 = ν

(
∂u
∂z

)
z=0

+ ν
d2Q

dx2 . (2.7)

All the simulation results show that CD is dominantly determined by the first term on
the right-hand side. In addition, the following definitions have been introduced:∫ ∞

0
(p/ρ) dz = βpM,

∫ ∞

0
〈u′2〉 dz = βf M, βg = 1 + βp + βf . (2.8a–c)

As defined above, βp and βf account for both (i) the scaling of pressure versus U2 and 〈u′2〉
versus U2 and (ii) differences in the shape of the pressure and Reynolds stress distributions
compared to that of u2(z). In the concentration equation,∫ ∞

0
R〈u′c′〉g sin θ dz = θf F and θg = 1 + θf . (2.9a,b)

Here, θf accounts for streamwise Reynolds flux of concentration and we observe its
contribution along with that of turbulent Reynolds stress to be generally small.

The mean kinetic energy equation substantially simplifies with the following
shape-factor definitions:

1
2

∫ ∞

0

(
u3 + pu

ρ
+ u〈u′2〉

)
dz = (γm + γp + γf )

M2

Q
= γg

M2

Q
, (2.10)

∫ ∞

0

(
p
ρ

∂u
∂x

+ 〈u′2〉∂u
∂x

+ 〈u′w′〉∂u
∂z

)
dz = (δp + δf 1 + δf 2)

M3

Q3 = δ′
g

M3

Q3 ,

ν

2
d2M

dx2 + ν

2
∂u2

∂z

∣∣∣∣
z=0

− ν

∫ ∞

0

((
∂u
∂x

)2

+
(

∂u
∂z

)2
)

dz = δv

M3

Q3 , δg = δ′
g + δv.

(2.11)

In (2.10), γm is the velocity shape factor, whose value depends only on the shape of the
ensemble-averaged velocity profile. If p(z) has the same shape as u2(z), then γp = 2βpγm.
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Figure 2. Shape factors as a function of x for cases (a) R20L and (b) R400L. Depth-averaged momentum
balance as a function of x for cases (c) R20L and (d) R400L.

Similarly, if 〈u′2〉 has the same shape as u2(z), then γf = 2βf γm. Finally, all the delta
functions in (2.11) are negative, as they account for loss of mean kinetic energy due to
turbulence production, viscous diffusion and viscous dissipation effects. The downstream
evolution of all the shape factors as a function of x is presented in figure 2(a,b), for cases
(a)R20L and (b)R400L, respectively. All the shape factors reach a constant value in the
case of R20L, whereas in the subcritical case of R400L βg and δg are still slowly evolving,
but the observed trend suggests slow approach to a constant value.

With these definitions, we can evaluate the different terms of the depth-averaged
momentum balance (2.6a–d), which is presented in figure 2(c,d). In the momentum
balance, FQ/(θmM) is the source of streamwise momentum, which is balanced by basal
drag CDM2/Q2 and d(βgM)/dx. By writing the latter as βgewM2/Q2 + Q d(βgU)/dx, we
understand it to account for both interface drag (dashed blue lines in figure 2c,d) and
momentum sink/source due to acceleration/deceleration of the current (dash-dotted blue
lines). In the supercritical case (R20L), a larger fraction of momentum source goes to
interface drag due to intense mixing, while in the subcritical case (R400L), basal drag is
the dominant sink of streamwise momentum. In both cases, the flow first decelerates near
the inlet, until Q d(βgU)/dx reaches negligible values far downstream, indicating that both
flows are neither accelerating nor decelerating, especially in comparison with the other
terms of the momentum balance.

2.1. Slow evolution to near-self-similar state
The evolution of the current towards self-similarity is demonstrated in figure 3, where the
scaled profiles of streamwise velocity, concentration, and gradient and flux Richardson
numbers, which are defined as

Rig = −Rgz∂c/∂z
(∂u/∂z)2 and Rif = Rgx〈u′c′〉 + Rgz〈w′c′〉

〈u′w′〉∂u/∂z
, (2.12a,b)

are shown. After the initial adjustment of the profiles seen in red for R20L and in blue
for R400L over the range 50 ≤ x < 650, we see an excellent collapse of the profiles of
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Figure 3. Scaled (a) streamwise velocity u/U, (b) concentration c/Cb (Cb is basal concentration), (c) gradient
Richardson number Rig and (d) flux Richardson number Rif , as functions of scaled height z/H, for the
supercritical case R20L and the subcritical case R400L. Red and blue profiles show the evolution in the interval
50 ≤ x < 650, for cases R20L and R400L, respectively. For each quantity, we also show three profiles (in green,
blue and orange) at the downstream locations of x = 650, 700 and 750. Their overlap, when compared to their
earlier evolution, provides support for the approach to self-similarity. Note that, in the subcritical case R400L,
both the numerator and the denominator in the definition of Rif (2.12a,b) go to zero in the turbulence-free
interface layer, preventing a reliable quantification, and therefore not shown.

streamwise velocity, concentration and gradient Richardson number sufficiently far from
the inlet – the last three profiles at x = 650, 700 and 750 are highlighted. A good collapse
of the profiles in the self-similar state can be observed in both the interface and the
near-bed layers. Note that near the streamwise velocity maximum, Rig, Rif → ∞ as mean
velocity gradient goes to zero. For the flux Richardson number, also a good collapse can
be observed. However, in the subcritical case, both the numerator and the denominator in
the definition of Rif (2.12a,b) go to zero in the turbulence-free interface layer, preventing
a reliable quantification, and therefore not shown.

In (2.6a–d), the first three can be interpreted as governing equations of Q, F and M,
while the last equation is the energy constraint that must be satisfied. The equations can be
solved by assuming the shape factors to take constant values in the self-similar regime
(βg0, θm0, θg0, γg0, δg0). With constant values for entrainment coefficient ew0 and drag
coefficient CD0, we obtain Q(x) ∼ Q1x and M(x) ∼ M1x as the leading-order solution
with

Q1 = ew0{F/[θm0(βg0ew0 + CD0)]}1/3, M1 = ew0{F/[θm0(βg0ew0 + CD0)]}2/3.

(2.13a,b)

These definitions can also be presented as Q1 = ew0U0 and M1 = ew0U2
0, where

U0 = F1/3{(γg0 − βg0 θm0)/[θm0(CD0 γg0 + δg0 βg0)]}1/3 (2.14)

is the velocity of the current in the self-similar state, which depends not only on the slope
but also on F.

The approach to self-similar behaviour is shown in figure 4(a–d), where Q(x)/Qin,
M(x)/Min, H(x)/Hin and B(x)/F2/3 are plotted for the seven cases considered. The
agreement between the DNS and LES cases is clear. For all cases, x = 750 is large enough
that the plots have sufficiently approached their linear behaviour in the self-similar state.
In the self-similar state, the streamwise flux of mass and momentum go as Q1x and
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Figure 4. Streamwise evolution of (a) Q(x)/Qin, (b) M(x)/Min, (c) H(x)/Hin, (d) B(x)/F2/3, (e) U(x)/U0
and ( f ) Ri(x). Dashed grey lines show slopes in the self-similar state obtained from (2.13a,b) and (2.19).
Dash-dotted horizontal lines in ( f ) show Ri0 for each slope.

M1x, while the height of the current goes as H(x) ∼ ew0x (see (2.19)). The leading-order
solutions for Q/Qin, M/Min and H/Hin are shown in figure 4(a–c) as dashed grey lines.
On the other hand, the depth-averaged velocity reaches a constant value of U(x) ∼ U0
(figure 4e). While the behaviour of normalized current height is similar to those of Q
and M, the current velocity exhibits an oscillatory approach to unity in the supercritical
currents. Furthermore, the bulk Richardson number

Ri = 1
S

∫ ∞

0
Rcg sin θ dz/U2 = F/θm

SQ3/M3 (2.15)

slowly approaches a constant value of Ri0 (figure 4f ) in both the subcritical and
supercritical cases. It is interesting to note that the approach to self-similarity in all cases
is through slow, ever-decreasing, acceleration of the current, as indicated by the fact that
Ri approaches Ri0 from above.

It must be stressed that the depth-averaged equations (2.6a–d) are exact, since all
the terms of the Navier–Stokes equations are retained and included in the definitions of
the different shape factors. Each term of the momentum and kinetic energy equations,
calculated in the DNS and LES as a function of x, is averaged over a short extent along the
streamwise direction and the results are shown in figure 5(a,b). Owing to the exactness of
the equations, perfect momentum and energy balances are observed.

Figure 1 presents the three-dimensional structure of the supercritical (panels c,e,g)
and subcritical (panels d, f,h) currents in the near-self-similar state (section in dashed
red box in figure 1a,b). The left half of panels (c–f ) show a volumetric visualization
of the two underlined terms on the right-hand side of (2.2), with panels (g,h) showing
the underlined term on the left-hand side. In the right half of each panel, the interface
between the current and the ambient marked by c̃ = 0.01 is shown (in yellow) with the
three-dimensional vortical structures identified by contours of swirling strength λ̃ci (Zhou
et al. 1999; Chakraborty, Balachandar & Adrian 2005) (coloured by z̃ – see zoom-in views
I and II).

In the panels, we focus on three important aspects that are of most relevance. (i) The
interface with the ambient is highly turbulent in the supercritical current while it is very
flat and non-turbulent in the subcritical current. (ii)In panels (d, f,h) (subcritical current),
two horizontal surfaces of zero turbulent production marked as z̃|P̄=0 are shown. The layer
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Figure 5. Scaled mean (a) momentum and (b) energy balance for all cases in the near-self-similar state. Sinks
are shown in blue and violet (left) and sources in orange (right). (c) Energy constraint on entrainment: left- and
right-hand sides of (2.17); ♦ shows (1/2)ew0 given in (2.19).

of fluid between these planes is termed ‘destruction layer’, since turbulence production is
negative, and is the result of the interaction between near-wall hairpins (‘HP’ in zoom-in
view I) and counter-rotating vortices (‘CV’) (see Salinas et al. 2021b). (iii)Comparing the
different terms of the momentum equation, it can be seen that in the interface layer (above
the maximum of velocity), the balance is mainly between ∂(ũw̃)/∂ z̃ (zoom-in view IV) and
∂(〈ũ′w̃′〉)/∂ z̃ (zoom-in view III) in the supercritical current, while it is between ∂(ũw̃)/∂ z̃
(zoom-in view VI) and ∂2ũ/∂ z̃2/Rein (zoom-in view V) in the subcritical current. In other
words, ‘turbulence’/‘viscous diffusion’ is responsible for the entrainment of ambient fluid
into the ‘supercritical’/‘subcritical’ current.

2.2. Energy-consistent entrainment relation
Following the steps of Craske & van Reeuwijk (2015a), using the chain rule we can write

ew = Q
M

dQ
dx

= 2
βg

Q2

M2
dβgM

dx
− Q3

γgM3
d

dx

(
γg

M2

Q

)
+Q2

M
d

dx

(
ln

(
γg

β2
g

))
. (2.16)

The three contributions come from (i) streamwise variation of current momentum,
(ii) streamwise variation of mean kinetic energy (mKE) and (iii) streamwise variation of
the various shape factors. Substituting the momentum and kinetic energy equations in the
above expression, we obtain the final energy-consistent entrainment expression as

1
2

ew + CD

βg
= − δg

2γg
+ RiS

(
1
βg

− θm

2γg

)
+ 1

2
Q2

M
d

dx

(
ln

(
γg

β2
g

))
. (2.17)

Equation (2.6a–d) is a reduced-order framework for rapid evaluation of the current’s
evolution. However, closure models of shape factors βg, θm, θg, γg and δg, along with
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models of ew and CD, are needed. Since (2.6a–d) have been demonstrated to be exact, the
accuracy of prediction depends only on the fidelity of the closure models. The expression
given in (2.17) is an important energy constraint that must be satisfied by the closure
models – this constraint is always valid, even when the current is not self-similar.

Simpler relations can be obtained under conditions of near-self-similarity. The mass and
momentum balances and similarly the mass and kinetic energy balances can be combined
to obtain the following two different expressions of self-similar entrainment coefficient:

ew0 = (Ri0S − CD0)/βg0 and ew0 = (θm0Ri0S + δg0)/γg0. (2.18a,b)

Equating the above two equations, we obtain the following third equivalent expression:

ew0 = (δg0 + CD0θm0)/(γg0 − βg0θm0), (2.19)

which depends only on the self-similar shape factors and CD0. These relations satisfy
the general condition (2.17). The first relation in (2.18a,b) is the easiest to interpret. The
streamwise driving force exerted on the current due to the excess weight goes as Ri0SU2

0.
This driving force is exactly balanced by basal drag CD0U2

0 and the entrainment drag
βg0ew0U2

0, which is due to the fact that the quiescent ambient fluid when brought into the
current must move at self-similar streamwise velocity U0. The second relation in (2.18a,b)
implies that the work done by gravity scales as θm0Ri0S, and it is balanced by (i) mKE lost
to turbulence, (ii) mKE lost to dissipation and (iii) mKE supplied to entrained ambient
fluid. The first two losses are represented by δg0U2

0, while the third loss is captured by
γg0ew0U2

0. The balance between the different terms of (2.17) in the near-self-similar state is
shown in figure 5(c), where the right-hand side terms are Eloss, ERi and Ess. The difference
between the blue/orange and purple/green bars indicates the small effect of Ess. Also
presented is the entrainment coefficient computed from (2.19) (blue diamonds). We see
good agreement between the values of (1/2)ew0 obtained directly from our simulations
and obtained indirectly through (2.19).

2.3. Slope dependence of entrainment, Richardson number and shape factors
The self-similar shape factors are only functions of the bed slope S and this dependence
is shown in figure 6(a–c), where the symbols are shape factors obtained from the seven
simulations. Plots of shape factors as functions of x obtained from the DNS and LES
were fitted to obtain their asymptotic x → ∞ values, which are shown in figure 6(a–c).
The proposed models of βg0(S), θm0(S), γg0(S), δg0(S) and CD0(S) are also shown. We
caution that these fits are approximate and they cover only a small range of bed slope. With
increasing slope, βg0 and γg0 decrease and approach the limiting values of 1.0 and 0.5. On
the other hand, δg0 and CD0 increase with increasing S, indicating enhanced dissipation,
and θm0 also increases with S, although its value remains close to unity. The dependence
of U0/F1/3 along with Q1/F1/3 and M1/F2/3 are presented in figure 6(d–f ). All three
quantities are nearly constant in the subcritical regime, but decrease (or increase) in the
supercritical regime. Dashed red lines in these panels are plots of models obtained from
(2.13a,b) and (2.14).

Substituting (2.19) for ew0 into (2.18a,b), we obtain the self-similar value of Ri (see
(2.15))

Ri0 = (CD0γg0 + δg0βg0)/[S(γg0 − βg0θm0)], (2.20)

which can be recast as densimetric Froude number Fr0 = 1/
√

Ri0. In figure 7(a), Fr0 as a
function of S is plotted along with experimental data. The demarcation of subcritical and
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Figure 7. (a) Densimetric Froude number as a function of slope S (blue symbols). The orange and green dashed
lines are the models of Sequeiros (2012) and Stacey & Bowen (1988), respectively. The grey circles are data
from multiple sources obtained from Sequeiros (2012). (b) Entrainment ew as a function of Ri (blue symbols).
The black and green dashed lines are the models of Parker et al. (1987) and Turner (1986), respectively. The
grey symbols are experimental data from different sources (see Salinas et al. 2019). The red dashed lines are
derived models (see (2.19) and (2.20)).

supercritical currents at Fr = 1 is also shown. In the inset we present Ri0(S), where the red
line is obtained by plotting (2.20) with the proposed models of the various shape factors.
In figure 7(b), in the inset we plot ew0(S). Again, the symbols are the simulation results,
while the red line is a plot of (2.19). Figure 7(b) shows ew0 plotted as a function of Ri.
Results from experimental data are also plotted, along with the correlations of Turner and
Parker. Self-similar ew0 is lower and appears to follow a power law. Also plotted are ew,n
obtained at the first normal condition downstream of the inlet (Salinas et al. 2019), which
are in good agreement with the correlation of Parker et al. (1987). Clearly, entrainment
decreases from this near-inlet normal value to the self-similar value.
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3. Conclusions

Results of well-resolved DNS and LES performed over very long streamwise lengths show
that gravity currents slowly approach a near-self-similar state over a wide range of bed
slope that covers both the subcritical and supercritical regimes. The near-self-similar state
is characterized by slowly varying flow parameters. As the current evolves towards the
self-similar state, Ri, ew, velocity scale and basal drag coefficient approach constant values,
while the current height, volume and momentum fluxes continue to increase linearly. These
self-similar values only depend on the bed slope S and sediment flux, and their variation is
presented for a range of slopes in figure 6. Only the velocity scale U depends additionally
on the buoyancy flux as U ∼ F1/3.

The approach to self-similarity is slower in subcritical currents, compared to their
supercritical counterparts. The approach to self-similarity in all cases is through slow,
ever-decreasing, acceleration of the current, as indicated by the fact that Ri approaches
Ri0 from above. The self-similar value of entrainment appears to follow a power law
and its value is lower than the entrainment correlation of Parker et al. (1987) and the
near-inlet normal value. Following the work of Craske & van Reeuwijk (2015a), we derive
an energy-consistent entrainment relation, whose limiting form in the self-similar limit
is also explored. We also discuss these results in the context of ‘exact’ depth-averaged
equations. The approach to self-similarity is slow and thus the simulations require a
very long computational domain that extends over several hundred current heights along
the streamwise direction. Even much longer domains are required to firmly establish the
self-similar values. Future work is needed to investigate slopes that are beyond the range
considered here and also to study the rapid evolution of currents in supercritical and
subcritical slopes when disturbed from their self-similar value.
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