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Abstract

In this paper, we report on a data analysis process for the automated classification of mechan-
ical components. In particular, here, we describe, how to implement a machine learning sys-
tem for the automated classification of parts belonging to several sub-categories. We collect
models that are typically used in the mechanical industry, and then we represent each object
by a collection of features. We illustrate how to set-up a supervised multi-layer artificial neural
network with an ad-hoc classification schema. We test our solution on a dataset formed by
2354 elements described by 875 features and spanned among 15 sub-categories. We state
the accuracy of classification in terms of average area under ROC curves and the ability to
classify 606 unknown 3D objects by similarity coefficients. Our parts’ classification system
outperforms a classifier based on the Light Field Descriptor, which, as far as we know, actually
represents the gold standard for the identification of most types of 3D mechanical objects.

Introduction

In mechanical industries, the widespread use of Computer-Aided Design tools has produced
large data sets of product models. In this context, the possibility of easily retrieving and
then reusing/modifying existing CAD models would be of paramount importance to speed
up the development of new products. To this aim in the last decades, PDM (Product Data
Management) systems have been introduced in companies for the organization and documen-
tation of their legacy product data. Models can be therefore retrieved according to the adopted
organization and metadata specified for describing parts and assemblies. Thus, the possibilities
of retrieving elements are strongly dependent on the information assigned by designers and not
on the actual content of the models. This can be a big limitation, also considering that not all the
companies adopt PDM systems and that often PDM capabilities are only partially exploited. In
addition, legacy models produced before the introduction of PDM systems are often archived in
the file system without being properly documented and are thus difficult to retrieve. To over-
come these limits, shape-based retrieval methods have been investigated in the research commu-
nity (Cardone et al., 2003; Bustos et al., 2005; Iyer et al., 2005; Tangelder and Veltkamp, 2008)
and some commercial tools are now emerging. These systems generally allow the search for 3D
models similar to a given query object formed by a single part. Even if mechanical products are
generally formed by several components, only a few methods are addressing the retrieval of
assemblies (Deshmukh et al., 2008; Chen et al., 2012; Hu et al., 2013; Lupinetti et al, 2018).
Dealing with assemblies introduces additional problems related to component organization, nor-
mally not explicitly encoded in the model, as well as to component simplification, which fre-
quently occurs when components are acquired from a third party. While most of the research
proposed in the literature is mainly focusing on process-oriented classification (e.g. similar fab-
rication methods) or on the geometric similarity of parts and assemblies; retrieval capabilities
more oriented on the purpose of the part or of the implemented mechanisms in the model
would be important. A fully automated functional classification of parts based only on their
shape is almost impossible since parts apparently identical can have a different usage and the
same functions may be performed by parts with a different shape.

Understanding the functionality of a part or of a component in an assembly requires rea-
soning not only on the shape of its elements but also on its usage within the product. In fact,
on the one hand, simplified parts with similar shapes may suit to perform different function-
alities, which can be discerned by their usage context, that is, how the parts are embedded in
the assembly model. On the other hand, even if a functional set can be obtained with different
supplementary parts organized in diverse ways, some components and arrangements recur
constantly. Therefore, engineering knowledge on functional sets can provide useful indications
for the component classification and therefore for the identification of specific mechanisms.
For instance, functional sets whose task is the transformation of the input motion generally
include axes on which gears, spacers, and bearings are inserted. The occurrences of this set
of parts are a good indicator of the presence of that mechanism type. Indeed, the identification
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of the assembly components potentially belonging to these classes
(i.e. axis, gears, spacers, and bearings) may greatly simplify the
mechanism recognition in large assembly models. Based on
these considerations, we have implemented this multi-step part
classification approach in our system for the retrieval of assembly
models (Lupinetti et al., 2018). Two specific modules have been
developed: the first assigns a category to each part according to
only to its shape characteristics; then exploiting engineering
knowledge, the second module assesses and, if necessary, corrects
the initial shape-based classification by analyzing the context of
use of the part in the assembly with the ultimate objective of iden-
tifying components representing specific functional sets. Details
on the context-based revision of the shape-based classification
can be found in Lupinetti et al. (2017). In this paper, we focus
on the description of the methodology and process we followed
for the definition and implementation of the first module: the
shape-based classification of assembly parts.

Existing research for the classification of mechanical parts
includes algorithms that work with various shape descriptors
based on projected profiles, feature extraction, and shape related
functions. Anyhow, it is recognized that there is not a single
descriptor that performs well over all the various types of shapes.
Therefore, we investigated the capabilities offered by combining
shape descriptors under the umbrella of a machine learning pro-
cedure aiming at classifying parts according to their functionality
even when the shape of the parts is oversimplified.

The paper is organized as follows. In the section ‘Problem
specification and related works’, we give the statement of the
problem that we face in this paper and a brief overview of the
related existing methods. The section ‘Our approach for mechan-
ical part classification’ briefly introduces the proposed approach
for the multi-step classification of parts in assembly models.
The section ‘Proposed solution’ contains the details of our solu-
tion for shape-based classification of parts, the experimental eva-
luations, and the results. Finally, summary and conclusions are
given in the section ‘Summary and conclusions’.

Problem specification and related works

Our research aims to provide an automated classifier able to
associate a specific category to 3D models of mechanical compo-
nents. Considering the progress in several different areas such as
3D model classification and machine learning, the problem we
intend to address is: “given a multi-class dataset of mechanical
parts, represented by their 3D model, define a machine learning-
based solution for the automated classification of its entries”.

The classification problem can be thought of as a specific state-
ment of a more general situation that is the matching and the
retrieval of 3D CAD data. Various methods have been presented
in the literature for 3D object retrieval possibly including more
functional or application aspects, for example, Cardone et al.
(2006); here we only report the most pertinent works focusing
on part classification. Among them, Marini et al. (2007) propose
a technique to define 3D shape prototypes for the classification of
3D content. The defined shape-prototype summarizes the most
relevant features of the members of a class. In this method,
each member of a class is represented by a structural descriptor
encoded as an attributed graph. The prototype is obtained by
applying graph-transformation techniques among the shape
descriptors associated with the members of the class. The method
better applies to discern macro categories of objects and does not
well fit for mechanical parts with small differences.

Philipp-Foliguet et al. (2011) address the classification of art-
works, in particular, it focuses on the identification and classifica-
tion of the Venus from Mother-Divinity categories, whose
characteristics strongly differ from our types of objects.

In the mechanical field, Jayanti et al. (2009) provide a compar-
ison of the application of clustering methods to 3D models for the
navigation of 3D repositories. Additional works address the cate-
gorization of parts according to specific design processes. Among
them, Pernot et al. (2015) tackle the problem of categorizing pro-
ducts in terms of characteristics that might affect the simplifica-
tion of parts for the Finite Element Analysis (FEA). To this
aim, using a combination of shape descriptors, parts are classified
in terms of three categories: thin parts, parts with thin portions
and normal. Unfortunately, this classification is too rough for dis-
cerning on the effective shape of parts. Still, in the context of FEA
model preparation, Shalwan et al. (2014) identify functional com-
ponents in assemblies, such as cap-screws, tubular rivets, and
gears. This approach assumes that all the parts are fully detailed
and it strongly relies on the geometric interferences between com-
ponents and on reasoning capabilities on structured formalized
engineering knowledge (in the form of ontology). Thus, it is
not able to provide any category indication either for single
parts not in an assembly and for parts in an assembly with the
simplified shape. Manufacturing features were used for similarity
assessment and classification by Cicirello and Regli (2002). The
main drawbacks of using features lie in the need for a feature rec-
ognition process, which provides results very sensitive to interac-
tions among features, and does not consider the overall shape of
the object.

Machine learning and deep learning applications for 3D CAD
models classification have been reported too. In Ip et al. (2003)
the authors define a new feature space based on metrics features
(inner, outer, and mixed distances) over which they approach the
classification of solid models using learning techniques (decision
tree and reinforcement learning), that allow the automated cate-
gorization of wheels, sockets, and housing models. In Yiu Ip and
Regli (2005), the authors present another approach to automate
the classification of CAD models with machine learning tech-
niques. More recently, in Qin et al. (2014) the authors present
an automated 3D CAD model classification approach based on
the deep learning technique. The classifier is able to mimic the
main phases of a manual classification process in which an
engineer usually opens a 3D model with CAD software, rotates
it on the screen, observes it from desirable viewing angles, and
then synthesizes those viewing images to obtain the semantic cat-
egory. In Wang et al. (2015), the authors propose a novel solution
for the retrieval of 3D CAD objects by using a convolutional
neural network that processes information gained from sketch-
based and shape-based methods.

Our approach for mechanical part classification

As previously stated, we intend to associate mechanical parts with
the corresponding category. While knowing that the shape is a
distinguishing aspect of parts, a classification based only on
shape-related characteristics is impossible: similar shapes can sat-
isfy different functional objectives and moreover parts can be sim-
plified when inserted in assemblies; therefore, we propose the
two-phase approach illustrated in Figure 1.

The first phase is applied to single parts to associate the most
pertinent category based on its shape characteristics. The sec-
ond phase can only be applied to parts inserted in an assembly.
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In this phase, we analyze parts according to their category to
assess the correctness of the classification. The evaluation uses
engineering knowledge about the generally present interactions
between components in specific mechanisms. The rationale
behind is that a specific mechanical component may perform
its function within a functional set if it is positioned according
to specific conditions with respect to certain classes of compo-
nents. Hence, to determine if a component effectively belongs to
the assigned class we check its relations with the other compo-
nents of the assembly, for example, with which types of compo-
nents/parts the examined part interacts. Parts are analyzed
class-by-class according to a given order. If a part does not
respect the expected condition, it is reclassified as the not yet
analyzed most promising category. Details on this phase can
be found in Lupinetti et al. (2017). Here the rest of the paper
is focusing on the methods and process we applied to realize
the first phase using a machine learning approach.

Proposed solution

Our solution is obtained on top of a data analysis process. Before
reporting on the details of our solution for the development of the
first classification module, let us recall that a general data analysis
process is based on the following steps (Yandel, 1997):

• Data Acquisition:
(i) Obtaining the data
(ii) Visual investigation of the data space
(iii) Cleaning the data

• Feature Extraction and Feature Analysis:
(i) Feature extraction
(ii) Exploratory analysis of the feature space
(iii) Pre-processing the feature space
(iv) Feature selection
(v) Feature reduction

• Modeling the classifier:
(i) Modeling of the classifier system
(ii) Validation of the model
(iii) Visualization of the model
(iv) Visualization and interpretation of the results

• Results analysis:
(i) Deployment of the model
(ii) Visualization of the results

Note that the visualization action is performed in each step in
order to highlight new insights about the underlying patterns and
relationships contained within the data.

The heat map is one of the most useful tools for visualizing
pair-wise distances among features. This highlights modularity
(clusters) and other characteristics of the feature space (e.g. linear
separation, etc…) (Fayya et al., 2002).

Data acquisition

The application of learning techniques for detecting the most
important parameters and values for the classification strongly
relies on the training set. Different classifications can be applied
to the same object depending on the purposes. In Jayanti et al.
(2006) the authors proposed a benchmark database (https://
engineering.purdue.edu/cdesign/wp/?page_id=1386) for evaluat-
ing shape-based search methods relevant to the mechanical engi-
neering domain. To this aim, the organization of the dataset in
classes is performed according to the main shape characteristics
of the parts to verify the capabilities of the various shape descrip-
tors to capture specific shape qualities. Similarly, the Drexel CAD
model Datasets (http://edge.cs.drexel.edu/repository/) provide
various datasets where elements are classified according to differ-
ent criteria, for example, manufacturing processes, functionality,
model resolution. These classified datasets are partially appropri-
ate for our purposes: some of them do not offer a functional clas-
sification; others include only parts completely detailed. In
addition, their number of elements is insufficient to train a learn-
ing system correctly. Therefore, we had to create our own dataset
extending the categories to allow the classification of parts not
completely designed and adding examples in each category to
boost training algorithm.

Our dataset is obtained by collecting models from different
sources: the repositories mentioned above, two famous on-line
free catalogs (GrabCAD (https://grabcad.com/library/software/
stl) and TraceParts (http://www.traceparts.com/it/)) and projects
of engineering students. Our class organization is mostly func-
tional oriented. However, since we want to be able to classify
also parts inserted in the assembly in a simplified version, we
included volume primitive classes, such as sphere-like, which
should be reclassified in the context-based classification revision
phase. For instance, the toroidal part in Figure 2(a) and the
spheres in Figure 2(b) cannot be interpreted as rolling elements
of a bearing component without considering the surrounding
parts. Indeed, a part with a torus shape can also be used to design
a seal whose function is to ensure liquid-tightness.

We considered the 15 classes indicated in Table 1. The class
organization has been created by first allocating the objects
according to their distribution in the original repositories.
Additional parts have been selected from the available projects.

Fig. 1. The proposed part classification process.
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Then, elements that could be used in the assembly with different
meanings have been moved to the class that will be more easily
recognized when considering its usage context. The validation
of the class membership has been performed through interviews
with domain experts, that is engineers and mechanical designers.
Experts’ indications were particularly crucial for cataloging the
parts taken from students’ projects, which are normally simplified.
Thus, we designed a dataset composed of 15 categories and con-
taining 2354 elements. Figure 3 provides pictures of the elements in
the categories. The full dataset can be seen at http://partsclassifier.
ge.imati.cnr.it. The categories and the number of items per category
are reported in Table 1. Some categories have few elements, as there
are not many variations of their shape.

Spacer class elements differ from those in Cylinder-like because
they have at least a hole along the main axis.

Note that, we decided to introduce both the classes Bearing
and Part of Bearing because a bearing can be modeled both as
the assembly of the constituent parts or as a single part corre-
sponding to the union of the composing elements. In the former
case, parts can have several shapes. In a simpler abstraction a
bearing can be modeled as three rings (cylinders with a central
through hole); but sometimes the inner part is represented as a
torus or a pattern of primitive shapes like spheres or cylinders,
possibly including a cage, which fixes the position of the rolling
elements whose shape is variable. Examples of different bearing
representation are shown in Figure 4.

Some parts of bearings seem to be similar to spacers, but
spacers’ length along the axis is greater than the diameter, while
the parts of bearing that look like spacers have a diameter greater
than the length.

Feature extraction and feature analysis

Feature extraction
Machine learning algorithms require a set of features that discri-
minate objects belonging to the different proposed classes by
using some measurable characteristics. Since we aim to classify
parts according to their shape, shape descriptors are used as fea-
tures of our machine learning approach. In this paper, we do not
intend to define new descriptors but to combine in a smart setting
already developed geometric and statistical features. However, we
have dedicated a strong effort in finding the appropriate set of fea-
tures for shape classification. The literature contains tens of defi-
nitions of descriptors for shape analysis and there is no one
descriptor performing in general better than others. Anyway, as
shown in Jayanti et al. (2006) there are descriptors that perform
better for categories of shapes with specific characteristics.
Thus, exploiting previous research results (Jayanti et al., 2006)
and considering the efficiency of computation and comparison,

we selected the ones more suitable for the part classes defined
in Figure 3. More precisely, the objects we aim to classify are
solids of revolution (e.g. axis, spacer, and screw), prismatic parts
(e.g. cube and nut), and thin-walled parts (e.g. c-clip); the descrip-
tors that best represent these classes are 3D spherical harmonics,
geometric statistics (e.g. ratio among the main bounding box
sizes), inner distances and shape distribution. The selected
descriptors are computed with freely available tools on tessellated
models, which can be produced from any CAD system and from
reverse engineering processes.

To perform the classification, we project the objects to a new
feature space. The feature space is formed by a collection of
shape descriptors and geometric statistics, which are invariant
under rigid transformations, that is their value does not change
for transformation such as translations and rotations. The new
feature space is of dimension 875 and it contains both integers,
binary as well as real numbers.

For each object, we compute the following features:

1. 3D spherical harmonics – #544 features
2. Geometric statistics – #11 features
3. Inner distances – #256 features
4. Shape distribution – #64 features

In the following subsections, we will briefly introduce both the
features included in our feature space and the light field descriptor
(LFD) that we used to compare and evaluate our parts classifica-
tion system.

3D spherical harmonics. 3D Spherical Harmonics (3DSH) are
included in the proposed feature space because of their ability
to discriminate solids of revolution. In addition, this descriptor
performs well also in the case of prismatic parts for values of
recall after 0.3 (Jayanti et al., 2006).

3DSH act similar to the Fourier analysis of a signal but on
spherical functions. In the study of Fourier series, complicated
but periodic functions are written as the weighted sum of simple

Fig. 2. Objects whose function cannot be deduced without considering usage context.

Table 1. Categories in the dataset

ID category Category Number of items

1 Axis 92

2 Bearing 26

3 C-Clip 202

4 Cylinder-Like 162

5 Cube-Like 111

6 Gear 124

7 Key 25

8 Linkage Arms 14

9 Nut 251

10 Miscellaneous 420

11 Part of bearing 274

12 Screw and bolt 454

13 Spacer 123

14 Sphere-like 30

15 Torus-like 46
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trigonometric functions. Given a spherical function f(θ, φ) it can
be decomposed as the sum of its harmonics:

f (u,f) =
∑1
l=0

∑m=l

m=−l

almY
m
l (u,f) (1)

Where alm are coefficients uniquely determined by:

alm =
∫2p
0

∫p
0
f (u,f)Ym∗

l (u,f)sin(u)dudf (2)

Ym
l are the spherical harmonics, such that

{Ym
l (u,f) : |m| ≤ l [ N} are defined on the unit sphere S2 as:

Ym
l (u,f) = kl,mP

m
l (cos u)eimf (3)

where θ ∈ [0, π], φ∈ [0, 2π[, kl,mis a constant, and Pm
l is the

associate Legendre polynomial, and Ym∗
l is the complex conjugate.

In Kazhdan et al. (2003), the authors proposed a new rotation
invariant descriptor of a spherical function for satisfying the task

of shape comparison. The algorithm implements the following
procedure:

decompose the function into its harmonics;
sum the harmonics within each frequency;
compute the norm of each frequency component.

The output of this methodology is a normalized histogram, in
our case of 544 bins, which reports the value of the sum of the
harmonics for a given frequency. This method represents the
backbone of several shape comparison algorithms (Ritchie and
Kemp 1999; Rothganger et al., 2006; Mak et al., 2008), but in
our case study it fails in the classification of very similar objects
that belong to two different categories, for example, the axis
and the bolt in Figure 5. In order to overcome this limitation,
we add other features to our feature space.

Geometric statistics. Thin-walled components are characterized
by higher surface area and lower volume; simple geometric statis-
tics perform better than other more complex descriptors in their
characterization. Thus, with this type of features, we intend to
capture information that is able to take into consideration the
sizes and the proportions among sides. In particular, the values
we consider under the name of geometric statistics are:

• Minimum Bounding Box (MBB) sizes
• Proportion between length and height of MBB
• Proportion between length and width of MBB
• Proportion between height and width of MBB
• MBB diagonal length
• Surface area
• Thin shell barycentre

We start by computing the dimensions of the minimum
bounding box, which is the box with the smallest measure within

Fig. 3. Representative objects in the dataset
categories.

Fig. 4. Example of bearings: in the left, a bearing modeled by three cylindrical rings;
in the right, a bearing modeled by two shells and a pattern of spheres.
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which all the points of the part lie in. From the bounding box, we
derive other statistics, which provides indications about the global
thickness of the objects.

Inner distances. The inner distances are used to build descriptor
able to well characterize prismatic parts (Jayanti et al., 2006).

The inner distance is defined as the length of the shortest path
between landmark points within the shape, and it reflects well the
structure and deformation without explicit decomposition. The
inner distances are stored as a histogram that gives a probability
distribution of inner distances between all sample point pairs
on the surface.

Shape distribution. To improve the characterization of solid of
revolutions and thin-walled parts, considering the review pro-
posed by Jayanti et al. (2006), shape distribution is included in
the feature space.

This descriptor is presented in Osada et al. (2002), where the
authors addressed the problem of measuring the similarity
between 3D shapes by a shape function that captures global geo-
metric properties of an object. The authors stressed the following
shape functions:

• A3: measures the angle between three random points on the
surface of a 3D model.

• D1: measures the distance between a fixed point (e.g., the
centroid of the boundary) and one random point on the
surface.

• D2: measures the distance between two random points on the
surface.

• D3: measures the square root of the area of the triangle between
three random points on the surface.

• D4: measures the cube root of the volume of the tetrahedron
between four random points on the surface.

In Osaka et al. (2002), the authors selected the D2 and evalu-
ated N = 10242 samples from the shape distribution and con-
structed a histogram by counting how many samples fall into
each of the B = 1024 fixed sized bins. From the histogram, they
reconstruct a piecewise linear function with V = 64 equally spaced
vertices. The output of this procedure is a sequence of V integers,
which forms our representation for the shape distribution. The
experimental results of this approach reported in the paper and
confirmed by Jayanti et al. (2006) suggest us that this descriptor
is a good choice for the comparison of shapes, being a good com-
promise considering the efficiency and the obtained results.

Light field descriptor. LFD is a self-consistent class of features that
aim to capture the visual similarity of 3D objects. LFD has been
introduced by Chen et al. (2003); it is obtained by computing
the Zernike moments and the Fourier descriptors on 100 ortho-
gonal projections of an object. The authors have developed also
a 3D retrieval system based on LFD that outperforms other
retrieval systems based on the spherical harmonics, the
MPEG-7 Shape 3D descriptors, and the MPEG-7 Multiple View
Descriptor. Therefore, to evaluate the capabilities of combining
various descriptors as features, we compare our parts classifica-
tion system with the one obtained by using only the LFD feature
space. LFD is computed by using the tool available at http://3d.
csie.ntu.edu.tw/~dynamic/3DRetrieval/. The tool takes as input
the OBJ file and it produces 5 binary files. In total, an object is
represented by a vector containing 6500 real values.

Exploratory analysis of the feature space
This task provides a preliminary description of the dataset in the
new feature space and then helps to reduce the feature space while
preserving its main characteristics. We start by computing the
pair-wise standardized Euclidean distance and we store the output
in a distance matrix:

d(s, t) = (xs − xt)V−1(xs − xt)′ (4)

where V is the n × n diagonal matrix, whose jth diagonal ele-
ment is the squared standard deviation. Among others, heat-
maps are useful and informative graphical tools for mining
big matrices. In our case, the distance matrix has dimension
2354 × 2354.

A heat map is a graphical representation of matrix data where
the elements of the matrix are represented as colors. An example
of the heat map is the mosaic map. Mosaic map is a tiled heat
map for representing a two-way or higher-way table of data.
The rectangular regions in a mosaic plot represent data that are
hierarchically organized or that are quite similar. The analysis
of the mosaic map in Figure 6 reveals a modular structure but
the distances among objects tend to be quite near to zero. This
indicates the necessity of enhancing the distance (separation)
among objects belonging to different classes; otherwise, a metric-
based clustering system could be enough and be used for classify-
ing the mechanical parts.

Pre-processing the feature space
The previous analysis suggests that our dataset must be improved:
the objects in the feature space are not strongly separated. Before
to train the classification algorithms, it is necessary to check the
correctness of the dataset. This step is often indicated as data
scrubbing. It is the process of correcting or removing data in a
dataset that are incorrect, inaccurate, incomplete, improperly for-
matted or duplicated. The useless or corrupted data can be
detected by applying some simple statistical data validation, by
handling missing data and eventually by deleting duplicate values.
Missing or sparse data can lead to highly misleading results. We
computed the following statistics:

• Infinite values (Inf) or number of Not A Number values (NaN)
• Number of duplicated values per feature
• Number of duplicated features
• Number of missing values
• Heteroscedasticity test (White, 1998)

Fig. 5. Example of two objects (left an axis, right an abstract bolt) that are not prop-
erly distinguished by spherical harmonics but that are correctly recognized by our
classifier.
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We did not find missing values or Inf. Normalizing each fea-
ture in the interval [0;1] is a well-known practice in Machine
Learning, for this task we computed:

Norm(x) = (x −min(Fi))/(max(Fi) −min(Fi)) (5)

where x is the xth sample within the feature Fi.
In Figure 7 we show the percentage of duplicates for each fea-

ture (spherical harmonics, geometric statistics, inner distances,
and shape descriptors’ distribution), the corresponding values
are reported in Table 2.

We have found that only one feature (i.e. the 57th spherical har-
monics) contains the 98% of duplicates, with a value equal to zero.

After the normalization, we evaluated the effect of the duplicates
on the distances among features by iteratively removing the features
with duplicates. We removed first the features with a higher num-
ber of duplicates, then at each iteration the others. We observe that
the removal of the set formed by 43 features belonging to the last
bin (4 spherical harmonics and 39 shape descriptors’ distribution)
allows to pinpoint out a more evident modular structure of the fea-
ture space for our data set, see Figure 8. The removal of other sets
degrades the modular structure. This step has improved the class
separation but some classes are still overlapping and for this reason,
we cannot use metric-based clustering systems for the parts classi-
fication and a non-linear interpolator is needed.

Feature selection
In order to improve the quality and reduce the computational
time and the memory usage of the classifier, we perform a reduc-
tion of the feature space. Feature selection techniques can be clas-
sified into three sets: wrapper, embedded, and filter. In the
wrapper approach, the algorithm for the classification is directly
involved and is used for scoring a given subset of features. The
embedded methods are basically iterative algorithms that add
the selection process into the learning schema of the classifier.
Filter methods use statistics for analyzing intrinsic properties of
data and they work regardless of the classification algorithm.
Generally, the output of the feature selection is a rank or a subset
selection. In the former, the importance of each individual feature
is evaluated, while in the latter, the final subset of features to be
selected is provided (Yu and Liu, 2003).

We provide a mixed selection technique that puts together
ranking and subset selection and that aims to preserve the mod-
ularity of our dataset that we observe in Figure 8. Our procedure
works as follows:

Input: the feature space after the data scrubbing step

(1) Rank each feature
(2) Sort the rank array from the greatest to the smallest
(3) Loop over the rank array, be the current threshold θ:

(a) Select the features with the rank ≥ θ
(b) Study the similarity of the subset given by point (a)
(c) Discard θ which do not preserve the modularity

Output: the smallest set of features preserving the modularity
of the input feature space.

With this schema in mind, we implemented the procedure by
using two different ranking systems for point 1: F-test and mutual
information (MI). After that, we discarded F-test because it was
not able to pinpoint out any relevant features. This is because
F-test deals only with highly linear correlated variables, while
MI is able to detect any kind of dependency among variables.

Fig. 6. Heat-map of the Standardized Euclidean dis-
tances among parts in the feature space.

Table 2. Frequency of features with duplicated values

Number of features Range of frequency (%)

561 0–9.8

82 9.8–19.6

62 19.6–29.4

30 29.4–39.2

17 39.2–49

17 49–58.8

18 58.8–68.6

15 68.6–78.4

30 78.4–88.2

43 88.2–100
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F-test. This features selection approach belongs to the filter
methods and it is based on the so-called F-statistic. The F-statistic
is simply a ratio of two variances. Variances are a measure of disper-
sion, or how far the data are scattered from the mean. Larger values
represent greater dispersion. The F-test score assesses if the expected
values of a quantitative random variable x within a number of m
given classes differ from each other (Steiger, 2004).

Mutual information. The MI between two random variables or
random vectors measures the “amount of information”, that is
the “loss of uncertainty” that one can bring to the knowledge of
the other, and vice versa. MI can be used in several ways to select
a subset of features (Krier et al., 2006).

The first strategy consists of measuring the MI between the ratio
of two features (x1/x2) and the class label: the highest scores corre-
spond to those features that are most relevant in discriminating
among the classes. This method finds pairs of useful features but
it is not suitable for scoring each individual feature. The second
approach is more useful for building a bag of features: the feature
with the highest MI with the class label is chosen first. Then, pairs

of features containing the already selected one and any remaining
one are built. The MI between each of these pairs and the class
label are measured; the second chosen feature is the one contained
in the pair with the highest MI score. The procedure is then iterated
until the adequate number of features has been reached.

In this paper, we use the second approach and it selects 437
out of 832 features:

• Spherical harmonics: #243
• Geometric statistics: #6
• Inner distances: #143
• Shape Distribution: #45

The application of MI to the LFD space lets to reduce its
dimensionality from ℝ6500 to ℝ3250.

In Figures 9 and 10, we show the mosaic maps of the standard-
ized Euclidean distances among the objects within the input data-
set represented both in our feature space and by the light field
descriptor after the application of the MI. In both mosaics, we
notice modular structures representing groups of parts.

Fig. 7. Percentage of duplicates for each feature.

Fig. 8. Heat map of standardized Euclidean distance
matrix after data scrubbing. The modularity appears
more evident.
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Feature reduction
For the sake of completeness, we notice the reader that another
approach for the reduction of the dimensions of the feature
space is obtained by combining subsets of the input features.
The combination can be linear or not. Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA) and
Independent Component Analysis (ICA), Factor Analysis and
Projection Pursuit are the main techniques used for the feature
reduction. For a complete review of these techniques, we suggest
Fodor (2002).

The application of PCA to the selected feature by MI reduces
the dimension from ℝ437 to ℝ41. When PCA is applied to the
LFD features selected by MI it reduces the dimension from
ℝ3250 to ℝ49.

Modeling the classifier

In this work, we implement the “modelling” step by using a
machine learning approach; we use a supervised artificial neural

network (ANN) as a classifier, and the one-versus-rest classifica-
tion schema (Hong and Cho, 2008).

An ANN is a computational network inspired by biological
neural systems, consisting of nodes (neurons) and links for con-
necting the nodes. For more details please refer to Ruck et al.
(1990). Historically ANNs have been enrolled for dealing with
dichotomous classification problems. In order to use an ANN
for a multi-class problem, a one-versus-rest training schema is
required. This strategy consists in fitting one classifier per class.
For each classifier, the class is fit against all the other classes.
Since each class is represented by one specific classifier, it is pos-
sible to gain knowledge about the class by inspecting its corre-
sponding classifier. This schema works as follows:

Inputs:

• A learner algorithm for the binary problem
• A sample space X
• A label set Y, where the label yi is the label for the sample Xi and
where i∈ {1, …, K},

Fig. 9. Heat map of standardized Euclidean distance
matrix of the feature space and selected by MI.

Fig. 10. Heat map of standardized Euclidean dis-
tance matrix of the Light Field Descriptor space
and selected by MI.
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Output:

○ a list of classifiers fk for k∈ {1, …, K}

Procedure:

• For each k in {1, …, K}
○ Construct a new label vector z where zi = 1 if yi = k and zi = 0

otherwise
○ Apply the ANN to {X < z} to obtain fk

The procedure selects as classifier the one that, given a new
sample x, classifies the label k by maximizing the following score:

ŷ = argmax fk(x) where k [ {1 . . .K} (6)

We use the feedforward backpropagation algorithm as learner
algorithm and the output is a collection of weights matrices, one
for each class. We use logistic loss function for optimization and
L-BFGS as optimization routine (Dong and Nocedal, 1898). We
optimize the computational time by switching on the warm-start
parameter (Ma et al. 2003). We implement the ANN in Python
and using the SciKit-MPLclassifier (http://scikit-learn.org/stable/)
class and as IDE for development the PyDEV (http://www.pydev.
org) plugin for Eclipse. The experiments are executed on a
MacBook Air 13′′ laptop equipped with a processor 1.6 GHz
Intel Core i5, Ram 8GB DDR3@1600 MHz and Hard Disk technol-
ogy SSD. OSX El Capitan.

In order to find the best topology, in terms of a number of neu-
rons in the hidden layer, we build and train several ANNs both for
the feature space that we engineered and for the LFD space. Given a
dataset representation that is formed by the features selected by MI
or by MI + PCA, we build n-ANNs where n = 3*2*#Feature. Each
ANN is characterized by a number of neurons within the interval
[3; 2*#Feature]. For statistical purposes, for each given number of
neurons, we build 3 same ANNs. For each configuration, we train
the ANN and we test its classification capabilities by adopting a
k-cross-validation approach, with k = 10. For each run, we measure
the accuracy of classification for each category and the average accu-
racy and the standard deviation. We select as winner configuration
the one that maximizes the average Area Under Curve (AUC). For
the sake of clarity, we perform the following data experiment:

1. Split the dataset into two subsets: Training and Test. The
Training set contains the 70% of items from the input dataset.

2. Train the classifier by changing iteratively the number of neu-
rons and the number of hidden layers.

3. For each category, compute the receiver operating characteris-
tic curve (ROC) and its AUC.

We recall that the ROC curve is the plot that displays the full
picture of the trade-off between the sensitivity (true positive rate)
and 1-specificity (false positive rate) across a series of the inherent
validity of a diagnostic test. Total area under ROC curve is a single
index for measuring the performance of a test. The larger the
AUC, the better is the overall performance of the test to correctly
classify items. Equal AUCs of two tests represent similar overall
performances but this does not necessarily mean that both the
curves are identical (McClish, 1989).

In Table 3, we report the winner ANN for each configuration
and the AUC obtained for each category. The ANNs with the
highest performances are the ID 2 and ID 5. The ANN at ID 2

is obtained by using as input training space our features selected
by using MI after the normalization. ANN at ID 5 is obtained by
using as input space the LFD selected by MI. The difference in the
performances can be explained by observing again Figures 9 and 10.
In the latter figure, corresponding to the LFD, there are smaller
modular structures colored with blue (distances close to zero)
with respect to our feature space. It means that LFD is more
suitable for answering the problem “classify a part by finding
an exact match within the training set”. While our system is
more suitable for solving the problem “classify a part by finding
at least a similar shape within the training set”. Of course, the sec-
ond case could return more false positives if in the training set
there are several shapes similar to the given one but belong to

Table 3. Best ANN performance: top ANN architecture. Bottom: corresponding
AUCs

ID Configuration #Feature #Neurons

1 Feature 875 856

2 Feature + MI 437 230

3 Feature + MI + PCA 41 25

4 LFD 6500 4800

5 LFD + MI 3250 100

6 LFD + MI + PCA 49 87

ID Configuration #ACC (%)

1 Feature 91.91

2 Feature + MI 95.72

3 Feature + MI + PCA 91.91

4 LFD 90.42

5 LFD + MI 93.01

6 LFD + MI + PCA 89.74

Table 4. AUC for each category for the ANN with ID 2

ID Category Category AUC

1 Axis 97.63001343

2 Bearing 89.25

3 C-Clip 99.90974729

4 Cylinder-like 98.39664311

5 Cube-like 97.83075601

6 Gear 94.10039199

7 Key 94.66666667

8 Linkage arms 90.5

9 Nut 97.30490987

10 Miscellaneous 90.86871024

11 Part of bearing 95.50103575

12 Screw and bolt 99.49083503

13 Spacer 96.50070126

14 Sphere-like 99.91638796

15 Torus-like 93.9762
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different classes; this is not a fault of the classification system but
of how the training has been engineered. Eventually, we select the
configuration with ID 2. In Table 4, we report the AUC for each
category considering the winner configuration.

For the sake of generalization, beside our numerical results, which
are limited to the dataset we have analyzed so far, we believe that our

classifier outperforms LFD-based classifier because LFD is a power-
ful tool for performing a global description of shapes, while our fea-
ture space combines both global descriptors (spherical harmonics)
with local shape descriptors (e.g. inner distances). Moreover, LFD
is not a natural vector space (need to search over rotations for the
comparison of different 3D objects), so it is not possible to apply tra-
ditional methods to accelerate nearest neighbor search, while our fea-
ture space can be queried with Euclidean like metrics.

Another relevant aspect regarding data storage is that the LFD
space is formed by 6500 values, while our original feature space is
composed only by 875 values; both are formed by float numbers.
In this consideration, we are discarding the dimension of the fea-
ture space after feature reduction because it depends on the char-
acteristics of the dataset under analysis.

Table 6. Quality of classification of 606 unseen parts

Index Score (%)

Jaccard – J 92.43

Dice – D 96.06

Table 5. Unknown 3D objects set classified by the ANN

Category Number of items

Axis 27

Bearing 8

C-clip 52

Cylinder-like 40

Cube-like 24

Gear 32

Key 6

Linkage arms 4

Nut 62

Miscellaneous 112

Part of bearing 73

Screw and bolt 115

Spacer 31

Sphere-like 8

Torus-like 12

Fig. 11. Example of classification of a real Mechanical Assembly Model.

Fig. 13. A detail of the Mechanical Assembly Model in Figure 12. A bearing (made of
two Part of Bearing and a series of Sphere-like parts) and C-Clips.

Fig. 12. The same model in Figure 11 with the removal of the carter.
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Result analysis

The concept of deployment in predictive data mining refers to the
application of a model for prediction of new data. To validate the
classifier described in the section ‘Modelling the classifier’, we
applied it on a dataset containing 606 unknown 3D objects.
Please see Table 5 for details on the dataset composition.
Because we know the category of the objects, we can evaluate
the quality of the classification by computing several similarity
indices; we chose the following ones, which, as far as we know,
are the most used in the literature Tustiton and Gee (2009):

• Jaccard index (or similarity coefficient of Jaccard)
• Dice coefficient

The Jaccard index measures the similarity between two sets by
dividing the cardinality of intersection with the cardinality of
their union:

J(Ci,Cj) =
|Ci >

C
j |

|Ci <
C
j |

(7)

Dice coefficient is nowadays widely used for asserting the qual-
ity of classification. This coefficient is not very different from the
Jaccard index. However, since it does not satisfy the triangle

inequality, it can be considered a semi-metric version of the
Jaccard index; it is defined as follows:

D(Ci,Cj) =
2× J(Ci,Cj)
1+ J(Ci,Cj) (8)

In this experiment, we obtain the coefficients listed in Table 6:
We also applied our classifier system for the classification of

parts belonging to real mechanical assembly models. Figures
11–14 show some examples.

Examples of wrong classifications are shown in the left of
Figure 14. The ring is classified as Part of Bearing because its dia-
meter is greater than its length, which is one of the rules we used
to create the Part of Bearing category set. While the second ele-
ment is classified as a bolt. The reason is that in the category
Screws and Bolt of our dataset there are some abstract bolts similar
to the object colored in blue (Fig. 15). In both cases, the context-
based revision of the shape classification we proposed in Lupinetti
et al. (2017) is able to correct the misclassification by considering
the contacts with the other parts in the assembly.

Summary and conclusions

In this paper, we present in a pedagogical fashion the application
of a step-by-step data analysis process for the definition of an

Fig. 14. A real Mechanical Assembly model. On the
right two objects that are properly classified in
terms of shapes but not are properly classified
from the functional point of view.

Fig. 15. Left a bolt; right the object of Figure 14
incorrectly classified as a bolt.
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automated system for classification of mechanical components
using a machine learning approach. We report how we imple-
mented all the steps of such a process: from the data acquisition
to the deployment of the classifier. We start building a dataset of
2354 3D parts subdivided into 15 sub-categories. Then we perform
the feature extraction giving rise to a domain with dimension ℝ875.
On the feature space, we perform feature scrubbing and feature
selection, thus reducing the space to ℝ437. We illustrate how to
set-up and tune a supervised classifier with an ad-hoc classification
schema, the so-called one-versus-rest. This schema returns a collec-
tion of classifiers each of which optimized for the classification of a
specific sub-category. The classifier is a multi-layer ANN with a
hidden layer and 230 neurons. We state the quality of the classifier
in terms of average AUC = 95.72%. Eventually, we deployed the
model to 606 unknown objects. The well-trained classifier achieves
relatively high classification accuracy on new 3D models: Jaccard
index = 92,43% and Dice coefficient = 96,06%. Experimental results
are promising. The average time spent for the classification of the
606 parts is sufficiently short: 2,3 s. We implement our procedure
also by using a different feature space, the LFD. For the dataset
under examination, our system outperforms the ones based on
LFD. Moreover, LFD needs a huge amount of memory, because
each 3D object is represented by 6500 real values, while our feature
space has dimension 875.

The classification of parts in real mechanical assembly models
highlighted that, even if the shapes are properly classified, the cor-
rect functional interpretation can be achieved only considering
their context of use. For this reason, the presented classifier con-
stitutes the first step of the module described in Lupinetti et al.
(2017), which classifies functional component in assembly models
reasoning both on the shape of its elements and on their organi-
zation within the model. We hope the reader can use this paper as
a signpost in his or her personal quest to perform a convenient
data analysis process.

To evaluate the possibility of improving the classification rate, we
are considering various possible extensions of the presented work.
The first refers to the inclusion in the feature vector of additional
shape information directly available in CAD models, such as, for
any specific surface type, the number of faces and the surface per-
centage relative to the overall area of the object. Another potential
improvement could be obtained by using Constrained Machine
Learning (CML) techniques as classification engines. CML extends
classical machine learning techniques by adding declarative con-
straints, for example, mandatory characteristics or how two mechan-
ical elements can be in touch. The constraints can be used as a way
to incorporate domain and engineers’ knowledge that must be
always satisfied while the classification task (Teso et al., 2017).

Acknowledgements. The authors thank Anita Parodi for the support pro-
vided in the model collection and the contacted experts, in particular, Prof.
Jean Philippe Pernot, for the support in the engineering domain.
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