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Abstract. This paper begins with a brief review of a form of the Lie series transformation, and then 
reports some new results in the study, using Lie series methods, of the orbit of Saturn's satellite 
Hyperion. In particular, improved expressions are given for the long-period perturbations of the 
orbital elements which describe the motion in the orbit plane, and also first results for expressions for 
the short-period perturbations in the apse longitude, derived from the Lie series generating function. 

1. Lie Series Transformations 

At this Colloquium, whose topic is the impact of modern dynamics on astronomy, 
it is appropriate to mark the advances in the study of the motions of celestial 
bodies which have been made possible by the use of Lie series transformations, 
with a brief review of which we will begin below. Many applications of Lie 
series transformations have been in the context of near-commensurability of orbital 
motions, including the series of investigations into the motion of Saturn's satellite 
Hyperion, some new results in which are reported in this paper. Let us begin, then, 
by setting out the main features of the Lie series transformation, in the form in which 
it is used in this work on the orbit of Hyperion. We suppose that we have a dynamical 
system, of n degrees of freedom, with co-ordinates q = (qi,q2, •—•,qn), whose 
conjugate momenta are p = (pi,P2,-—,Pn), respectively, and with Hamiltonian 
function H{q,p). So the equations of motion are Hamilton's equations: 

gt-= — , and, pi = -—,, for, i - 1,2,....,n. (1) 
dpi dqi 

Suppose we have chosen a function W(q,p), the generating function, then let us 
define the operator £>v so that, for any function f(q, p), 

Av(/) = {f,W} 

^Uqtdpi dqidpii' ^ 

which is the Poisson bracket of / and W. In turn define CyJ(f) = £w{£w(f)}, 
and £ $ ( / ) = £w{£$(f)}, and, in general, £ $ ( / ) = £ w { ^ _ 1 ) ( / ) } , for 
n = 2,3,4, , (understanding £^ as £). Then the Lie series transformation 
(Q,P) i—• (q,p) is defined by 

» = Qi + £ TT£VV (Q*), andpi = P{ + £ -rz£^\Pi), (3) 
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fori = 1,2, ....,n.Nowinfact£w(<9t) = §]£, and£>v(.Pi) = - | ^ , and so 

and ft = P, - _ - g (Jb + i j j ^ for). (5) 

f(q,p) = f(Q,P) + E V r ^ O W i>))- (6) 

fori = 1,2, ....,n. In fact, for any function f(q,p), 

Note that this transformation represents the progression over unit time of a notional 
dynamical system whose Hamiltonian function is W. Therefore it is a contact 
transformation, and so preserves the Hamiltonian form of the equations of motion. 
If H(Q,P) is the Hamiltonian function, in the actual motion, which gives the 
equations of motion for the (Q, P), then, since the transformation is autonomous, 
i.e. does not involve the time explicitly, we have 

ii(Q,P) = H(q,p) (7) 
OO -1 

= H(Q,P) + J2^iw){nQ,P)}, (8) 

where equation (6) has been used for H. Now in a large class of problems en
countered in celestial mechanics, we find that the Hamiltonian function may be 
expressed in the form H = Ho — eTZ, where Ho is a function only of the momenta 
Pi, and £ is a small parameter. The case £ = 0 is spoken of as the "unperturbed" 
motion, and in this case the pi are the action variables, and the <& are their conjugate 
angle variables. Then 1Z is the disturbing Junction, and it may usually be expanded 
as a multiple Fourier series: 

U = ^A^cosiW, (9) 

where v = {u\, vz, vi, , vn), and Nv = J2]=i ujQj> and the summation over v is 
over all sets of integers Vj with v\ non-negative and with Y%=\ vj = 0. Very often 
the transformation is to be chosen so that the motion of the transformed variables, 
Qi and Pi, contains none of the short-period features of the motion, so that these 
features will be encompassed within the generating function (W), leaving the long-
period features to be dealt with in isolation in the transformed system. Usually in 
celestial mechanics the co-ordinates fall into two sets, the fast-moving co-ordinates 
(e.g. the mean longitudes) and the slow-moving (e.g. the apse and node longitudes). 
In the class of problems where the unperturbed motion is in fact Keplerian elliptic 
motion, the co-ordinates of the latter set are constant in the unperturbed motion. In 
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the case of motion near to a small-integer commensurability of the mean motions, 
so that there is a linear combination of the mean longitudes which changes slowly 
in the unperturbed motion, choose co-ordinates so that some of them (the critical 
arguments) contain the mean longitudes in this particular combination, and so will 
be classed as slow-moving for our purposes. In any case we suppose that we are 
able to identify which terms of 71 are of short-period, and which of long-period. 
The choice of the transformation is made by choosing the function W. It will 
generally be necessary to choose it, stage-by-stage, as an expansion in powers 
of the perturbation parameter e, of the form: W = YA=\ £*'WJ, and likewise for 
the Hamiltonian function for the transformed problem: it = J^=o£'^i- Then, 
equating terms independent of e in equation (8) gives 

?{o(Q,P) = H0{Q,P), (10) 

so that the unperturbed motion in the transformed system is the same as that in the 
untransformed system. Equating terms of the first order in s gives 

Wi(Q,P) = -TZ(Q,P) + {'Ho(Q,P),W1}, (11) 

and equating terms of the second order in e gives 

H2(Q,P) = {n0(Q,p),m-{(K(Q,p)-\{H0,m}),m}. (12) 
Now, as noted above, we suppose that Ho is a function of the momenta pi only, and 
we also suppose that we are able to separate the expansion (9) of 71 into its long-
period part [R]ip, say, and its short-period part [R]8p, say, so that 71 = [7Z]ip+[7l]sp. 
Then we choose 7ii(Q, P) to be equal to -[7l]ip(Q,P), so that it contains only 
long-period terms, and so equation (11) becomes 

{Uo,m} = [n]sp. (13) 

If we write l^2 = rij, for j = 1,2, ...,n, then this becomes 

the summation being over the short-period terms, and the solution of it which we 
take is 

Wi = E ~ s i n i V ^ <15) 
Pv 

where pv = J2]=i ujnj- Then equation (12), using equation (13), is 

H2(Q,P) = {H0(Q,P),W2} - {(71- ^[K]sp),m}, (16) 
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and so we choose H2{Q,P) to be the long-period part of - \{[R]ap{Q, P), W\] , 
which leaves {HQ{Q,P),W2} equal to the short-period part of {([R]iP(Q, P) + 
\[TQSp(Q, P)), Wi} , which we may write as J2v,sp LvcosNv , say, leading to the 
solution W2 = Hv,sp 7^sm^i" 1° a similar manner may be found successively 
H3(Q,P), >V3, 7U(QV,P),yV4,&cc 

2. The application of Lie Series Transformations to the Theory of the 
Motion of Hyperion. Some Recent Results. 

Two earlier papers {Message 1989) and {Message 1993) set out the method being 
used to study the long-period features of the motion of Saturn's satellite Hyperion, 
using a Lie series transformation to separate the long-period aspects of the motion. 
We recall that, very shortly after the discovery of this satellite at Harvard (and, in-
dependantly, in Liverpool) in 1848, unusual aspects of its motion drawing attention 
to it included the retrograde motion of the apse, and the large eccentricity of the 
orbit. It was first shown by Newcomb {1891) that these arose because of the very 
close near-commensurability of the orbital period of Hyperion with that of Titan, 
which is by far the most massive satellite of the system. The critical argument 
0 = 4\jj - 3Ay - WH in fact librates about the mean value 180 degrees, the main 
term having amplitude of about 36 degrees, and period about 21 months. (Here A# 
and XT are, respectively, the mean longitudes of Hyperion and Titan, and WE is 
the apse longitude of Hyperion. Another important argument is a = wu - wj, 
the difference between the apse longitudes of the two satellites. 

Methods were described in the earlier papers to express derivatives of [R)ip, 
the long-period part of the disturbing function for the action of Titan, and other 
quantities required for the equations of motion for the long-period motion, as double 
Fourier series in a, and u>, the latter being related to 9 by 0 = w{ 1 + 0.3sinu;). The 
short-period argument is <f> = A# - XT, and we find that the equation (13), which 
we need to calculate the first-order part of the generating function, Wi, takes the 
form 

(nH - nT)^- + (4n# - 3rcx)^p- = [Jl}sp, (17) 

where n# and ny are the mean motions of Hyperion and Titan, respectively. To use 
this, in the course of carrying out integrations over <f>, we need to use an expansion 
in powers of the small quantity e, which is defined by (4n# - 3nx) = e{nn - nT), 
and which has a value near to ^ . In terms of this, we put 

Wi = Wio + eWn + JWn + (18) 

Then, equating terms of each power of c in equation (17), gives in succession 

(nH-nT)^ = [n]sp, ( 1 9 ) 
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Then the solution of equation (19) is 

(21) 

&ce. (22) 

Wio(4>,0) = WioM),0) + 7 r / t ^ W , W , (23) 

the initial value having been found by use of 

1 r<Po+£n 

VM0o,0) = 7 v / <f>'.[K]sp(<l>',0)<l<f>'. (24) 
(raw - rtr) J<bn 

2.1. Improved solutions for the parameters of the motion in the orbit plane. 

The expressions for the long-period terms in the orbital elements describing the 
motion of Hyperion in its orbit plane, corresponding to the very-close commensu-
rability type of libration are {Message 1993) 

0 = 180° + £ 9ijsm(iT + jQ, (25) 

a = C + Y, wi,Jsin("" + K), (26) 

a = a0,o + X] «i,jCos(ir + jQ, (27) 

e = e0)o + X] e;,jCOs(ir + j'C), (28) 

where a is the major-semi axis, e is the eccentricity, of Hyperion's orbit, r = vt+T0 

is the argument of the free libration, of period about 21 months, and C = X* + Co 
is the linear part of the difference between the apse longitudes (a = WH - TOT). 
which has period about 181 years. (The summations are over all integer pairs 
(i,j) with i non-negative.) The earlier papers (Message, 1989, 1993) described 
how a least-squares fit was carried out, beginning with a set of estimates of some 
of the co-efficients 0,-j, Wij, a8j, e,j, and of the rate of change, v, of the libration 
argument, and of the mean motion, h, and finding a set consistent with the dynamical 
equations. The work reported in the previous paper (Message, 1993), has since been 
extended, solving for an enlarged set of co-efficients. This was carried out twice, 
using different sets of data. First this was done using data arising from the main 
sequences of observations made between 1875 and 1922, which were reduced by 
Woltjer (1928), who gave opposition mean values of the orbital elements, analysis 
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of which gave the following estimates of the co-efficients of the long-period terms, 
and of v and of n: 

e0)o = +0.10419 ± 0.00027, e0,i = +0.02414 ± 0.00044, 

e0,2 = -0.00183 ± 0.00040, elfi = -0.00401 ± 0.00034, 

C70,i = -13.905° ± 0.273°, w0<2 = +0.754° ± 0.249°, 

071,0 = -0.314° ± 0.262°, tu2,0 = -0.795° ± 0.304°, 

Ao,i = -0.054° ± 0.019°, A0,2 = +0.007° ± 0.018°, 

Ai,o = +9.112° ± 0.018°, A2,o = +0.039° ± 0.018°, 

n = 16.9199890° ± 0.0000027° per day, 

and 

v = 0.562025° ± 0.000025° per day. 

Using these to provide equations of condition, and solving, as described in (Message 
1993), but with an extended set of co-efficients in the scheme of solution, gives the 
following set of estimates of independent parameters: 

n = 16.9199888° ±0.0000066° per day, (29) 
0i,o = 36.877° ±0.180°, (30) 

andm' = 0.0002364220 ±0.0000000075, (31) 

where m! is the mass of Titan in terms of that of Saturn. From these are de
rived (as described in Message 1993) the following dynamically consistent set of 
expressions: 

v = 0.562024124° per day, 

e = 0.1046696+ 0.024515cosC - 0.001427cos2C + 0.000175cos3C 

-0.000025cos4C + 0.000003cos5C - 0.003888cosr - 0.000049cos2r 

+0.000019cos3r + 0.000182cos(r - Q - 0.000140cos(r + () 

-0.000041cos(r - 2Q - 0.000024cos(r + 2() + 0.000007cos(2r - Q 

-0.000007cos(2r + C), 

a = a0)0{l - 0.003227cosr - 0.000004cos2r + 0.000082cos(r - () 
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-0.000054cos(r + C)}, 

w = WT + ( - 13.5880°sinC + 1.6233°sin2C - 0.2605°sin3C 

+0.0468°sin4C - 0.0092°sin5C - 0.4302°sinr - 0.0177°sin2r 

-0.0004°sin3r + 0.0003°sin4r + 0.3606°sin(r - () 

-0.2715°sin(r + () - 0.0904°sin(r - 2() + 0.0569°sin(r + 2() 

+0.0216°sin(r - 3C) - 0.0133°sin(r + 3C) + 0.0133°sin(2r - Q 

-0.0066°sin(2r + C)> 

and 

A = nt + A0 + 9.11258°sinr + 0.00300°sin2r - 0.01698°sin3r 

+0.00006°sin4r - 0.07132°sinC - 0.00069°sin2C + 0.00273°sin3C 

-0.00067°sin4C - 0.00036°sin5C - 0.21473°sin(r - () + 0.18253°sin(r + Q 

+0.00125°sin(r - 2() - 0.00107°sin(r + 2() 

+0.00022°sin(2r - C) - 0.00052°sin(2r + <). 

The contributions of the influence of the Sun, the figure of Saturn, and of the other 
satellites to the secular motions of the apse and of the mean longitude have been 
included. These influences will of course also give rise to very small periodic terms, 
of periods different from those of the terms given here. 

The second solution made use of data from the main sequences of observations 
made between 1967 and 1983, which were fitted to a numerical integration of 
the equations of motion by Taylor (1992), who derived from it estimates of the 
co-efficients of the long-period terms, and of v and h. (These values were given 
in Message 1993, section 5, though notice that e0)0 = +0.104550 ± 0.000028.) A 
solution for estimates of the independent parameters, carried out in the same way 
as for the previous (1875 to 1922) set of observational data was carried out also 
with this set of values (except that the value used for n was that from the previous 
series of observations, which covers a longer time-span). The set of co-efficients in 
the scheme of solution was extended from that in the solution reported in (Message 
1993). This gave the following set of estimates of the independent parameters: 

h = 16.9199464° ±0.0000396° per day, (32) 
0i,o = 36.955° ± 0.096°, (33) 

andm' = 0.000236398 ± 0.00000007, (34) 
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The dynamically consistent set of expressions derived from these, proceeding again 
as described in (Message 1993), is: 

i/ = 0.56220934° per day, 

e = 0.104506+ 0.024330cosC - 0.001417cos2C + 0.000172cos3C 

-0.000025cos4( + 0.000003cos5C - 0.003904cosr - 0.000049cos2r 

+0.000019cos3r + 0.000182cos(r - Q - 0.000144cos(r + Q 

-0.000041cos(r - 2C) - 0.000026cos(r + 2Q + 0.000007cos(2r - () 

-0.000008cos(2r + C), 

a = a0)0{l - 0.003234cosr - 0.000004cos2r - 0.000061cosC 

+O.000083cos(r - Q - 0.000058cos(r + C)}, 

w = WT + C, - 13.5006°sinC + 1.6109°sin2C - 0.2558°sin3C 

+0.0461°sin4C - 0.0088°sin5C - 0.4333°sinr - 0.0178°sin2r 

-0.0004°sin3r + 0.0003°sin4r + 0.3603°sin(r - Q 

-0.2716°sin(r + Q - 0.0900°sin(r - 2() + 0.0558°sin(r + 2C) 

+0.0213°sin(r - 3Q - 0.0136°sin(r + 3C) + 0.0133°sin(2r - Q 

-0.0067°sin(2r + C), -0.0045°sin(2r - 2C) + 0.0017°sin(2r + 2(), 

-0.001 l°sin(3r - C) + 0.0015°sin(3r + C), 

and 

A = fit + A0 + 9.1311°sinr + 0.0028°sin2r - 0.0169°sin3r 

+0.0001°sin4r + 0.0001°sin5r - 0.0700°sinC - 0.0024°sin2C 

+0.0002°sin3C - 0.0005°sin4C - 0.0004°sin5C - 0.2167°sin(r - Q 

+0.1909°sin(r + Q- 0.0008°sin(r - 2C) + 0.0020°sin(r + 2C) 

+0.0012°sin(3r - C) - 0.0012°sin(3r + C). 

The degree of agreement between these two sets of expressions, which are derived 
using two quite separate sets of observational data, is an indicator of the reliability 
of the results obtained so far in this work. (The methods, with analytical basis, being 
used here, are of course quite different from those of Duriez and Vienne (1997), 
based on numerical integration. Comparison of the results of the two approaches 
must take account of the use of different parameters.) 
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2.2. Preliminary results for short-period terms in the apse longitude. 

As was indicated earlier, the generating function, W, of the Lie series transfor
mation must contain all the information needed to construct expressions for the 
short-period perturbations. Thus the first equation of (3), with w for &, gives the 
short-period perturbations of the apse longitude, and the first-order part is 

na2e de 

Preliminary calculations give, for the largest few terms of this: 

+ 1.0228°sin<£ + 0.4248°sin2<£ + O.2942°sin30 + 0.2813°sin4<£ 

+0.0445°sin54> + 0.0307°sin6<£ + 0.0299°sin7<£ + 0.0217°sin8<£ 

-0.1540°sin(> + Q- 0.0979°sin(<£ - C) - 0.0874°sin(<£ + r) 

+0.094l°sin(<£ - r) + O.O364°sin(0 + 2Q + 0.023 l°sin(</> - 2() 

-0.0297°sin((£ + T - () + 0.0269°sin(</> + T + Q- 0.0463°sin(> - T + <) 

-0.0508°sin(2<£ + Q- O.O369°sin(20 -Q + 0.0208°sin(2<£ + r) 

-0.038l°sin(3(/> + C) - O.O299°sin(30 - Q + 0.0216°sin(34> - r) 

-O.O448°sin(40 + Q- 0.0288°sin(4c£ + r) + 0.0459°sin(4(£ - r) 

+0.0201°sin(5<£ + r). 

For comparison, those terms derived by Taylor (1992) from Fourier analysis of the 
results of his numerical integration, are: 

+1.0391osintf + 0.4209°sin2<£ + O.3115°sin30 + 0.2795°sin4<£ 

-0.1674°sin(<£ + Q- 0.0972°sin(<£ - () + 0.0833°sin(<£ + r) 

+0.0946°sin(2<£ + r) - O.O568°sin(20 + Q + 0.073 l°sin(3<£ + r) 

-0.0482°sin(3<£ + () + 0.0636°sin(4<£ + r) - 0.051 l°sin(4<£ + (). 

For comparison with the results of Vienne and Duriez (1991), note that 0.1° in to 
corresponds to about 266 km. along the orbit of Hyperion. 
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