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Abstract

ANTHEM 2.0 is a tool to aid in the verification of logic programs written in an expressive
fragment of CLINGO ’s input language named MINI-GRINGO, which includes arithmetic oper-
ations and simple choice rules but not aggregates. It can translate logic programs into formula
representations in the logic of here-and-there and analyze properties of logic programs such as
tightness. Most importantly, ANTHEM 2.0 can support program verification by invoking first-
order theorem provers to confirm that a program adheres to a first-order specification or to
establish strong and external equivalence of programs. This paper serves as an overview of the
system’s capabilities. We demonstrate how to use ANTHEM 2.0 effectively and interpret its
results.

KEYWORDS: knowledge representation and nonmonotonic reasoning, logic programming
methodology and applications

1 Introduction

We present ANTHEM 2.0, the latest system developed as part of the “Answer Set

Programming + Theorem Proving” (ANTHEM) project. This system consolidates the

findings and functionalities of previous prototypes into a stable tool for verifying pro-

grams in the paradigm of Answer Set Programming (ASP). The ANTHEM 2.0 system

(in the sequel we drop 2.0 when referring to this system) can process ASP programs

written in a subset of the input language of the grounder GRINGO (Gebser et al. 2015).
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This subset, described by Fandinno et al. (2020), is referred to as MINI-GRINGO. MINI-

GRINGO programs can contain arithmetic operations and simple choice rules, but not

aggregates. We can use ANTHEM to verify two important equivalence relations between

ASP programs: strong equivalence and external equivalence. ASP programs Π1 and Π2

are called strongly equivalent if replacing Π1 by Π2 within any larger program does

not affect its stable models (Lifschitz et al . 2001). For example, the one-rule successor

programs

q(X+1) :- p(X). and q(X) :- p(X-1). (1)

are strongly equivalent. The systems for verifying strong equivalence designed in the past

(Janhunen and Oikarinen 2004; Valverde 2004; Chen et al. 2005; Oetsch et al. 2009) are

limited to ground programs; ANTHEM does not suffer this limitation.

1 composite(I*J) :- I = 2..b, J = 2..b.
2 prime(I) :- I = a..b, not composite(I).

Listing 1. A MINI-GRINGO program, primes.1.lp.

External equivalence is equivalence with respect to a “user guide” – a description of

how the programs are meant to be used (Fandinno et al. 2023). Consider, for instance,

the program1 in Listing 1, which finds all primes within an interval {a, . . . , b} with a> 1.

Its intended use can be described by the user guide in Listing 2.

input: a -> integer. output: prime /1.
input: b -> integer. assumption: a > 1.

Listing 2. A user guide for the primes problem.

It tells us that when we run the program, we are expected to specify appropriate values

for the placeholders a and b. Furthermore, it says that the output of the program consists

of atoms in the stable model that contain prime/1; any other atoms of the stable model

are auxiliary (“private”).

ASP programs Π1 and Π2 are (externally) equivalent with respect to a user guide if,

for any input that is permitted by the user guide, they produce the same output. For

example, the program in Listing 1 is externally equivalent to the more efficient program

composite(I*J) :- I = 2..b, J = 2..b/I.
prime(I) :- I = a..b, not composite(I).

with respect to the user guide defined above, even though the stable models of the two

programs differ with respect to the auxiliary predicate composite/1.

In the special case when programs do not accept inputs and have no auxiliary predi-

cates, external equivalence means simply that the programs have the same stable models.

We call this weak equivalence. If we allow auxiliary predicates and inputs, but we restrict

the inputs to not contain placeholders, then external equivalence becomes a special case

of relativized uniform equivalence with projection (Oetsch and Tompits 2008).

1 Most of the examples in this paper can also be found in the res/examples directory of the ANTHEM
repository; https://github.com/potassco/anthem. The repository also contains installation instructions
and a more detailed user manual.
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In addition to checking equivalence of programs, ANTHEM can verify the adherence of

an ASP program to a specification written in classical first-order logic. For example, the

formula below written in the custom language of ANTHEM captures the formal property

encoded in the preceding example:

forall X$g (prime(X$g) <-> a <= X$g <= b
and not exists D$i M$i (1 < D$i < X$g and M$i*D$i = X$g)).

This formula contains variables of two sorts: a general variable named X and integer vari-

ables D and M. The sort of the variable is indicated by the suffix $g or $i for the sorts gen-

eral and integer , respectively. Analogously to how it checks external equivalence between

programs, ANTHEM can verify that the prime/1 predicate as defined by Listing 1 pos-

sesses the property encoded by the specification with respect to the user guide in Listing 2.

Using ANTHEM to verify external equivalence between MINI-GRINGO programs

involves

• transforming rules into first-order sentences,

• forming program completions,

• reducing the tasks described above to first-order theorem proving, and

• using the theorem prover VAMPIRE (Kovács and Voronkov 2013) for proof search.

Fandinno et al. (2020) describe the original system that pioneered some of the presented

ideas. We refer to this system as ANTHEM-1. It was designed with the goal of verify-

ing the adherence of a program to a specification written in first-order logic. A related

“translate and verify” system, ANTHEM-SE, was developed by Lifschitz et al. (2019) for

verifying strong equivalence and extended to programs with negation by Heuer (2020).

Finally, the ANTHEM-P2P system (Fandinno et al. 2023) was an application built on

top of the ANTHEM-1 system for verifying external equivalence of programs.

Now, we present ANTHEM 2.0, which combines and extends the functionalities of the

previous systems within a new, standalone library and command-line application. Our

system helps users verify strong, external, and weak equivalence of programs, analyze

properties of programs such as tightness and regularity, and translate programs into the

syntax of many-sorted first-order logic. The theory behind ANTHEM has been given

a thorough treatment in previous publications, and we refer to these publications for

theoretical concepts instead of redefining them here.

2 Preliminaries: Program and “Target” languages

The ABSTRACT GRINGO (AG) language (Gebser et al. 2015) is a theoretical repre-

sentation of the input language accepted by the widely used ASP solver CLINGO. The

fragments of AG studied in the context of ANTHEM are commonly referred to as MINI-

GRINGO – this is the subset of AG for which an appropriate translation to the syntax of

first-order logic has been widely studied. In this paper, we follow the definition presented

by Fandinno et al. (2020) when we refer to MINI-GRINGO. A MINI-GRINGO program

consists of basic rules, choice rules, and constraints:

H :-B1, . . . , Bn. {H} :-B1, . . . , Bn. :-B1, . . . , Bn.
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Here H is an atom and each Bi (1≤ i≤ n) is either an atom, possibly preceded by one

or two negation-as-failure symbols, or a comparison. The fundamental task of ANTHEM

consists of verifying the correctness of MINI-GRINGO programs (Section 4). To achieve

this goal, the system implements multiple translations between representations of these

programs in different languages. One of these languages is the TPTP format, which is a

standard format for Automated Theorem Prover (ATP) systems (Sutcliffe 2017). Hence,

the different verification tasks that ANTHEM can perform are based on the translation

of MINI-GRINGO programs into a language of logical formulas, running an ATP system

on a task assembled from the translated program(s), and interpreting the results of the

ATP system to provide an answer to the verification task. Transforming an equivalence

claim about MINI-GRINGO programs into a series of TPTP problems is a non-trivial

process and in general requires several intermediate transformations. Thus, at the heart

of ANTHEM is a logical language, which we call here simply the target language, that

supports all these intermediate transformations. Theories written in this language may be

interpreted under the semantics of classical first-order logic or the logic of here-and-there

(HT; Heyting 1930), but syntactically this is a first-order language with variables of three

sorts: (1) a sort whose universe contains integers, symbolic constants, and special symbols

#inf and #sup, (2) a subsort corresponding to integers, and (3) a subsort corresponding

to symbolic constants.

Variables ranging over these sorts are written as “Name$sort”, where Name is a cap-

italized word and sort is one of the sorts defined above. Certain abbreviations are

permitted:

• a general variable named V can be written as V, V$g, or V$general;

• an integer variable named X can be written as X$, X$i, or X$integer; and

• a symbol variable named S can be written as S$s or S$symbol.

Like ABSTRACT GRINGO and MINI-GRINGO, the target language is a theoretical

language – a formula written in this language can be printed as a series of Unicode

characters in different ways. For example, the target language formula

∀X(∃I(I =X ∧ p(I))→ q(X)) (2)

(in which X is a general variable and I is an integer variable) expresses that q holds for

all X such that X is an integer for which p holds. This formula can be read or displayed

in a custom ANTHEM syntax as follows:

forall X ( exists I$ (I$ = X and p(I$)) -> q(X)).

ANTHEM can also display target language formulas in the TPTP syntax. The preceding

formula (2) is formatted in TPTP as

![X: general]: ( ?[I: $int]: ( ( f__integer__(I) = X ) &
p(f__integer__(I)) ) => q(X) ).

In Section 4, we show how verification tasks are handled by extending ANTHEM’s

custom syntax for target language formulas with meta-level declarative statements

controlling proof search – we call this the control language.
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3 Translating logic programs and formulas with ANTHEM

ANTHEM supports (1) translations from ASP programs into logical formulas, and (2)

transformations of logical formulas within the target language.

3.1 Translating ASP programs into the target language

Past versions of the ANTHEM system (Fandinno et al. 2020; Heuer 2020) relied

exclusively on a translation known as τ∗ (Lifschitz et al. 2019) that transformed MINI-

GRINGO programs into their formula representations. To accommodate features such

as partial arithmetic functions, τ∗ produces complex formulas that are not easily under-

stood. However, a broad fragment of MINI-GRINGO programs does not require such

complexity. For a class of rules called regular , a more natural translation ν has been devel-

oped to produce formulas that are more human-readable while maintaining equivalence

to their τ∗ counterparts (Lifschitz 2021). ANTHEM employs both the τ∗ translation2 and
natural translation ν. For example, the natural translations of successor programs (1) are

forall X$i (p(X$i) -> q(X$i + 1)), forall X$i (p(X$i - 1) -> q(X$i)).

For rules that do not meet the requirements of regularity, ANTHEM falls back on τ∗

to obtain their formula representations. Translating nonregular rules is a non-trivial task;

for example, consider the rule

p(X,Y) :- X / Y > 0.

which is not regular due to the partial function of division. We can apply translation τ∗

to this rule using the command

anthem translate <program> --with tau-star

which produces the output

forall V1 V2 X Y (V1 = X and V2 = Y and exists Z Z1 (
exists I$i J$i Q$i R$i (I$i = J$i * Q$i + R$i and (I$i = X and J$i = Y)

and (J$i != 0 and R$i >= 0 and R$i < J$i) and Z = Q$i)
and Z1 = 0 and Z > Z1) -> p(V1, V2)).

Interestingly, τ∗ and ν can be safely combined by applying ν to every regular rule and

τ∗ to the rules that are not regular. Such a transformation is denoted μ (Fandinno and

Lifschitz 2023b). ANTHEM supports μ, ν, and τ∗ as translation options:

anthem translate <program> --with <mu | natural | tau-star>

3.2 Transformations within the target language

To support the verification of ASP programs, ANTHEM provides two transformations

that can be applied to logical formulas within the target language. Each of these transfor-

mations provides as output a formula whose validity in classical first-order logic supports

some of the verification tasks described in Section 4.

2 In reality, τ∗ is an overloaded term referring to several iterations on the idea of translating between
fragments of AG and many-sorted formulas. The definition used here follows a slightly corrected version
of the seminal ANTHEM-1 publication that can be found at https://arxiv.org/abs/2008.02025.
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3.2.1 From here-and-there satisfaction to classical satisfaction

Stable models of MINI-GRINGO programs can be described in terms of the logic of HT

by selecting the so-called equilibrium models (Pearce 2006). This connection has inspired

a line of research into translating programs written in ASP input languages into HT the-

ories whose equilibrium models correspond to the answer sets of the original program.

Interestingly, for the translations concerning this paper, two programs are strongly equiv-

alent if and only if their formula representations are equivalent in HT (Lifschitz et al.

2001). This gives us a method for verifying strong equivalence.

To reduce the task of reasoning about HT theories to reasoning over classical theories,

transformations have been proposed that “embed” the behavior of HT-satisfaction into

classical satisfaction of transformed formulas. One of the first representations of this

process in the ASP literature can be attributed to Pearce et al. (2001), who describes

a transformation that converts propositional HT theories into classical theories over an

extended signature. A generalization γ of this translation to formulas with variables was

studied by Heuer (2020) and by Fandinno and Lifschitz (2023b). The γ transformation

was fundamental to the design of ANTHEM-SE, which implemented a procedure for

strong equivalence checking. For example, if R is the rule

q(X,Y+1) :- p(X,Y).

then νR is

∀XN(p(X,N)→ q(X,N + 1)).

where N is an integer variable. The result of applying γ to this formula is

∀XN((hp(X,N)→ hq(X,N + 1))∧ (tp(X,N)→ tq(X,N + 1))).

The classical models of γ(νR) satisfying the additional axioms

∀XY (hp(X, Y )→ tp(X, Y )) and ∀XY (hq(X, Y )→ tq(X, Y ))

correspond to the HT models of νR. In terms of Kripke models, new predicates hp/1

and hq/1 represent satisfaction in the “here” world; tp/1 and tq/1 represent satisfaction

in the “there” world. We call such additional axioms ordering sentences.

The γ transformation plays a central role in the automated verification of strong

equivalence (Section 4.1).

3.2.2 Completion

For the so-called tight programs (Fandinno et al. 2020, Section 6), Clark’s Completion

(Clark 1978) characterizes the stable models of a logic program as the models of a clas-

sical first-order theory. Since its introduction, the idea of completion has been widely

generalized. In the context of ANTHEM, we view completion as a transformation on

top of target language theories of a certain form. These so-called completable theories

can be transformed according to the completion procedure described by Fandinno et al.

(2024) into first-order theories. The τ∗ transformation is designed to produce completable

theories when applied to MINI-GRINGO programs. For instance, we can compute the
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completion of the program choice.1.lp consisting of the rule {q(X)} :- p(X) by passing

the output of the τ∗ translation to the completion operator:

anthem translate choice.1.lp --with tau-star \
| anthem translate --with completion

This produces the output

forall V1 (q(V1) <-> exists X (V1 = X and
exists Z (Z = X and p(Z)) and not not q(V1))).

forall V1 (p(V1) <-> #false).

Completion allows us to use first-order theorem provers to verify the external equivalence

of programs meeting certain restrictions, such as tightness (Section 4.2). We can confirm

that our program is tight with the command

anthem analyze choice.1.lp --property tightness

4 Verifying logic programs with ANTHEM

The fundamental task of ANTHEM consists of formally verifying properties of MINI-

GRINGO programs. This section describes the three verification tasks that ANTHEM

can perform: strong equivalence, external equivalence, and specification adherence.

4.1 Strong equivalence

The strong equivalence of two programs Π1 and Π2 can be established by deriving the

equivalence γ(τ∗Π1)↔ γ(τ∗Π2) (or, equivalently, γ(μΠ1)↔ γ(μΠ2)) from the associated

ordering sentences. ANTHEM accomplishes this by constructing a series of subproblems

for an ATP system to solve. To illustrate this process, consider the encoding of the

property

1 {q(X,Y)} :- p(X), p(Y).
2 q(X,Z) :- q(X,Y), q(Y,Z), p(X), p(Y), p(Z).

Listing 3. The program transitive.1.lp.

“q is transitive on the domain of p” given in Listing 3 (Harrison et al . 2017), and a

refactoring of this program (transitive.2.lp) that replaces the second rule with the

constraint

:- q(X,Y), q(Y,Z), not q(X,Z), p(X), p(Y), p(Z). (3)

We can verify their strong equivalence by invoking ANTHEM with an instruction to

use μ for obtaining the HT formula representation of these two programs:

anthem verify --equivalence strong transitive.{1.lp,2.lp} \
--formula-representation mu

Let us denote Rule 1 from Listing 3 as F (this rule is common to both programs). Let

G1 denote Rule 2 from Listing 3, and G2 denote the constraint (3). Furthermore, let A
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denote ordering sentences

∀X(hp(X)→ tp(X)) and ∀X1X2(hq(X1, X2)→ tq(X1, X2)).

The strong equivalence of these programs can be established by showing that

A→ (γ(μ({F, G1}))↔ γ(μ({F, G2})))
is satisfied, in the sense of classical first-order logic, by all standard3 interpretations

(Fandinno and Lifschitz 2023b,Theorem 2). ANTHEM decomposes this task into four

subproblems, each of which consists of verifying that one of the following implications is

satisfied by all standard interpretations:

(A∧ γ(μF )∧ γ(μG1))→ γ(μF ), (A∧ γ(μF )∧ γ(μG1))→ γ(μG2),

(A∧ γ(μF )∧ γ(μG2))→ γ(μF ), (A∧ γ(μF )∧ γ(μG2))→ γ(μG1).

ANTHEM checks that these implications (two of which are trivial) are entailed by a set

of axioms describing standard interpretations using a classical ATP system, currently

VAMPIRE, and answers that the two programs are strongly equivalent if it finds that

all four implications are entailed by the axioms.

4.2 External equivalence

Strong equivalence can sometimes be too strong of a condition when we are comparing the

behavior of two programs. Often, we are only interested in confirming that two programs

have the same output when paired with the same input. This type of equivalence is called

external equivalence (Fandinno et al. 2023). External equivalence is defined with respect

to a user guide, which defines a class of acceptable inputs to the programs, and specifies

which predicates encode their output.

A user guide contains statements of three types: input declarations, output decla-

rations, and assumptions about the inputs. An input declaration describes an input

predicate or a placeholder (a symbolic constant i.e., given a value by the program’s

input). Note that ANTHEM does not require a concrete valuation of placeholders – for

instance, Listing 2 only specifies that a is an integer greater than 1. This user guide also

specifies, via the declaration of prime/1 as the only output predicate, that only atoms in

the stable model that contain prime/1 are considered when checking for external equiv-

alence. We can verify that the program in Listing 1 is externally equivalent to the more

efficient program in Listing 4 for any pair of integers (a, b) such that a> 1. If primes.ug

is the file containing the user guide in Listing 2, ANTHEM can automatically prove the

aforementioned claim.

1 sqrtb(M) :- M = 1..b, M*M <= b, (M+1)*(M+1) > b.
2 composite(I*J) :- sqrtb(M), I = 2..M, J = 2..b.
3 prime(I) :- I = a..b, not composite(I).

Listing 4 A refactored primes program, primes.3.lp.

To achieve this, ANTHEM first builds the completion of the τ∗ formula representation

of each of the programs (Sections 3.1 and 3.2.2) and then produces a series of subtasks

3 Standard interpretations give a standard treatment to operations like integer addition.
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to verify using VAMPIRE. These subtasks are described by Fandinno et al. (2023) and

a detailed example is given in Section 5.3. Note that verifying the preceding example is

difficult for the current version of VAMPIRE without some human help (see Section 5). It

is also worth mentioning that currently, ANTHEM can only automatically verify external

equivalence for programs that are tight and lack private recursion (Fandinno et al. 2023,

Section 6). Note that strong equivalence verification does not suffer this restriction, and,

in certain cases, the tightness limitation can be lifted (see Section 5).

4.3 Specification adherence

Thus far, we have discussed how ANTHEM can be used to establish that certain types of

equivalences hold between two ASP programs. In this section, we show how ANTHEM

can verify the adherence of an ASP program to a specification written in classical first-

order logic. This workflow can be viewed as a special type of external equivalence

checking, where instead of encoding our specification of desired behavior as an ASP

program, we encode it directly in ANTHEM ’s control language. For example, we can

validate that the program given in Listing 5 correctly solves the exact cover 4 problem

by directly encoding the properties our program should possess as follows.

1 {in_cover (1..n)}.
2 :- I != J, in_cover(I), in_cover(J), s(X,I), s(X,J).
3 covered(X) :- in_cover(I), s(X,I).
4 :- s(X,I), not covered(X).

Listing 5. An encoding (cover.lp) solving the exact cover problem.

First, a solution to this problem is a collection of set identifiers in the range [1, n]:

spec: forall Y (in_cover(Y) ->
exists I$ (Y = I$ and I$ >= 1 and I$ <= n$i)).

Second, each element that occurs in the union of all sets must occur in the cover:

spec: forall X (exists Y s(X, Y) ->
exists Y (s(X, Y) and in_cover(Y))).

Finally, sets selected to be part of the cover cannot overlap:

spec: forall Y Z (exists X (s(X, Y) and s(X, Z))
and in_cover(Y) and in_cover(Z) -> Y = Z).

Keep in mind that we need to restrict our input to sets identified by the range [1, n]:

assumption: forall Y (exists X s(X, Y) ->
exists I$ (Y = I$ and I$ >= 1 and I$ <= n$i)).

We can verify Listing 5 against this specification with the following user guide:

4 An exact cover of a collection S of sets is a subcollection S′ of S such that each element of the union
of all sets in S belongs to exactly one set in S′.
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input: n -> integer. input: s/2.
output: in_cover/1. assumption: n >= 0.

using the command

anthem verify --equivalence external cover.{lp,spec,ug}

This workflow tells us that cover.lp has the properties encoded by the specs and

that our specification cover.spec completely defines the external behavior of the pro-

gram in cover.lp with respect to this user guide. If we remove one of the specs from

cover.spec, then the preceding command fails, since the specification is no longer

a complete description of the program’s behavior. However, the following command

succeeds.

anthem verify --equivalence external cover.{lp,spec,ug} \
--direction backward

This tells us that the program embodies the remaining properties of the specification.

More broadly, for any verification task, ANTHEM attempts to validate some form of

equivalence. Thus, we can run the forward and backward directions of this equivalence

proof separately if desired. In the case of external equivalence, we can frame our task

as a proof of the equivalence between a program and a specification; our specification

can be written as a logic program or as a collection of assumptions about the input and

formulas annotated with the spec role.

5 ANTHEM in practice

One of the goals of this paper is to provide practical advice for using ANTHEM and

demystify the interpretation of the results produced. Chances are your experience with

ANTHEM will fall into one of three categories.

5.1 The good

This is the most straightforward case: ANTHEM returns a message like

> Success! Anthem found a proof of the theorem.

For instance, invoking the command from Section 4.1 produces an output summarizing

the two subproblems passed to VAMPIRE and their respective success statuses. Here, all

subproblems in both the forward and backward directions of the equivalence proof ended

with a “Status: Theorem” message. This means that the subproblem conjecture was

successfully derived from the subproblem axioms. Since every subproblem was verified,

the programs transitive.1.lp and transitive.2.lp are strongly equivalent.

5.2 The bad

There are certain types of problems that ANTHEM is not equipped to address. The

most common such problem is the task of validating the external behavior of a non-tight

program, which the current incarnation of ANTHEM refuses to attempt. One notable
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exception is the case of local tightness (Fandinno et al. 2024). Many non-tight programs

are still locally tight, such as programs encoding planning problems in which the law of

inertia introduces positive recursion. While tightness is a syntactic property of programs

that is easily checked by ANTHEM, an effective procedure for checking local tightness

has not been developed. If, however, a user has manually proven the local tightness of

their program(s), ANTHEM’s tightness check can be bypassed, and verification safely

completed, by adding the --bypass-tightness flag.

5.3 The ugly

When ANTHEM fails to verify a program, it is not a proof that the programs are not

(strongly, externally) equivalent. It very well may be that the proof exists, but ANTHEM

needs some help finding it. What can be done in these cases?

Option 1: Increase resource allocation. ANTHEM lets you increase the timeout -t

for the backend ATP for each subproblem. You can also parallelize search by increasing

the number of cores used by the ATP with the -m flag.

Option 2: Explore missing or malformed assumptions. If ANTHEM is hung up on

a particular subproblem, consider the axiom set and conjecture. Is it clear that the

conjecture follows from the axioms? Sometimes seemingly self-evident assumptions are

missing – for a detailed example, see the “orphan” example by Fandinno et al. (2023).

Option 3: Write a proof outline. If VAMPIRE is unable to validate a subproblem in

a reasonable amount of time (as is often the case for nontrivial tasks), the next step is

to find a lemma that can be derived by VAMPIRE from the axioms without help and

that is likely to facilitate achieving the goal when added to the list of axioms. Thus,

for external equivalence tasks, ANTHEM lets users supply a proof outline consisting of

annotated formulas that can play three roles: definitions, lemmas, and inductive lemmas.

These are target language formulas augmented with instructions for how they should be

used within a verification task. Their general form is

role(direction)[name]: formula.

where role and formula are required, and direction indicates which direction of the

equivalence proof the formula is used within. Such outlines can often be very effective.

Definitions are assumed to define the extent of a new predicate introduced for convenience

within a proof outline. They have the form

definition: forall X ( p(X) <-> F(X) ).

where X is a tuple of variables, p is a fresh predicate symbol, and F is a formula with free

variables X. A sequence of definitions is valid if any defined predicate p used within each

F is defined previously in the sequence. For example, the annotated formula (D)

definition[D]: forall I$ N$ (sqrt(I$,N$) <->
I$ >= 0 and I$*I$ <= N$ < (I$+1)*(I$+1)).

defines the integer square root (I) of an integer N . Definitions can be used in a proof

similarly to assumptions as their purpose is to make writing lemmas easier.
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Lemmas. ANTHEM interprets proof outlines in an intuitive way: as a series of interme-

diate claims to be checked en route to a final claim. Previously established results in this

sequence are used as assumptions when checking the next claim. When ANTHEM is pro-

vided with a proof outline as part of an external equivalence verification task, it attempts

to sequentially verify every (inductive) lemma. If successful, it treats the resulting set of

formulas as assumptions during the verification task. For example, a proof outline con-

sisting of D and the following two lemmas (L1 and L2) is interpreted as an instruction

to derive L1 from D and L2 from {D, L1}.
lemma[L1]: sqrt(I$,N$) and (I$+1)*(I$+1) <= N$+1 -> sqrt(I$+1,N$+1).
inductive-lemma[L2]: N$ >= 0 -> exists I$ sqrt(I$,N$).

Inductive lemmas have the general form

inductive-lemma: forall X N$ ( N$ >= n -> F(X,N$) ).

where n is an integer, X is a tuple of variables, N is an integer variable and F is a tar-

get language formula. Within a proof outline, an inductive lemma is interpreted as an

instruction to prove two conjectures:

∀XF (X, n) and ∀XN(N ≥ n∧ F (X,N)→ F (X,N + 1)).

If both the first (the base case) and the second (the inductive step) conjectures are

proven, then the original formula

∀XN(N ≥ n→ F (X,N))

is treated as an axiom in the remaining proof steps. For example, L2 is interpreted as an

instruction to verify

∃Isqrt(I, 0) and ∀N(N ≥ 0∧ ∃Isqrt(I, N)→∃Jsqrt(J, N + 1)).

We can verify the external equivalence of Listings 1 and 4 with respect to the user

guide in Listing 2 with the proof outline primes.po, which extends {D, L1, L2} with the

following lemmas, L3 and L4:

lemma[L3]: b >= 1 -> (sqrtb(I$) <-> sqrt(I$,b)).
lemma[L4]: I$ >= 0 and J$ >= 0 and I$*J$ <= b and sqrtb(N$)

-> I$ <= N$ or J$ <= N$.

Let us denote the assumption a > 0 from Listing 2 as A. Additionally, let us denote

the completion of Rule 1 from Listing 1 as F , the completion of Rule 2 from Listing 1

as F ′, the completion of rules 1 and 2 from Listing 4 as G, and the completion of Rule

3 from Listing 4 as G′. When the following command is invoked

anthem verify --equivalence external primes.{1.lp,3.lp,ug,po}

ANTHEM verifies the proof outline as described above, then verifies the following

subproblems in which the completed definitions of private predicates are treated as

assumptions from which to derive the equivalence of the public predicates’ definitions:
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Table 1. Tools supporting proof-based verification of ASP programs

Language Features Equivalence
Tool Vars. Disj. Dbl. Neg. Arith. Strong External Weak Spec Backend

SELP
√ √

SAT
DLPEQ

√ √ √
ASP

CCt
√ √ √

QBF
ANTHEM-SE

√ √ √ √
ATP

ANTHEM-1
√ √ √ √

ATP
ANTHEM-P2P

√ √ √ √ √
ATP

ANTHEM 2.0
√ √ √ √ √ √ √

ATP

(A∧L1 ∧L2 ∧L3 ∧L4 ∧ F (p)∧G(q)∧ F ′(p))→G′(q),

(A∧L1 ∧L2 ∧L3 ∧L4 ∧ F (p)∧G(q)∧G′(q))→ F ′(p).

Here, p is a list of fresh predicate symbols, {composite/1}, to replace the pri-

vate predicates occurring in primes.1.lp. Similarly, q replaces the private predi-

cates occurring in primes.3.lp with predicate symbols that won’t conflict with p:

{sqrtb/1, composite p/1}.
A challenging example Fandinno et al. (2024) provide two alternative solutions (Sections

1 and 5) to the frame problem, using different approaches to encoding the law of inertia.

While these programs are not tight, they are locally tight, allowing us to safely bypass

the tightness check. If we provide ANTHEM with the following proof outline

inductive-lemma(backward): N$ >= 0 -> (in(X,Y,N$) -> person(X) )

we can verify the external equivalence of the two frame programs. This example is remark-

able due to the complexity of the programs (which use powerful modeling features to

encode a realistic problem from the ASP literature), and the fact that we can prove

external equivalence for arbitrary time horizons h≥ 0 using a single inductive lemma.

6 Experimental analysis

This section compares the capabilities (Table 1) and performance (Table 2) of

ANTHEM 2.0 against related systems, particularly its predecessors. As mentioned in

the Introduction, tools from the ANTHEM family are oriented towards a different class

of logic programs than SELP, DLPEQ, and CCT, which were designed for propositional

SMODELS or DLV programs with disjunctive heads. As shown in Table 1, they do

not support variables, double negation, or arithmetic. Hence, there cannot be a sensi-

ble runtime comparison between these systems and ANTHEM 2.0. Furthermore, they

employ a different type of backend inference engine – the common theme of these sys-

tems is to convert a verification task into a satisfiability problem for some form of solver.

SELP, DLPEQ, and CCT use SAT, ASP, and Quantified Boolean Formula (QBF) solvers,

respectively. ANTHEM systems, on the other hand, use an automated theorem prover

(ATP) as a backend.
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Table 2. Comparing ANTHEM 2.0 against its predecessors

Problem Equivalence POCompetitor Competitor
Runtime

ANTHEM 2.0
Runtime

m = 2m = 4m = 8m = 2m = 4m = 8

Coloring External ANTHEM-1 0.15 0.21 0.20 0.13 0.12 0.12
Cover (1vs) External ANTHEM-1 0.40 0.22 0.15 0.11 0.10 0.10
Cover (1v2) External ANTHEM-P2P 0.28 0.25 0.32 0.13 0.11 0.13
Division External ANTHEM-1 Timeout Timeout
Division External

√
N/A - 6.20 3.21 1.68

Frame External ANTHEM-P2P Timeout Timeout
Frame External

√
N/A - 36.69 17.97 7.88

Primes (1v2) External ANTHEM-P2P 5.57 7.21 2.94 2.56 1.14 0.54
Primes (2v3) External ANTHEM-P2P Timeout Timeout
Primes (2v3) External

√
N/A - 95.57 48.14 29.47

Primes (2vs) External ANTHEM-1 Timeout 6.44 3.14 1.77
Bounds Strong ANTHEM-SE 0.25 0.15 0.07 1.80 0.99 0.48
Choice Strong ANTHEM-SE Timeout 0.04 0.09 0.07
Squares Strong ANTHEM-SE 17.37 141.43 69.45 5.71 2.53 1.20
Successor Strong ANTHEM-SE 0.86 0.45 0.25 1.26 0.64 0.40
Transitive Strong ANTHEM-SE 0.06 0.05 0.06 0.07 0.11 0.05

In addition to supporting several useful language features as shown in Table 1,

ANTHEM 2.0 also permits users to verify multiple types of equivalence. For example,

it supports specification adherence verification in the style of ANTHEM-1, implemented

as a special case of external equivalence. This type of verification is unique – all other

types in the table refer to a form of equivalence between logic programs. Interestingly,

ANTHEM-P2P and ANTHEM 2.0, by virtue of their ability to verify external equiva-

lence of logic programs, also support weak equivalence. Weak (or answer set) equivalence

between programs Π1 and Π2 can be verified by comparing them under a user guide

without placeholders, assumptions or input declarations, that contains every predicate

in Π1 ∪Π2 as an output predicate. Note that CCT supports a form of relativized uniform

equivalence with projection similar to external equivalence when placeholders are forbid-

den, in addition to a generalized form of strong equivalence relativized to a propositional

signature.

Recall that ANTHEM 2.0 was an effort to integrate, stabilize, and extend the capa-

bilities of previous prototypes developed for one type of equivalence only. As such, there

is at most one competitor to ANTHEM 2.0 for each problem in Table 2. The problems

considered are a subset of the repository’s res/examples folder, excluding only trivial

parsing tests. Times are given in seconds, the m parameter represents the number of

cores allocated to VAMPIRE, and the “PO” column indicates if a proof outline was pro-

vided to aid in solving the problem within the 5-minute time limit. All experiments were

conducted on Ubuntu 24.04.2 LTS, 13th Gen Intel(R) Core(TM) i7-1370P, 32 GB RAM.

These comparisons demonstrate that ANTHEM 2.0 is considerably more powerful than

its predecessors when applied to non-trivial problems, both in terms of capabilities and
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performance. In particular, the new features of proof outlines (definitions and inductive

lemmas) have enabled us to verify problems that previous systems could not address in

a reasonable amount of time. Consider the challenging Frame problem discussed at the

end of Section 5. While even ANTHEM 2.0 was initially unable to address this problem

within the 5-minute timeout, the use of a proof outline with the new inductive lemma

feature brought the runtime down to 7.88 s. Indeed, Division, Frame, and Primes (2v3)

all rely on proof outlines with features specific to ANTHEM 2.0.

For certain trivial problems (Bounds, Successor, Transitive), ANTHEM-SE outper-

forms ANTHEM 2.0, although the differences for the Transitive problem are negligible.

For the other two problems, this is likely due to a shortcut employed by ANTHEM-SE

when it encounters positive programs . A positive rule is a basic rule or constraint whose

body does not contain negation. For simple programs of this nature, the γ transformation

can be omitted when checking strong equivalence (Lifschitz et al. 2019, Proposition 6).

7. Conclusions and future work

This paper provides an overview of the ANTHEM 2.0 system. We strongly encourage

interested readers to also visit the ANTHEM repository, where a user manual and set of

examples with expected outputs may be found. The systems developed in the ANTHEM

project are unique within the landscape of (proof-based) ASP verification tools due to

their support for programs with variables and integer arithmetic. ANTHEM 2.0 sub-

sumes previous ANTHEM systems and provides powerful new features such as natural

translation for strong equivalence tasks and enhanced proof outlines for external equiva-

lence problems. Proof outlines, for instance, make previously unsolved problems such as

the external equivalence of Listings 1 and 4 tractable. Additionally, the (optional) decou-

pling of the translation and verification steps may prove to be a useful tool for studying

the relationship between ASP and other logical formalisms such as classical first-order

logic.

This tool offers a stable foundation for future innovation. A number of improvements

are already planned or in progress, including improved algorithms for simplifying for-

mulas, proof outlines for strong equivalence tasks, employing alternative backend ATP

systems, integration of natural translation into external equivalence verification, bypass-

ing tightness restrictions with ordered completion and/or tightening, extending the

supported language with conditional literals, supporting counting and/or unrestricted

aggregates, and revising the definition of integer division for consistency with CLINGO

(Fandinno and Lifschitz 2023a, Footnote 3). The long-term goal is to support the complete

ABSTRACT GRINGO language within ANTHEM.
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