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Abstract

We present in this paper a discussion on some stability properties of line graphs. After relating
the semi-stability properties of the line graph of a graph to a concept of Sheehan, we proceed to
deduce that, with fully characterised lists of exceptions, the line graphs of trees and unicyclic graphs
are semi-stable. We then discuss the problem of deciding which line graphs are stable. Via a
discovery of the finite number of graphs G such that both G and its complement have stable line
graphs, we show that P4 is the only self-complementary graph whose line graph is stable.

1. Introduction

Throughout this paper, all graphs that we consider will be finite, will have no
loops or multiple edges, and will be undirected. Some basic definitions and
terminology to be found in Behzad and Chartrand (1972) will not be given here.
On the other hand, as concepts relating to the semi-stability of graphs are not yet
well known, we shall explain them fully below.

If G is a graph, we denote by V(G) its vertex set and E(G) its edge set.
L(G) denotes the line graph of G; here we identify V(L(G)) with E(G). By
F(G) we denote the automorphism group of G, and by I\(G) the automorphism
group of L(G). T*(G) denotes the subgroup of T,(G) induced by T(G).

A block of G is a maximal non-separable subgraph of G. If B is a block of
G which contains at most one cutvertex of G, then we say that B is an end-block
of G. If Bx and B2 are end-blocks of G which have a common vertex, we say that
they are intersecting end-blocks.

If u and v G V(G) are adjacent, we write u ~ v; similarly if e and
fEE(G) are adjacent, we write e ~ f. If v G V(G), NG(v) is the set
{« G V(G):u ~ v in G} and Nc(u) is NG(v)U{v}; if e G E(G), NG[e] is the set
{ / G E ( G ) : e ~ / i n G} and No[e] is NG[e] U{e}. If WQ V(G), then by Gw we
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denote the subgraph (V(G)— W) of G induced by V(G) — W; for simplicity, if
W = {v}, we write Gv rather than GM. MFC E(G), then by G - F we denote
the spanning subgraph of G with edge set E(G) - F; if F = {e}, we write G ~ e
rather than G - {e}. If / G E(G), then G + / is the spanned supergraph of G
with edge set E(G)U{/}.

If WC V(G), then by r(G)w we denote the maximal subgroup of F(G)
each element of which fixes each vertex in W; here we consider F(G)w to act
only on V(G)-W. If W = {v}, we write T(G)V rather than r(G)M. Similar
notions hold regarding r,(G)F, for F C £(G). We note that if a G r,(G)e, then
a(e) denotes the unique element of F,(G) which fixes e and which restricts to a
when acting on E(G)-{e}.

We say that G is semi-stable at K E V(G) if F(GU) = r(G)v; if G is
semi-stable at some vertex, we say that G is a semi-stable graph. (We define the
semi-stability of rooted graphs similarly.) For k s 1, a sequence S = {ui, • • •, vk}
of distinct vertices of G such that F(GS/) = F(G)S, for / = 1, ••-,&, where
S, = {v,, • • •, £>,}, is called a partial stabilising sequence for G. The empty
sequence is also considered to be a partial stabilising sequence for G. The
stability index, s.i. (G), of G is the maximum cardinality of a partial stabilising
sequence for G. If s.i. (G) = | V(G)\, then we say that G is stafc/e.

In Sheehan (1973) the author introduced what he called "stable graphs". As
we use that terminology, as explained above, to describe a concept rather
different from that of Sheehan, we use the phrase "S-stable" to describe
Sheehan's concept. Thus if e E E(G), G is S-stable at e if T(G - e)ST(G); if
G is S-stable at some edge, we say that G is an S-stable graph.

Having introduced the above ideas, we can now state just what this paper
accomplishes. First of all, we note that L(G) is semi-stable at e if and only if
F^G - e) = Fi(G),,. It seems reasonable to hope that this condition may often be
equivalent to F ( G - e ) S F ( G ) . This is in fact the case and in Section 3 we
discover when L(G) being semi-stable at e implies that G is S-stable at e, and
vice-versa. We then use these results in Section 4 to discover those trees and
unicyclic graphs whose line graphs are not semi-stable.

In Section 5, we investigate stable line graphs. We find all those G which
have the property that L{G) and L{G) are both stable. This enables us to show
that Pt is the only self-complementary graph whose line graph is stable.

2. Preliminary results

In this section we state, without proof, several results which are needed in
the remainder of the paper. First of all we describe some consequences of the
definitions of F(G), F,(G) and T*(G).
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LEMMA 2.1. (a) (See Behzad and Chartrand (1972), Theorem 13.5). Let G be
a non-empty graph. Then r,(G) = r*(G) if and only if:

(i) not both G,and G2 (of Figure 2.1) are components of G, and
(ii) none of the graphs G3, G4, G5 (of Figure 2.1) is a component of G.

V,

G, G2 G3

V2 V

Figure 2.1

(b) (Harary and Palmer; see Behzad and Chartrand (1972), Corollary 13.3a.)
For a non-trivial graph G, F(G) = F*(G) if and only if G contains neither K2 as a
component nor two or more isolated vertices.

We now restate, as a lemma, a remark made at the conclusion of Section 1.

LEMMA 2.2. If e E E(G), then L(G) is semi-stable at e if and only if

Taking for granted the standard results about the automorphism groups of
unions of graphs (see Harary (1969), for example), the following results are fairly
obvious; we omit their proofs (see Grant (1974) for the proof of a similar
theorem).

LEMMA 2.3. Let e E E(G), and let H be the component of G which includes

e.
(i) L(G) is semi-stable at e if and only if (a) L(H) is semi-stable at e, (b)

no component of H — e which has at least 2 vertices is isomorphic to a component
of G and (c) there do not exist both a component of G isomorphic to K3 and a
component ofH — e isomorphic to KU3, whose vertex of degree 3 is incident with e.

(ii) G is S-stable at e if and only H is S-stable at e and no component of
H - e is isomorphic to a component of G.

3. S -stability and the semi-stability of line graphs

If G is S-stable at e, then it seems reasonable to hope that L(G) might be
semi-stable at e. This is usually the case, but, as we shall see, Lemma 2.1 implies
that there are exceptions. The following theorems fully explain the situation.
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THEOREM 3.1. Suppose L(G) is semi-stable at e. Let H be the component of
G which includes e. Then G is not S-stable at e if and only if at least one of the
following four statements is true:

(i) H — e has a component isomorphic to K2;
(ii) both G and H - e have isolated vertex;
(iii) H is the graph G3 of Figure 2.1 and e is one of the edges (v2, v,) or

(iv) H is the graph G4 of Figure 2.1 and e is the edge (v2 v4).

PROOF. If any of (i), (ii), (iii) or (iv) holds, then clearly G is not S-stable at e.

Suppose that G is not S-stable at e, and that neither (i) nor (ii) holds. It
follows that r(G - e) g F(G). Since (ii) does not hold, and L (G) is semi-stable
at e, it follows by the first part of Lemma 2.3 that no component of H - e is
isomorphic to a component of G. From this and the fact that F(G - e)£ F(G), it
follows by the second part of Lemma 2.3 that F(H - e)£F(H). Let 0 £
F(H - e)-T(H). As (i) does not hold, 6 induces a non-identity permutation
a £ V,(H - e). By hypothesis, L(G) is semi-stable at e, so that by Lemma 2.3,
L(H) is semi-stable at e; therefore by Lemma 2.2, a £ Ti{H)e. It follows that
a ( e )£ F,(H). If there exists ip in F(H) such that iff induces a(e) in F,(H), then
t// £ F(// - e) and i/> induces a in Ti(H - e). Thus 6 and <A are elements of
T(H - e) which induce the same element a of T,{H - e). As F(H -e)g V(H), it
follows that H is not K2. As (i) does not hold, we deduce by Lemma 2.1(b) that
0 = (/>, so that 6 £ F(H), a contradiction. It follows that there is no <// in T(H)
which induces a(e) in r\(//). By Lemma 2.1 (a) we deduce that H is one of the
graphs G3, G4, G5 shown in Figure 2.1. If H is G3, then e must be (v2, v3) or
(v2, v4), since L(H) is semi-stable at e. Ii H is G4, then e must be (v2, vt), since
L(H) is semi-stable at e. Moreover, H is not G5, since we have seen that
F(H — e)^T(H). Thus if neither (i) nor (ii) holds, and G is not S-stable at e,
then either (iii) or (iv) holds. This completes the proof.

THEOREM 3.2. Suppose G is S-stable at e. Let H be the component of G which
includes e. Then L (G) is not semi-stable at e if and only if one of the following two
statements is true:

(i) H — e is disconnected and has a component isomorphic to the graph G3 of
Figure 2.1, whose vertex of degree 1 or 3 is incident with e;

(ii) H — e is disconnected and has a component isomorphic to Ki,3 whose
vertex of degree 3 is incident with e, and G has a component isomorphic to K3.

PROOF. If either (i) or (ii) is true, then by inspection, F^G),.^ F,(G - e), so
that by Lemma 2.2 L(G) is not semi-stable at e. Suppose that G is S-stable at e
and L(G) is not semi-stable at e. By Lemma 2.3, H is S-stable at e and either (a)
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L(H) is not semi-stable at e or (b) H — e has a component isomorphic to K,,3
whose vertex of degree 3 is incident with e and G has a component isomorphic
to K3. If (b) is the case, then (ii) is true. Suppose, then that (a) is the case. If /3 is
any element of V(H - e), then /3 E F(H) since H is S-stable at e. It follows that
/3 must map the set of vertices incident with e onto itself, and so must induce an
element of F,(H) which fixes e. This element then restricts to an element of
r,(H)e. Since L(H) is not semi-stable at e, it follows that r,(H)e/ F,(H - e). We
conclude that not all elements of rt(H - e) are induced by elements of F(H - e),
that is rt(H-e)^r*(H-e). We deduce from Lemma 2.1 (a) that either (I)
H-e has both of the graphs G, and G2 of Figure 2.1 as components or (II)
H - e has one of the graphs G3, G4, G5 of Figure 2.1 as a component. In fact (I)
cannot hold; if it did hold, then H — e would be isomorphic to K3 U Kh3, and no
feasible graph H = (K3U Ku3)+ e is S-stable at e. Thus (II) holds. Moreover,
H - e^ G3 since H is S-stable at e, H - ef^ G4 since (a) holds and obviously
H — ef£ G5. Hence H — e is disconnected. Moreover, again because H is
S-stable at e, and because G4 and G5 have no fixed vertices we conclude that
H — e has a component isomorphic to G3 whose vertex of degree 1 or 3 is
incident with e. In other words, (i) must hold.

4. The semi-stability of line graphs
of trees and unicyclic graphs

In Sheehan (1973), the author found those trees and unicyclic graphs which
are not S-stable at any edge. He proved

LEMMA 4.1. / / T is a tree which is not S-stable, then either T is Pn for some
n =§ 4, or is one of the trees E7 or J shown in Figure 4.1.

Figure 4.1

LEMMA 4.2. The only unicyclic graphs which are not S-stable are those
shown in Figure 4.2.

We shall now proceed to find those trees and unicyclic graphs whose line
graphs are not semi-stable.
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and the infinite
family

Figure 4.2

It is convenient to state here a result of Heffernan (1972) regarding the
semi-stability of rooted trees.

LEMMA 4.3. // T is rooted tree, with | V(T) | g 2, then T is semi-stable at an
end-vertex other than its root.

As a final preliminary, we note the following lemma which helps us to
decide whether or not a given connected graph is 5-stabIe.

LEMMA 4.4. Let G be a connected graph which is semi-stable at an end-
vertex w. Let x be the vertex of G adjacent to w. Then G is S-stable at (w, x).

PROOF. The result clearly holds if G = K2. Thus assume
G — (w, x) = Gw U ({w}), w h e r e Gw is c o n n e c t e d , a n d \V(GW)\>1. T h u s

F(G — (w, x))w = F(GW) = Y(G)W as G is semi-stable at w. As w is fixed by
V(G-(w,x)), it follows that T(G - (w, JC))§ T(G), so that G is S-stable at

Our results on semi-stability of line graphs are:

THEOREM 4.5. The only trees whose line graphs are not semi-stable are Pn for
5 and E7.
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PROOF, (i) Let T be a tree whose line graph is not semi-stable. Suppose that
T is S-stable at e. As L(T) is not semi-stable, it is not semi-stable at e. By
Theorem 3.2 it follows that either T — e must have a component isomorphic to
G3 or T must have a component isomorphic to K,, a contradiction as T is
acyclic. Thus T is not S-stable. By Lemma 4.1, T is Pn for some n i? 4 or is E7.
However L(Pt) is semi-stable, so that in fact T is Pn for some n g 5 or is E7.

(ii) By inspection, if n g 5, L(Pn) is not semi-stable, and L(E7) is not
semi-stable.

THEOREM 4.6. The only unicyclic graphs whose line graphs are not semi-
stable are the graphs shown in Figure 4.2, with the exception of the first of these
graphs.

PROOF, (i) Let U be a unicyclic graph whose line graph is not semi-stable.
Suppose U is S-stable at e. Since L(U) is not semi-stable, it is not semi-stable at
e. By Theorem 3.2, bearing in mind that U is unicyclic, it follows that U is of the
form ( G 3 U M ) + e, where M is a tree and e is incident with either u, or
u2G V(G3) (see Figure 2.1) and a vertex v of M. We may consider {/ to consist
of the cycle C with V(C) = {u2, i>3, u4}, at t n e vertex v2 of which is adjoined a
rooted tree which has at least 3 vertices. By Lemma 4.3, this rooted tree is
semi-stable at an end-vertex w(^ v2), which is adjacent to a vertex x of U, say. It
follows that U is also semi-stable at w. By Lemma 4.4, U is S-stable at (w, x). As
L([/) is not semi-stable, we deduce from Theorem 3.2 that the component of
U-(w, x) other than ({w}) must be G3, with either v, = x or v2 = x Thus U is
ane of the graphs U,, U2 shown in Figure 4.3. However in these cases, L(U) is
>emi-stable (at the vertex representing edge g in both cases). This is a
:ontradiction. It follows that U cannot be S-stable. Therefore, by Lemma 4.2, U
s one of the graphs shown in Figure 4.2. Moreover, U cannot be the first of
hese graphs because L(U) is by hypothesis not semi-stable.

g

U, U2

Figure 4.3
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(ii) If U is one of the graphs shown in Figure 4.2, with the exception of the
first of these graphs, then L(U) is not semi-stable, this fact falling out of
Sheehan's proof of Lemma 4.2, (Sheehan (1972)), together with Lemma 2.2.

5. Stable line graphs

In this section, we investigate the problem of finding which line graphs are
stable. Our results all have proofs which rely heavily on the structural implica-
tions of a graph being stable.

First of all, it is easy to see that the following is true.

LEMMA 5.1. If L(G) is stable, then either \E(G)\ = 1 or F,(G) contains a
transposition.

PROOF. Suppose L(G) is stable, and suppose | V(L(G))| = \E(G)\ > 1.
Then L(G) has a partial stabilising sequence S of cardinality \E(G)\-2.
Suppose E(G) — S = {eu e2}. Then L(G)S is isomorphic either to K2 or 2Ki, and
T(L(G)S) contains the transposition (eie2). As S is a partial stabilising sequence
for L(G), it follows that (e,e2) E F(L(G))S, so that r(L(G)) = F,(G) contains a
transposition.

To help us apply Lemma 5.1, we note the following structural interpretation
of the possession of a transposition by Fi(G).

LEMMA 5.2. Let e and f be edges of a graph G. Then (e/)€EF,(G) if and only
if _ ___

(i) in the case that e ~ f in G, Na[e] = JVO[/]
(ii) in the case that e / f in G, NG[e] = NG[f].
We can now deduce the following result, which is more explicit than Lemma

5.1.

THEOREM 5.3. If L(G) is stable, then either
(i) \E{G)\=\,or
(ii) some component of G is P4, C4, K4 or one of the graphs G3, G4 of Figure

2.1, or
(iii) (wo components of G are K2, or
(iv) G has either an end-block isomorphic to K} or two intersecting end-

blocks both isomorphic to K2.

PROOF. By Lemma 5.1, either | E(G) | = 1 or Fi(G) contains a transposition.
In the former case (i) holds. Thus assume that r\(G) contains a transposition, say
(ef). Suppose first of all that e/f in G. By Lemma 5.2, NG[e] = NG[f]. If
NG[e] = NG[f] = 0, then (iii) holds. If NG[e] = NG[f] * 0 , then clearly the
component of G containing e and / is P4, C , K4, G3 or G4 and so (ii) holds. Now
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suppose that e ~ f in G. Then e = (u, v), f = (u, w), where u, v, w are distinct
vertices. By Lemma 5.2, No[e] = No[f], and so clearly this set must either consist
entirely of edges incident with u or be of the form F U {(v, w)} where F is a set of
edges incident with u. In the former case, G has two intersecting end-blocks
isomorphic to K2 and, in the latter case, G has an end-block isomorphic to K,.
Therefore (iv) holds.

COROLLARY. Let G be a connected graph such that L(G) is stable. Then
either (i) G is K2, P4, C4, K4, G3 or G4, or (ii) G is separable and has either an
end-block isomorphic to K3 or two intersecting end-blocks both isomorphic to K2.

We can now deduce the following interesting theorem which was mentioned
in the introduction.

THEOREM 5.4. L(G) and L(G) are both stable if and only if G is
K2, Pi, PA, K3, K4, Ct, Kui, KXA, G3, GA, one of the graphs G6, G7, shown in Figure
5.1, or the component of one of these graphs.

G6 G7

Figure 5.1

PROOF, (i) By inspection, the graphs listed above and their complements all
have stable line graphs.

(ii) Now suppose that both L(G) and (L(G) are stable. As at least one of
G, G is connected, we may suppose, without loss of generality, that G is
connected. By (i), and Theorem 5.3, Corollary, we need only consider the cases
where G has (a) two intersecting end-blocks, both isomorphic to K2 or (b) an
end-block isomorphic to K3.

j.J (a). Assume first of all that u, v, wEV(G) are such that ({u, v}) and
({u, w}) are two end-blocks of G both isomorphic to K2. If | V(G)| S4, then G
isP3or KU3. Suppose, then, that | V(G) |S5. For each x G V(G)-{u, v, w}, G
contains a circuit with vertices x, v, w. It follows that all vertices in V(G)-{«}

;belong to the same block (H, say), of G. Since L(G) is stable, Theorem 5.3
I implies that G must have a component or block with 2 or 3 vertices or a
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component with 4 vertices. Hence H must be a component of G such that
| V(H)| = 4 < | V(G)\. Therefore V(H) = V(G)-{u} and u is adjacent in G to
all four vertices in V(H). Since ({«, v}) and ({u,w}) are end-blocks of G, it
follows that G is Ku4 or G6.

(b) Now assume that there exist u, v, w G V(G) such that <{M, U, W}> is an
end-block of G isomorphic to K3, and that if | V(G)\ > 3, u is a cutvertex of G.
If | V(G) |g4 , then G is /C3 or G3. Suppose, then, that | V(G) |^5 . For each
pair of vertices x, y £ V(G)-{u, v, w}, G contains a circuit with vertices
x, y, v, w. If follows that all vertices in V(G) - {u} belong to the same block (H,
say), of G. As in (a), H is then a component of G with 4 vertices, and u is
adjacent in G to all vertices in V(H). As ({u, v, w}) is an end-block of G, it
follows that G is G6 or G7. This completes the proof of the theorem.

COROLLARY. // G and G are both connected, and L(G) and L(G) are both
stable, then G is P*. In particular, the only self-complementary graph whose line
graph is stable is P4.
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