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We utilize resolvent and weakly nonlinear analyses in combination with direct numerical
simulations (DNS) to identify mechanisms for oblique transition in a Mach 5 hypersonic
flow over an adiabatic slender double wedge. Even though the laminar separated flow
is globally stable, resolvent analysis demonstrates significant amplification of unsteady
external disturbances to the linearized flow equations. These disturbances are introduced
upstream of the separation zone and they lead to the appearance of oblique waves further
downstream. We demonstrate that the large amplification of oblique waves arises from
the growth of fluctuation shear stress due to streamline curvature of the laminar base
flow in the separated shear layer. This is in contrast to the attached boundary layers,
where no such mechanism exists. We also use a weakly nonlinear analysis to show that
the resolvent operator associated with linearization around the laminar base flow governs
the evolution of steady reattachment streaks that arise from quadratic interactions of
unsteady oblique waves. These quadratic interactions generate vortical excitations in the
reattaching shear layer which lead to the formation of streaks in the recirculation zone and
their subsequent amplification, breakdown and transition to turbulence downstream. Our
analysis of the energy budget shows that deceleration of the base flow near reattachment
is primarily responsible for amplification of steady streaks. Finally, we employ DNS to
examine latter stages of transition to turbulence and demonstrate the predictive power
of a weakly nonlinear input–output framework in uncovering triggering mechanisms for
oblique transition in separated high-speed boundary layer flows.
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1. Introduction

Slender double wedges are commonly encountered in intakes, control surfaces and
junctions in high-speed supersonic and hypersonic vehicles (Dolling 2001). In this
geometry, a laminar boundary layer can separate at the corner because of the pressure rise
that arises from deflection of the inviscid free stream. The resulting flow is characterized by
separation–reattachment shocks as well as a recirculation zone and it provides a canonical
set-up for studying shock-wave-boundary-layer interaction (SWBLI) (Simeonides & Haase
1995). In spite of spanwise homogeneity of laminar base flows over compression corners,
both experiments (Chuvakhov et al. 2017; Roghelia et al. 2017; Dwivedi et al. 2020a)
and numerical simulations (Navarro-Martinez & Tutty 2005; Dwivedi et al. 2017; Cao
et al. 2021b) identify three-dimensional (3-D) features in time-averaged separated flows.
In particular, streamwise streaks associated with persistent local peaks of heat flux or
wall temperature, that appear near reattachment, can trigger transition to turbulence
downstream (Simeonides & Haase 1995; Roghelia et al. 2017).

The development of 3-D flow structures in hypersonic flows was recently studied by
examining the growth of small perturbations in the presence of a recirculation zone
(Dwivedi 2020). For example, two-dimensional (2-D) SWBLI can become unstable
inside the separation bubble when the strength of interaction increases beyond a critical
value (Sidharth et al. 2017). The spanwise modulation that arises from global instability
introduces streaks over compression corners (Sidharth et al. 2018) as well as oblique
shocks impinging on a flat plate (Hildebrand et al. 2018) and it can trigger transition
to turbulence (Cao et al. 2022). Similar 3-D flow features have also been observed
in hypersonic regimes where non-continuum effects are important (Sawant, Theofilis
& Levin 2022). However, recent numerical simulations and global stability analysis
demonstrate that hypersonic compression corner flows can be stabilized by increasing the
radius of the leading edge (i.e. its bluntness) (Cao et al. 2021a) or by increasing the wall
temperature (Hao et al. 2021).

Even in the absence of global instability, high-speed separated flows are highly sensitive
to upstream vortical disturbances (Dwivedi et al. 2019), and small fluctuations around the
laminar 2-D base flow can experience significant non-modal amplification that leads to
the appearance of steady reattachment streaks (Dwivedi et al. 2020b). Furthermore, recent
experiments on the cone-flare configurations (Benitez et al. 2020; Butler & Laurence
2021), which represent axisymmetric counterparts of slender double wedges, identify
unsteady fluctuations in the separation zone. These fluctuations are significantly amplified
in the recirculation zone and they play an important role in transition to turbulence (Butler
& Laurence 2021).

In this paper we examine amplification of unsteady fluctuations around the laminar
2-D base flow in the separation–reattachment zone and investigate subsequent transition
to turbulence. Free-stream disturbances (Choudhari 1996; Berlin & Henningson 1999;
Maslov et al. 2001) that arise from wind tunnel noise in ground experiments (Schneider
2015) or from atmospheric disturbances in free flights (Bushnell 1990; Skinner et al.
2020) can lead to the appearance of unsteady fluctuations in boundary layer flows. It is
well documented that unsteady oblique waves provide a potent mechanism for initiating
transition in low-speed incompressible (Berlin, Wiegel & Henningson 1999; Rigas, Sipp
& Colonius 2021) and compressible (Chang & Malik 1994; Mayer, Von Terzi & Fasel
2011) boundary layers. Even though the importance of oblique fluctuations in initiating
transition in attached high-speed boundary layers has received significant attention (Ma
& Zhong 2005; Sivasubramanian & Fasel 2015; Hader & Fasel 2019), their role in
separated high-speed flows has not been studied. Recent experiments (Benitez et al. 2020)
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Oblique transition in hypersonic double-wedge flow

suggest that their amplification within the recirculation zone can trigger unsteadiness
in transitional SBWLI flows. We utilize global resolvent and weakly nonlinear analyses
to quantify amplification of unsteady upstream disturbances in a Mach 5 flow over a
slender double wedge, and characterize their role in initiating transition to turbulence in
high-speed separated boundary layers.

Resolvent analysis provides a framework for evaluating responses (outputs) of stable
dynamical systems to time-periodic external disturbances (inputs) (Trefethen et al. 1993;
Schmid & Henningson 2001; Schmid 2007). For time-independent globally stable base
flows, the steady-state response of the linearized Navier–Stokes (NS) equations to a
harmonic input with frequency ω is also harmonic with the same frequency and the
frequency response operator maps the input forcing to the resulting steady-state output
(Jovanović 2021). The singular value decomposition (SVD) of the frequency response
characterizes amplification across frequency ω and decomposes inputs and outputs into
modes whose significance is ordered by the magnitude of the corresponding singular
values (Schmid 2007). In addition to providing insights into dynamics of canonical
incompressible flows (Jovanović & Bamieh 2005; McKeon & Sharma 2010; Brandt et al.
2011; Sipp & Marquet 2013; Ran et al. 2019a,b), input–output analysis has also been
utilized to discover mechanisms for noise generation in turbulent jets (Garnaud et al. 2013;
Jeun, Nichols & Jovanović 2016; Schmidt et al. 2018), separation control on airfoils (Yeh
& Taira 2019) and the appearance of reattachment streaks in hypersonic flows (Dwivedi
et al. 2019).

In a Mach 5 double-wedge flow subject to unsteady disturbances, we employ resolvent
analysis to demonstrate that oblique waves represent the most energetic response of the
compressible linearized NS equations. We utilize the compressible energy norm (Chu
1965; Hanifi, Schmid & Henningson 1996) to quantify energy amplification and show that
unsteady upstream disturbances that are localized before flow separation induce oblique
waves downstream of the double-wedge corner. Our analysis of the transport equation
for the streamwise specific kinetic energy of oblique waves reveals that concave flow
curvature of the separated/reattaching laminar 2-D base flow is the primary source of
amplification in the presence of SWBLI. We also utilize a weakly nonlinear analysis
to demonstrate that quadratic interactions of oblique waves generate vortical excitations
that induce reattachment streaks in the recirculation bubble. We show that the resolvent
operator associated with linearization around the laminar 2-D base flow governs the
evolution of steady reattachment streaks and use SVD to demonstrate that the streaks
are well approximated by the second output resolvent mode. Our analysis of the energy
budget shows that the base flow deceleration near reattachment is primarily responsible
for amplification of reattachment streaks. Finally, we conduct direct numerical simulations
(DNS) to confirm the predictive power of our approach and provide insight into latter
stages of transition to turbulence.

Recently, Rigas et al. (2021) utilized a variational framework to extend input–output
analysis in the frequency domain to the nonlinear NS equations. For fundamental forcing,
the disturbance that triggers transition and yields the largest skin-friction coefficient
in an incompressible boundary layer is given by a pair of oblique waves with a
temporal frequency and spanwise wavenumber which are very close to those identified
by the resolvent analysis of the linearized NS equations (Rigas et al. 2021). While
the Orr-mechanism (Schmid & Henningson 2001) and the Tollmien–Schlichting linear
instability (Sipp & Marquet 2013) initiate the early stages of oblique transition in
the attached low-speed boundary layers (Rigas et al. 2021), even linear amplification
mechanisms are poorly understood in separated compressible flows. Recent numerical
simulations with inlet stochastic excitations in axisymmetric cylinder flare geometry

948 A37-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

69
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.697


A. Dwivedi, G.S. Sidharth and M.R. Jovanović
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Figure 1. Preview of key results: spatially localized unsteady upstream forcing triggers oblique waves in the
separated shear layer and their quadratic interactions lead to the appearance of steady reattachment streaks
further downstream. Direct numerical simulation validates our theoretical predictions and demonstrates the
efficacy of unsteady oblique disturbances in triggering transition in globally stable separated high-speed
boundary layer flows.

showed that the local ‘first mode’ instability (Mack 1984) can cause growth of oblique
waves in the upstream boundary layer (i.e. before separation) and initiate transition
in high-speed compressible flows with SWBLI (Lugrin et al. 2021). However, in the
absence of local and global boundary layer instabilities, the role of flow separation in the
amplification of unsteady fluctuations and the ensuing transition has not been previously
investigated.

Figure 1 provides a summary of our key findings. We utilize resolvent analysis of the
laminar 2-D base flow with spatially localized forcing introduced in the streamwise plane
immediately upstream of separation to identify the spatial structure of unsteady external
disturbances that yield the most energetic response of the compressible linearized NS
equations. The resulting forcing is used to trigger non-modal amplification of oblique
waves in the separated shear layer and generate steady reattachment streaks, which are
routinely observed in SWBLI experiments, further downstream through weakly nonlinear
interactions. Interaction of streaks with oblique waves is observed after reattachment and
DNS is used to demonstrate that unsteady upstream oblique disturbances can indeed
trigger transition to turbulence in separated high-speed compressible flows.

Our presentation is organized as follows. In § 2 we introduce the slender double-wedge
geometry along with a finite-volume compressible flow solver that we use in our
computations. In § 3 we describe resolvent and weakly nonlinear analyses that we use
to evaluate frequency responses of the double-wedge flow in the presence of 3-D
disturbances. We also utilize resolvent analysis to demonstrate the large amplification of
unsteady oblique disturbances to the linearized flow equations and identify the underlying
physical mechanism. In § 4 we employ a weakly nonlinear analysis to demonstrate that
quadratic interactions of oblique waves induce steady reattachment streaks and discuss the
physical mechanism responsible for their amplification in the recirculation zone. In § 5 we
employ DNS to validate utility of our theoretical predictions and examine latter stages of
transition induced by unsteady upstream disturbances. In § 6 we analyse statistical features
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Figure 2. Slender double-wedge geometry and the associated free-stream conditions.

of the resulting transitional and turbulent boundary layers. We provide a summary of our
contributions and offer concluding remarks in § 7.

2. Hypersonic flow over an adiabatic slender double wedge

Hypersonic flow over a slender double wedge with free-stream conditions shown in
figure 2 corresponds to the experiments of Yang et al. (2012). Since the enthalpy and the
temperature in the flow field are low, we utilize the ideal gas law abstraction and employ
the finite-volume compressible flow solver US3D (Candler et al. 2015a) to compute the
solution of the compressible NS equations in conservative form,

∂Ψ

∂t
= F(Ψ ). (2.1)

Here, F(Ψ ) := −∇ · F (Ψ ) is the dynamical generator of the compressible NS equations,
F (Ψ ) is the flux vector, ∇ is the gradient and Ψ = (ρ, ρu,Et) is the vector of conserved
variables that represent density, momentum and total energy per unit volume of the gas.
In (2.1) and throughout the paper, spatial coordinates are non-dimensionalized by the
boundary layer thickness at separation δ99 = 9.8 × 10−4 m, velocity by the free-stream
velocity U∞, pressure by p∞, temperature by T∞ and time by δ99/U∞. The Reynolds
number based on the separation boundary layer thickness is 13.3 × 103 and the Mach
number is 5.0.

We discretize the inviscid fluxes using the second-order accurate modified
Steger–Warming fluxes with the MUSCL limiters (Candler et al. 2015a). In previous
studies, the numerical method for the computation of the base state was validated using
hypersonic double-wedge and double-cone set-ups (Nompelis, Candler & Holden 2003;
Nompelis & Candler 2009). The laminar 2-D base flow Ψ̄ is computed as the steady-state
solution of (2.1),

F(Ψ̄ ) = 0, (2.2)

by implicit time marching with 249 cells in the normal direction and 535 cells in the
streamwise direction. As illustrated in Sidharth et al. (2018), this resolution is sufficient to
capture separated flow and resolve the evolution of small perturbations.

Figure 3 shows the contours of the density gradient magnitude on the compression
corner. The separation and the reattachment locations in the laminar 2-D base flow Ψ̄

are marked by S and R, respectively. The 2-D flow separates upstream of the corner on
the first wedge, it reattaches on the second wedge, and the separated and reattaching shear
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Figure 3. Contours of density gradient magnitude. The inset shows a zoomed in view of the separation
bubble and the schematic shows various coordinate systems associated with the double-wedge geometry.

layers are respectively associated with the formation of the separation and reattachment
shocks. Figure 3 also shows an inset of the separation zone along with the wall-aligned
coordinate system (where ξ and η denote directions that are parallel and perpendicular
to the wall) and a coordinate system that is locally aligned with the streamlines of the
laminar 2-D flow. Both coordinate systems are used in our study of the evolution of flow
fluctuations.

Sidharth et al. (2018) demonstrated global linear stability of the laminar 2-D base flow
Ψ̄ . Recent studies of similar SWBLI configurations, such as compression ramps, revealed
extreme sensitivity to upstream disturbances even in the absence of global instability
(Dwivedi et al. 2019). Leading-edge roughness and free-stream disturbances provide
persistent sources of external excitation and they are inevitable in realistic flows. To
evaluate the role of such uncertainty in triggering early stages of transition to turbulence,
we utilize input–output analysis to quantify amplification of unsteady disturbances in a
hypersonic flow over a slender double wedge.

3. Input–output analysis of a high-speed double-wedge flow

In this section we employ input–output analysis to quantify amplification of small unsteady
external disturbances in globally stable 2-D SWBLI over a slender double wedge, and
uncover physical mechanisms that trigger early stages of transition to turbulence.

3.1. Externally forced compressible NS equations
To account for the rate of change of perturbation density, momentum and total energy,
we model unsteady external disturbances d(x, t) to the compressible NS equations in the
conservative form (2.1) as volumetric sources of excitation,

∂Ψ (x, t)
∂t

= F(Ψ (x, t))+ d(x, t), (3.1)

where x := (x, y, z) is the vector of streamwise, normal and spanwise spatial coordinates.
By decomposing the flow field Ψ into the sum of the base Ψ̄ and fluctuating ψ parts,

Ψ (x, t) = Ψ̄ (x)+ ψ(x, t), (3.2)
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we obtain the equation that governs the dynamics of flow fluctuations around Ψ̄ (x),

∂ψ(x, t)
∂t

= F(Ψ̄ (x)+ ψ(x, t))+ d(x, t). (3.3)

For disturbances with small amplitude ε,

d(x, t) = εd(1)(x, t), (3.4a)

a weakly nonlinear analysis can be utilized to examine externally forced compressible NS
equations (3.3) and determine the corrections to the steady laminar 2-D base flow Ψ̄ (x).
Up to a second order in ε, the vector of flow fluctuations ψ can be represented as

ψ(x, t) = εψ (1)(x, t)+ ε2ψ (2)(x, t)+ O(ε3), (3.4b)

where ψ (1)(x, t) satisfies the linearized flow equations[
∂

∂t
− A(

Ψ̄
)]
ψ (1) = d(1), (3.5a)

and ψ (2)(x, t) satisfies [
∂

∂t
− A(

Ψ̄
)]
ψ (2) = N (2)

(
ψ (1)

)
. (3.5b)

Equations (3.5a) and (3.5b) are respectively obtained by neglecting O(ε2) and O(ε3)
terms upon substitution of (3.4a) and (3.4b) to the compressible NS equations (3.3).
The compressible NS operator resulting from linearization around the base flow Ψ̄
is determined by A(Ψ̄ ) (see Candler, Subbareddy & Nompelis (2015b, equation (23))
and Sidharth et al. (2018, equations (A1)–(A2))) and N (2)(ψ (1)) accounts for quadratic
interactions at O(ε2); see Appendix A for details.

Several recent studies demonstrated the utility of the compressible energy norm (Chu
1965; Hanifi et al. 1996),

E := 1
2

∫
Ω

(
p̄
ρ̄2 ρ

′2 + ρ̄
∣∣u′∣∣2 + Cvρ̄

T̄
T ′2

)
dΩ, (3.6a)

in quantifying the growth of fluctuations in high-speed boundary layer flows (Franko &
Lele 2013; Sidharth et al. 2018; Quintanilha et al. 2022). This quantity is determined by
the weighted L2 norm of the vector of flow fluctuations φ := (φ1,φ2, φ3) = (ρ′,u′, T ′) in
primitive variables,

E = ‖φ‖2
E = 〈φ,φ〉E = 〈φ,Wφ〉2, (3.6b)

where 〈 · , · 〉2 is the standard L2 inner product over the domain Ω , Cv is the specific heat
at constant volume in Ω and

W := 1
2

⎡
⎣ p̄/ρ̄2 0 0

0 ρ̄ 0
0 0 Cvρ̄/T̄

⎤
⎦ (3.6c)

is the multiplication operator determined by the pressure p̄, density ρ̄ and temperature T̄
of the base flow Ψ̄ . For small amplitude disturbances, we can represent φ as

φ(x, t) = εφ(1)(x, t)+ ε2φ(2)(x, t)+ O(ε3), (3.7a)
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where

φ(1)(x, t) = C ψ (1)(x, t),

φ(2)(x, t) = C ψ (2)(x, t)+ D
[

−φ(1)1 φ
(1)
2

−2Cvφ
(1)
1 φ

(1)
3 − Φ̄1|φ(1)2 |2

]
.

⎫⎪⎪⎬
⎪⎪⎭ (3.7b)

As shown in Appendix B, C and D are multiplication operators parameterized by the
laminar 2-D base flow Ψ̄ ; see (B4) for their definition.

In the remainder of this section, we identify oblique waves as the most energetic
responses of the linearized flow equations (3.5a) in the presence of unsteady harmonic
disturbances d(1). In § 4 we utilize (3.5b) to demonstrate that steady streaks can arise from
quadratic interactions of unsteady oblique waves.

3.2. Amplification of exogenous disturbances to the linearized flow equations

The linearized equations (3.5a) describe the evolution of the fluctuation vector ψ (1) in
the presence of external disturbances d(1) and they can be written using the state-space
formulation (Schmid & Henningson 2001)

∂ψ (1)

∂t
= Aψ (1) + Bd(1),

φ(1) = Cψ (1).

⎫⎪⎬
⎪⎭ (3.8)

Here, d(1) is a spatially distributed and temporally varying disturbance (input), ψ (1) is
the state of the linearized system (which is determined by the vector of flow fluctuations
in conserved variables), φ(1) is the quantity of interest (output) whose weighted L2 norm
determines the energy of flow fluctuations (3.6) and A is the generator of the linearized
compressible NS dynamics. The input operator B in (3.8) allows us to specify spatial
support of body forcing inputs, and the output operator C relates the state of the linearized
system ψ (1) to the vector of flow fluctuations in primitive variables φ(1).

For the parameters shown in figure 2, the linearized system is globally stable and for a
time-periodic input with frequency ω, d(1)(x, t) = d̂(1)(x, ω)eiωt, the steady-state output
of (3.8) is determined by φ(1)(x, t) = φ̂(1)(x, ω)eiωt, where

φ̂(1)(x, ω) =
[
H(ω)d̂(1)( · , ω)

]
(x), (3.9)

H(ω) is the frequency response operator,

H(ω) = C(iωI − A)−1B, (3.10)

and R(ω) = (iωI − A)−1 is the resolvent operator associated with the linearized
model (3.8). At any ω, the SVD of H(ω) can be used to quantify amplification of
time-periodic inputs (Jovanović 2004; Schmid 2007; Jovanović 2021),

φ̂(1)(x, ω) =
[
H(ω)d̂(1)( · , ω)

]
(x) =

∑
i

σi(ω)φi(x, ω)〈di( · , ω), d̂( · , ω)〉E, (3.11)

where σi(ω) denotes the ith singular value of H(ω), 〈 · , · 〉E is the inner product in (3.6)
that induces the compressible energy norm, and di(x, ω) and φi(x, ω) are the left and right
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singular functions of H(ω) that provide orthonormal bases of the corresponding input and
output spaces (with respect to 〈 · , · 〉E).

The frequency response operator H(ω) maps the ith input mode di(x, ω) into the
response whose spatial profile is specified by the ith output mode φi(x, ω) and the
amplification is determined by the corresponding singular value σi(ω). In other words,
for

d̂(1)(x, ω) = di(x, ω) ⇒ φ̂(1)(x, ω) = [H(ω)di( · , ω)] (x) = σi(ω)φi(x, ω), (3.12)

and ‖φ̂(1)( · , ω)‖E = σi(ω). Note that, at any ω,

G(ω) := σ1(ω) = ‖H(ω)d1( · , ω)‖E

‖d1( · , ω)‖E
= ‖σ1(ω)φ1( · , ω)‖E

‖d1( · , ω)‖E
(3.13)

determines the largest induced gain with respect to a compressible energy norm, where
(d1(x, ω),φ1(x, ω)) identify the spatial structure of the dominant input–output pair. We
use a second-order central finite-volume discretization (Sidharth et al. 2018) to obtain a
finite-dimensional approximation of the linearized model (3.8) and employ matrix-free
Arnoldi iterations (Jeun et al. 2016; Dwivedi 2020) to compute the singular values σi(ω)
of H(ω).

3.3. Frequency response analysis
We utilize the resolvent analysis to study amplification of harmonic disturbances with
frequency ω to the linearized flow equations. In double-wedge geometry the laminar
2-D base flow Ψ̄ is a function of streamwise normal coordinates, Ψ̄ (x, y), and owing to
homogeneity in the spanwise direction, the 3-D fluctuations in (3.5a) take the form

ψ (1)(x, y, z, t) = ψ̂ (1)(x, y;β, ω)ei(βz+ωt), (3.14)

where β = 2π/λz is the spanwise wavenumber. Thus, in addition to ω, the frequency
response operator is also parameterized by β,

Hβ(ω) = C(iωI − Aβ)
−1B, (3.15)

where Aβ denotes the Fourier symbol of the operator A in (3.8) obtained by replacing
the spanwise differential operator ∂z with iβ. At any pair (ω, β), Hβ(ω) maps the input
function d̂(1) of x and y into the output function φ̂(1) of x and y,

φ̂(1)(x, y;β, ω) =
[
Hβ(ω)d̂(1)( · , · ;β, ω)

]
(x, y), (3.16)

and SVD of Hβ(ω) can be used to study amplification across spatio-temporal frequencies.
We first set B = I, i.e. we introduce body forcing inputs to excite flow at every spatial

location in the computational domain Ω and we choose the output operator C to examine
the impact of forcing on the compressible energy norm of φ(1) in the entire Ω . The
resolvent analysis is done using a resolution that yields grid-independent outputs with
545 cells in the streamwise direction, 249 cells in the normal direction, and numerical
sponge boundary conditions near the leading edge (x = 1) with the outflow boundaries
are utilized.

Figure 4 shows the dependence of the input–output gain G(ω, λz) on the frequency
ω and the wavelength λz. There are two major amplification regions with the respective

948 A37-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

69
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.697


A. Dwivedi, G.S. Sidharth and M.R. Jovanović
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Figure 4. (a) Input–output gain G(ω, λz) associated with the resolvent operator across temporal frequency ω
and spanwise wavelength λz. (b) Isosurfaces of streamwise vorticity and density fluctuations corresponding to
the input–output modes d1 and φ1.

peaks at (ω = 0, λz = 1.5) and (ω = 0.4, λz = 3). The first peak in G identifies the largest
amplification and the corresponding output is determined by reattachment streaks that
result from steady vortical disturbances upstream of the recirculation zone. We observe
selective amplification of disturbances with λz ≈ 1.5 and low-pass filtering features over
ω. The gain G experiences rapid decay beyond the roll-off frequency ω ≈ 0.4 and it
attains its largest value at ω = 0 for λz that scales with the reattaching shear layer
thickness (Dwivedi et al. 2019). In contrast to Dwivedi et al. (2019), which focused on
disturbances with ω = 0, we examine unsteady disturbances that trigger oblique waves
in the reattaching shear layer, as identified by the second peak in G. This amplification
region takes place in a narrow band of temporal frequencies ω over a fairly broad range of
spanwise wavelengths λz.

As demonstrated in figure 4, even when we allow disturbances to enter through the
entire computational domain the largest amplification is caused by inputs that are localized
upstream of the corner and the resulting response is localized downstream of the corner.
The upstream disturbances are the most effective way to excite the flow because of the
large convection velocity of the laminar 2-D base flow (Chomaz 2005; Schmid 2007) and
the dominant output emerges in the separated and reattached regions.

Experimental studies of oblique transition in channel and boundary layer flows
(Elofsson & Alfredsson 1998; Berlin & Henningson 1999) often utilize streamwise
localized disturbances and a common criticism of the resolvent analysis is that the
identified global input modes represent excitation sources that are not easy to realize
experimentally. In contrast, traditional approach to the analysis of boundary layers utilizes
spatially localized fluctuation sources and evaluates the streamwise growth of fluctuations
as they convect downstream (Herbert 1997). However, in the presence of flow separation a
parabolized approximation of the NS equations cannot be made. To evaluate amplification
in different spatial regions, we restrict inputs and outputs to belong to a plane but
still account for the global nature of the separated flow through the resolvent operator
(iωI − Aβ)

−1. As illustrated in figure 5(a), this is accomplished via a proper selection
of the operators B and C in (3.8) by fixing the input location before flow separation,
at xin = 25, and by evaluating the output at different locations downstream of the
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Figure 5. Spatial input–output analysis: (a) input is introduced at a streamwise location xin = 25 before
separation and output is evaluated at xout; (b) dependence of the input–output gain Gxout on the streamwise
location xout for streaks and oblique waves. Unsteady oblique waves with (ω = 0.4, λz = 3) are strongly
amplified throughout the separation zone.

separation, xout. In this set-up, Gxout quantifies the largest amplification at xout of
disturbances that are introduced at xin = 25.

Figure 5(b) shows the dependence of Gxout on xout for upstream disturbances
with (ω = 0, λz = 1.5) and (ω = 0.4, λz = 3). The gain associated with the steady
fluctuations begins to grow in the latter half of the recirculation zone, especially near
the reattachment location. In contrast, unsteady perturbations with ω = 0.4 experience
significant amplification throughout the separation zone. This observation suggests that
the separation zone plays a critical role in the amplification of unsteady fluctuations.

3.4. Amplification of oblique waves: physical mechanism
We now analyse physical mechanisms responsible for amplification of flow fluctuations
within the separation zone in the presence of upstream unsteady disturbances. In particular,
we examine the global response of the linearized equations to the input with (ω =
0.4, λz = 3.0) introduced prior to separation (i.e. at xin = 25) that triggers the largest
amplification in the entire domainΩ . The spatial structure of flow fluctuations is studied in
the (s, n, z) coordinate system which is locally aligned with the streamlines of the laminar
2-D base flow Ψ̄ ; see figure 3 for an illustration. In this frame of reference, ū = (ūs, 0, 0)
with ūs ≥ 0, and, as discussed in Finnigan (1983), Patel & Sotiropoulos (1997), Dwivedi
et al. (2019), this coordinate system is convenient for the analysis of separated boundary
layers especially within the separation zone.

The streamwise specific kinetic energy Es := u′
su

′
s obeys the transport equation,

∂Es

∂t
+ ūs

∂Es

∂s
= P + S + V + K + F , (3.17)

where P , S , V and K are the production, source, viscous and curvature terms (see
Appendix C), and F is the work done by external disturbances (Dwivedi et al. 2019,
appendix C). The production term P quantifies interactions of fluctuation stresses with
the base flow gradients, the source term S corresponds to the perturbation component
of the inviscid material derivative, the viscous term V determines dissipation of kinetic
energy by viscous stresses and K accounts for the curvature that arises from a coordinate
transformation. Our computations indicate that while the dissipative viscous term V is

948 A37-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

69
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.697


A. Dwivedi, G.S. Sidharth and M.R. Jovanović

negative throughout the domain, the production term P is sign indefinite, S and K are
negligible, and F is zero downstream of the forcing plane.

Insight into physical mechanisms can be gained by the analysis of dominant
production terms in (3.17) associated with the global linearized response to upstream
oblique disturbances. Averaging over the time period T = 2π/ω and the spanwise
wavelength λz = 2π/β, 〈 · 〉 := (Tλz)

−1 ∫ T
0

∫ λz
0 ( · ) dz dt, and neglecting the terms that do

not contribute significantly to the production of the averaged streamwise specific kinetic
energy Es := 〈Es〉 yields the following approximation to the transport equation (3.17):

ūs
∂Es

∂s
+ 2(∂sūs)Es ≈ −2(∂nūs)Rsn. (3.18)

Here Rsn := 〈u′
su

′
n〉 denotes the averaged shear stress of the streamwise velocity

fluctuations. The second term on the left-hand side represents the production of
fluctuations’ energy that arises from the streamwise gradient of the base flow ∂sūs, and
the term on the right-hand side determines the production term that originates from
interactions of the base flow shear ∂nūs with the fluctuation shear stress Rsn.

To understand the mechanism that facilitate the growth of Es, we now investigate
the streamwise transport of Rsn. In contrast to the transport equation for Es, both the
production P and curvature K terms contribute significantly to the streamwise transport of
Rsn for fluctuations with ω = 0.4 and λz = 3.0. As demonstrated in Appendix D, omitting
negligible terms leads to the following approximate transport equation for Rsn:

ūs
∂Rsn

∂s
+ (∂sūs + Ks)Rsn ≈ 2KcEs. (3.19a)

Here Kc and Ks denote contributions that arise from the curvature normal to the
streamlines and from deceleration along the streamline direction, respectively,

Kc = −(Ω̄ + ∂nūs), Ks = −∂sūs. (3.19b)

In the (s, n, z) coordinate system, Ω̄ = ∂xv̄ − ∂yū denotes the spanwise vorticity of the
base flow in Cartesian coordinates (Finnigan 1983) and using the definition of Ks, (3.19a)
simplifies to

ūs
∂Rsn

∂s
≈ 2KcEs. (3.19c)

In summary, (3.18) and (3.19c) determine a coupled system of linear equations that
governs the streamwise transport of Es and Rsn in the separation zone for oblique
fluctuations with (ω = 0.4, λz = 3.0),[

ūs 0
0 ūs

]
∂

∂s

[
Es
Rsn

]
≈

[ −2∂sūs −2∂nūs
2Kc 0

] [
Es
Rsn

]
. (3.20)

Oblique waves experience the largest amplification in the separated shear layer above
the recirculation bubble, i.e. in the region where the presence of flow separation leads
to concave flow curvature Kc < 0. Figure 6(a) shows this negative curvature along the
separation streamline and figure 6(b) illustrates the physical mechanism which is absent in
the attached boundary layers because of negligibly small positive streamwise curvature.

Concave base flow curvature (i.e. Kc < 0) in the shear layer provides the destabilizing
effect in system (3.20) that can be understood by simplifying (3.20) for oblique waves. In
figure 7(a) we compare ūs∂sEs := ūs∂Es/∂s with the dominant production term in (3.18)
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Figure 6. (a) Curvature (−Kc) of the laminar base flow along the separation streamline; (b) illustration of a
physical mechanism that facilitates growth of the averaged streamwise specific kinetic energy Es of oblique
fluctuations in the separated shear layer.
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Figure 7. Streamwise variation of (a) ūs∂sEs along with the dominant production term in (3.18); (b) average
fluctuation shear stress Rsn and base flow shear ∂nūs.

to illustrate that (∂nūs)Rsn dictates the streamwise growth of Es. Furthermore, since the
base shear ∂nūs remains almost constant throughout the shear layer (cf. figure 7b), its
streamwise derivative can be neglected, thereby leading to

ū2
s
∂2Es

∂s2 + ūs(∂sūs)
∂Es

∂s
+ 4Kc(∂nūs)Es ≈ 0. (3.21)

This second-order differential equation for Es is obtained by taking the derivative of the
equation for Es in (3.20), keeping the dominant terms and substituting the equation for Rsn
from (3.20) into the resulting expression. Figure 8(a) shows the streamwise evolution of
Es and figure 8(b) compares the coefficients in (3.21). Since the effect of ∂sūs is negligible,
(3.21) can further be simplified to obtain

ū2
s
∂2Es

∂s2 + 4Kc(∂nūs)Es ≈ 0. (3.22)

As shown in figure 8(b), the concave base flow curvature (i.e. Kc < 0) provides the
destabilizing influence throughout the separated shear layer and a simple mechanical
analogy can be used to explain amplification of oblique waves. In the regions where Kc < 0
the ‘spring constant’ 4Kc(∂nūs) in (3.22) is negative and this system behaves as an inverted
pendulum, which enables the spatial growth of Es.
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Figure 8. (a) Streamwise evolution of the wall-normal integral of Es := 〈u′
su

′
s〉 for the primary output resolvent

mode of oblique fluctuations with (ω = 0.4, λz = 3.0) along with contours of Es in the separated shear layer
near reattachment (inset); (b) the coefficients in (3.21) along the separation shear layer.

In summary, we have utilized the resolvent analysis to identify the spatial structure
of oblique fluctuations that amplify rapidly in the separation zone. Furthermore, by
conducting transport analysis of the most energetic fluctuations, we have demonstrated that
the resulting amplification arises from concave curvature of the laminar 2-D base flow.

4. Nonlinear interactions of oblique waves

In § 3 we used resolvent analysis to identify oblique waves as the most energetic responses
of the linearized flow equations in the presence of unsteady disturbances. Recent numerical
simulations (Lugrin et al. 2021) show that, even in the presence of unsteady disturbances,
the dominant response near the reattachment appears in the form of streamwise streaks. To
investigate the origin of steady streaks in the presence of unsteady external disturbances,
we utilize a weakly nonlinear formulation based on a perturbation expansion in the
amplitude of the oblique disturbances. While previous numerical studies of transition
induced by oblique waves in low-speed channel (Schmid & Henningson 1992) and
boundary layer (Chang & Malik 1994; Berlin & Henningson 1999; Mayer et al. 2011)
flows show that nonlinear interactions of oblique waves generate streaks, we focus on the
origin and spatial growth of these streaks in separated high-speed compressible boundary
layer flows.

4.1. Streaks generated by oblique waves: a weakly nonlinear analysis
In the presence of a small external disturbance,

d(x, y, z, t) = ε (d̂(1)+ (x, y)eiωt + d̂(1)− (x, y)e−iωt) eiβz, (4.1)

a weakly nonlinear analysis of § 3.1 can be utilized to represent the flow state components
in compressible NS equations (3.3) as

O(1) : Ψ̄ (x, t) = Ψ̄ (x, y),

O(ε) : ψ (1)(x, t) =
(
ψ̂
(1)
+ (x, y)eiωt + ψ̂

(1)
− (x, y)e−iωt

)
eiβz,

O(ε2) : ψ (2)(x, t) =
(
ψ̂
(2)
0 (x, y)+ ψ̂

(2)
+ (x, y)e2iωt + ψ̂

(2)
− (x, y)e−2iωt

)
e2iβz.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.2)
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Figure 9. (a) Set-up for weakly nonlinear analysis: a pair of dominant input modes with (ω = ±0.4, λz = 3)
resulting from resolvent analysis is introduced at xin = 25 and the corresponding streamwise velocity
fluctuations arise as the output of the linearized dynamics. Panel (b) shows that O(ε2) steady streamwise
streaks with λz = 1.5 are triggered by weakly nonlinear interactions of O(ε) oblique waves with λz = 3.

Here, Ψ̄ (x, y) is the 2-D laminar base flow, d̂(1)± and ψ̂ (1)± are the principal oblique input
and state modes resulting from the linearized analysis of § 3, whereas ψ̂ (2)0 and ψ̂ (2)± are
the steady and harmonic components of the state at O(ε2). At O(ε2), the fluctuation’s
dynamics is governed by (3.5b), where the steady component ψ̂ (2)0 satisfies[

A2β ψ̂
(2)
0 ( · , · )

]
(x, y) = −d̂(2)0 (x, y). (4.3)

Here, A2β is the Fourier symbol of the dynamical generator in the linearized state-space
model (3.8) and d̂(2)0 := N (2)

0 (ψ̂
(1)
± ) is the forcing term that arises from quadratic

interactions of O(ε) oblique waves with the spanwise wavenumber β; see Appendix A
for details. Thus, the resolvent operator associated with (3.8) evaluated at (ω = 0, 2β)
maps the nonlinear modulation d̂(2)0 of O(ε) oblique waves to O(ε2) steady streamwise
streaks,

ψ̂
(2)
0 (x, y) =

[
R2β(0)d̂

(2)
0 ( · , · )

]
(x, y) = −

[
A−1

2β d̂(2)0 ( · , · )
]
(x, y). (4.4)

To investigate the emergence of streaks from unsteady disturbances, we introduce
forcing inputs with (ω = ±0.4, λz = 3) and examine a weakly nonlinear evolution of the
resulting oblique waves. These forcing inputs are introduced at the upstream plane xin = 25
and their spatial structure is identified using the resolvent analysis of § 3 to generate the
most energetic response at the reattachment (i.e. at xout = 60).

Figure 9(a) illustrates the set-up in which disturbances corresponding to a pair of oblique
input modes d̂(1)± with (ω = ±0.4, λz = 3) are introduced at xin = 25. The resulting
response of the linearized dynamics consists of oblique waves with opposite phase
velocities, leading to a checkerboard wave pattern in the spanwise direction. Figure 9(b)
shows the streamwise velocity component of the steady response φ̂(2)0 (x, y) at O(ε2) that
arises from weakly nonlinear interactions of O(ε) oblique waves. The steady response is
given by streamwise streaks with half the spanwise wavelength λstreaks

z = λoblique
z /2 = 1.5

of the oblique input.
A weakly nonlinear analysis allows us to demonstrate that steady streaks at O(ε2) arise

from quadratic interactions of O(ε) oblique waves. Figure 10(a) utilizes a wall-aligned
(ξ, η) coordinate system to illustrate the forcing term d̂(2)0 := N (2)

0 (ψ̂
(1)
± ) in (4.3),

where ξ and η denote the directions parallel and normal to the wall, respectively.
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Figure 10. (a) Real part of the streamwise vorticity forcing component that arises from weakly nonlinear
interactions of oblique waves d̂(2)0 in the (x, y) plane along with the base flow streamlines. (b) Wall-normal
profiles of the forcing terms to the streamwise vorticity, density, temperature and streamwise velocity
equations that originate from d̂(2)0 before reattachment, at x = 58. (c) Spatial structure of the forcing d̂(2)0 near
reattachment in the (z, η) plane (colour plots) along with the resulting streak response φ̂(2)0 (contour lines) at
x = 58.

Large amplification of oblique waves that result from linearized analysis in the
reattachment region triggers strongest forcing d̂(2)0 in that region. Figure 10(b) shows
the wall-normal profiles of the forcing term to the mass, momentum and temperature
equations in (4.3) before reattachment at x = 58. We observe the strongest contribution
of the forcing to the wall-normal and spanwise components of the momentum equations,
thereby demonstrating its vortical nature. Figure 10(c) illustrates the spatial structure of
the forcing near reattachment in the (z, η) plane. The forcing term d̂(2)0 which forms
counter-rotating vortices in the separated shear layer is 90◦ out of phase relative to the
induced streak response u′

s. In contrast to the dominant vortical forcing resulting from the
linearized analysis, the vortical source term that arises from weakly nonlinear interactions
of oblique waves primarily lies downstream of the recirculation zone.

We utilize DNS to verify the predictions of weakly nonlinear analysis. In DNS the
input oblique modes d̂(1)± (with ω = ±0.4, λz = 3 and reference amplitude A0 = 1.0)
are introduced in the plane xin = 25. Additional details about the grid resolution and
numerical implementation in our DNS study are provided in § 5. Figure 11 shows
the spatial evolution of steady streamwise velocity fluctuations u′

s along the base flow
separation streamline that are triggered by unsteady oblique disturbances of different
amplitudes. As shown in figure 11(a), steady streaks undergo similar spatial growth
across the range of forcing amplitudes. Figure 11(b) illustrates that the magnitude of
streamwise velocity fluctuations collapses when scaled with A2

0. This demonstrates an
excellent agreement between streak profiles resulting from DNS and a weakly nonlinear
analysis (that leads to (4.3)). Deviations from predictions of the weakly nonlinear analysis
are only observed for the largest amplitude considered and they are manifested by the
saturation of streaks in the post-reattachment region.

Collapse of spatial profiles that characterize the amplification of streaks irrespective
of the amplitude of oblique disturbances, which differ by O(104), shows that streaks
generated via quadratic interactions of oblique waves undergo linear amplification in the
separation zone. This demonstrates the predictive power of the weakly nonlinear analysis
across the range of forcing amplitudes. In what follows, we utilize the input–output modes
obtained from the resolvent analysis to characterize evolution of O(ε2) steady streamwise
streaks and uncover corresponding amplification mechanisms.
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Figure 11. (a) Streamwise velocity fluctuations u′
s along the separation streamline associated with O(ε2)

steady streaks at λz = 1.5; DNS results for various amplitudes of oblique disturbances with (ω = ±0.4, λz = 3)
are shown. (b) Direct numerical simulation results normalized with the square of the amplitude A0 of oblique
disturbances are compared with the results of weakly nonlinear analysis.

4.2. Resolvent mode representation of O(ε2) streaks
As described in § 3.2, the left and right singular function of the frequency response
operator provide orthonormal bases of input and output spaces that can be used to study
responses of the double-wedge flow to external excitations. In particular, O(ε2) steady
streaks resulting from weakly nonlinear interactions of O(ε) unsteady oblique waves (cf.
(4.4)) can be represented using SVD of the frequency response operator associated with
the linearized system (3.8) at ω = 0 and the spanwise wavenumber 2β,

φ̂
(2)
0 (x, y) =

[
H2β(0)d̂

(2)
0 ( · , · ),

]
(x, y) =

∑
i

aiφi(x, y). (4.5)

Here, ai := σi〈di, d̂(2)0 〉E, with d̂(2)0 := N (2)
0 (ψ̂

(1)
± ), quantifies the contribution of the ith

output mode φi of H2β(0) to O(ε2) steady streaks φ̂(2)0 , σi is the ith singular value, (di,φi)
are the corresponding input–output modes of H2β(0) and, for λz = 1.5, the inner product
〈 · , · 〉E is carried over the entire flow domain in (x, y).

Figure 12(a) shows the 15 largest singular values of the resolvent for the linearized
system (3.8) with (ω = 0, λz = 1.5). Even though the principal singular value σ1 is an
order of magnitude larger than σ2, figure 12(b) demonstrates that the second output mode
φ2 contributes most to φ̂(2)0 . Figure 13(a) shows the wall-normal profiles of the streamwise
velocity component u′ associated with φ̂(2)0 and the first two output modes (φ1,φ2) of
the resolvent. We observe a striking similarity between O(ε2) steady streaks and φ2 in
the post-reattachment region, at x = 65. Similarly, figure 13(b) compares the wall-normal
shapes of the corresponding input modes d1 and d2 with the forcing d̂(2)0 that arises from
quadratic interactions. The input modes are visualized in the reattaching shear layer, at
x = 57, and the streamwise vorticity component of d2 provides a good approximation to
the vortical forcing that captures interactions of unsteady oblique fluctuations.

As demonstrated above, near reattachment, O(ε2) streaks are well approximated by
the second output mode of the resolvent associated with the linearized equations at
(ω = 0, λz = 1.5). To gain insight into the amplification mechanism that generates O(ε2)
streaks, we examine the dominant terms in the energy transport equation for the output
mode φ2. Similar to the analysis in § 3.4, we utilize the (s, n, z) coordinate system which
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Figure 12. (a) Singular values of the resolvent operator associated with the linearized dynamics around the
2-D laminar flow evaluated at (ω, λz) = (0, 1.5). (b) Contribution of the ith output mode φi to the energy of
O(ε2) steady streaks φ̂(2)0 that are triggered by weakly nonlinear interactions of O(ε) oblique waves.
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Figure 13. The wall-normal profiles of the real part of streamwise velocity fluctuations resulting from weakly
nonlinear interactions of oblique waves and corresponding to (a) O(ε2) steady streaks φ̂(2)0 and the first two
output resolvent modes after reattachment, at x = 65; (b) steady vortical forcing d̂(2)0 and the first two input
resolvent modes in the reattaching shear layer, at x = 57.

is locally aligned with the streamlines of the base flow (ūs, 0, 0). The transport of the
spanwise-averaged specific kinetic energy of streamwise velocity fluctuations Es = 〈u′

su
′
s〉

and fluctuation shear stress Rsn = 〈u′
su

′
n〉 associated with the second output mode is

approximately governed by (3.20) in § 3.4.
Figure 14(a) shows the streamwise evolution of the wall-normal integral of Es for the

mode φ2 associated with O(ε2) streaks with (ω = 0, λz = 1.5). In contrast to the oblique
waves (cf. figure 8a), which experience monotonic amplification throughout the separation
shear layer above the recirculation bubble, we observe a non-monotonic x-dependence of
Es for the streaks within the bubble. To gain physical insight, we evaluate the terms of the
coefficient matrix in (3.20) for steady streaks. Figure 14(b) shows that both streamwise
deceleration (i.e. ∂sūs < 0) and shear ∂nū contribute to amplification of O(ε2) streaks
in different regions of the separated laminar flow. Towards reattachment, the base flow
curvature Kc is positive inside the recirculation bubble (cf. figure 14c) and the streamwise
deceleration term (i.e. ∂sūs < 0) is primarily responsible for the energy Es amplification.
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Figure 14. (a) Streamwise evolution of the wall-normal integral of Es = 〈u′
su

′
s〉 for the second output mode

associated with streaks at (ω = 0, λz = 1.5) along with contours of Es near reattachment (inset); (b) streamwise
variation of deceleration and shear components of the spanwise-averaged production term 〈P〉 in the transport
equation for Es; and (c) base flow curvature Kc near reattachment.

In this region, the transport equation for Es can be approximated by

ūs
∂Es

∂s
≈ −2(∂sūs)Es. (4.6)

This is in concert with the analysis of the contribution of the first (i.e. most amplified)
output mode φ1 to the amplification of streaks in a compression ramp flow (Dwivedi
et al. 2019), which also revealed dominance of streamwise deceleration near reattachment.
On the other hand, in the post-reattachment region the shear term ∂nūs < 0 dominates
and the coupled system of (3.20) for Es and Rsn simplifies to the following second-order
equation (3.22) for Es:

ū2
s
∂2Es

∂s2 + 4Kc(∂nūs)Es ≈ 0. (4.7)

Thus, in the post-reattachment region the concave streamline curvature of the laminar 2-D
base flow (i.e. Kc < 0) is primarily responsible for amplification of O(ε2) streaks.

5. Direct numerical simulations of streak breakdown

Weakly nonlinear analysis demonstrates that small unsteady disturbances induce steady
streaks in a hypersonic flow over a double wedge. These streaks result from quadratic
interactions of oblique waves and they undergo rapid amplification near reattachment.
Downstream of reattachment, the streaks grow large enough to modify the time-averaged
2-D flow and we utilize DNS to examine the breakdown of streaks. We also report
instantaneous and statistical properties of the flow as it transitions to turbulence.

5.1. Numerical set-up
To study the onset of transition, we extend the computational domain in the streamwise
direction downstream of reattachment. We place the inflow boundary at x = 20 and, at this

948 A37-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

69
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.697


A. Dwivedi, G.S. Sidharth and M.R. Jovanović

Time

x = 55 x = 60 x = 65(a) (b) (c)

T = 2π/ωobliqueu – 〈u〉z

z

Figure 15. Streamwise streaks in the plane close to the wall, η = 0.25, at three different streamwise locations:
(a) before reattachment, at x = 55; (b) at reattachment, at x = 60; and (c) after reattachment, at x = 65. The
low-speed streaks are marked in blue (solid lines) and high-speed streaks are marked in red (dashed lines).

location, we interpolate the inflow profile that results from 2-D base flow computations.
To avoid spurious numerical errors, we utilize a non-reflecting numerical sponge near
the outflow. The wall is assumed to be adiabatic and periodic boundary conditions in the
spanwise direction are applied.

A computational domain of size 80 × 13 × 9 in the streamwise, wall-normal and
spanwise directions is discretized using 900 × 249 × 384 grid points (i.e. 86 million
cells). The grid is constructed to ensure uniform spacing in the streamwise and spanwise
directions and, in the normal direction, the mesh is stretched to ensure y+ < 0.22
at the wall. In Appendix E we provide a grid convergence study and compare the
numerical resolution that we use with recent simulations of supersonic and hypersonic
transitional and turbulent flows. Our simulations utilize low-dissipation sixth-order
spatially accurate kinetic-energy-consistent (KEC) fluxes (Subbareddy & Candler 2009)
for spatial discretization. The low-dissipation KEC fluxes were previously employed
in high-fidelity simulations of transitional and turbulent hypersonic boundary layers
(Subbareddy & Candler 2012; Subbareddy, Bartkowicz & Candler 2014). The time
integration is carried out using the explicit third-order Runge–Kutta scheme with a
Courant–Friedrichs–Lewy number of 0.5.

5.2. Secondary instability and breakdown
To simulate the breakdown of streaks, we excite the laminar 2-D flow using the
oblique input modes with (ω = ±0.4, λz = 3). The disturbance amplitude is set to Aob =
2.50 × 102A0 and is determined based on the results reported in figure 11. With this
amplitude, fluctuations grow linearly in the recirculation region but saturate nonlinearly
post-reattachment (i.e. beyond x = 60).

In figure 15 we show the time evolution of streaks in the plane close to the wall, at
η = 0.25, for three different values of x. These plots demonstrate that, in the presence
of unsteady oblique disturbances, O(ε2) steady streaks undergo spanwise motion close
to reattachment. The identified spanwise oscillations become stronger as we progress
downstream and their period corresponds to the time period of oblique wave inputs.
We note the presence of a ‘sinuous-subharmonic’ motion, where two adjacent low-speed
streaks oscillate out of phase, and observe that the amplitude of spanwise oscillations
almost doubles as we move from x = 55 to x = 65.

In figure 16 we illustrate the effect of streak oscillations on the mean flow by visualizing
the root mean square (r.m.s.) of temporal fluctuations in the streamwise velocity. At
different streamwise locations, fluctuations are plotted against ∂ ū/∂z, which characterizes
steady spanwise variations of the mean flow. Initially, unsteadiness is restricted to the
oblique wave pair, which is located further away from the wall relative to the streaks.
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Figure 16. Colour plots of the spanwise gradient of time-averaged streamwise velocity ∂ ū/∂z and contour
lines of u′

rms at the same streamwise locations as in figure 15.
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Figure 17. (a) Wall-normal profiles of laminar and mean streamwise velocity components at x = 70.
(b) Colour plots of u′

rms along with contour lines of time-averaged streamwise velocity.

However, at x = 65, unsteadiness is observed in the region of the largest spanwise shear
because of the presence of streaks. This ‘locking-in’ of urms with streak oscillations
identifies late stages of the streak evolution just before smaller scales (associated with
higher frequencies) set in.

The amplification of streaks and their unsteadiness induce rapid steepening of spanwise
and wall-normal mean flow gradients, thereby leading to the emergence of inflection
points in the mean (time- and spanwise-averaged) flow. Figure 17(a) shows the resulting
inflectional mean flow profile and figure 17(b) shows the location of unsteady fluctuations
with respect to the streaks. As we move from x = 65 to x = 70, we note the appearance
of higher spanwise wavenumbers in the streaks as well as in the unsteady fluctuations. As
discussed by Hall & Horseman (1991) and Yu & Liu (1994), inflectional points in the mean
velocity serve as an indicator of its susceptibility to the growth of broadband fluctuations.
Amplification of high-frequency harmonics is also observed in the temporal spectra of the
fluctuations. Therefore, at x = 70, flow is well within fully nonlinear stages of transition.
We also note the strong spatial correlation of unsteady fluctuations with the spanwise shear
associated with the streaks, even at this nonlinear stage.

In figure 18 we plot Q-isosurfaces of the instantaneous flow field. These visualize
vortical structures that arise from the sinuous-subharmonic motion of the streaks, prior
to breakdown of the flow. We note the appearance of staggered lambda vortices, similar
to those identified in transition induced by oblique waves in incompressible boundary
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Figure 18. (a) Instantaneous isosurface of the Q-criterion coloured by contours of the streamwise velocity;
(b) contour plot of the wall-shear stress show the formation of streaks before transition and (η, z) slices of
instantaneous streamwise velocity contours along with contour lines of the Q-criteria.
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Figure 19. Streamwise variations of (a) instantaneous and (b) time-averaged streamwise shear stresses as
well as (c) wall skin-friction coefficient.

layers (Berlin et al. 1999). These vortical structures are also sometimes referred to as
X-vortices, for reasons illustrated in the (η, z) slice array plot in figure 18. Initially, at
x ≈ 62, we observe that the interaction with the oblique waves causes the roll-up of
the low-speed streak as they come together due to sinuous-subharmonic motion. Further
downstream, as the flow structures associated with the X-vortices spread apart, we see that
wall-normal jets of low-speed flow form mushroom structures. As these low-speed regions
oscillate further, they interact to generate fluctuations with higher spanwise wavenumbers.
Finally, at x ≈ 70, the shear introduced by the upward jets of low-speed streaks becomes
significant enough to cause a local Kelvin–Helmholtz instability that induces streamwise
rollers (Reddy et al. 1998). At this stage, the laminar boundary layer flow has started to
break down to turbulence.
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Oblique transition in hypersonic double-wedge flow

6. Transition to turbulence

Our DNS study demonstrates that amplification of steady streaks, that result from
quadratic interactions of oblique waves, leads to formation of a 3-D inflectional boundary
layer profile. During this process, fluctuations with multiple spatial and temporal scales
develop and, despite the periodic nature of upstream forcing, the flow downstream of
reattachment becomes turbulent. In this section we utilize wall and boundary layer
statistics to illustrate the onset of turbulence on the second wedge.

6.1. Wall statistics: skin friction
Boundary layer transition is characterized by a rapid increase in wall friction. Figure 19(a)
utilizes instantaneous wall-shear distribution to identify transitional and turbulent regions.
The wall-shear stress experiences sinuous-subharmonic modulation downstream of the
reattachment (at x = 60, i.e. Rex = 8.2 × 105) and finer spanwise scales emerge after
x = 80 (i.e. Rex ≈ 11 × 105). As shown in figure 19(b), this location coincides with the
highest value of time-averaged wall shear. Even though significant attenuation of spanwise
variations of the wall-shear stress associated with the initial streaks takes place by x = 80,
nonlinear interactions within the transition zone lead to the appearance of new streaks
further downstream.

The spatial extent of the transition zone is visualized in figure 19(c) by showing
streamwise development of the skin-friction coefficient,

Cf = 1
T

1
Lz

∫ T

0

∫ Lz

0

τ ∗
w

1
2ρ

∗
e (U∗

e )
2

dz dt. (6.1)

Here, τ ∗
w is the dimensional shear stress at the wall, ρ∗

e and u∗
e are the dimensional density

and streamwise velocity at the boundary layer edge, Lz is the spanwise extent of the
computational domain and T = 4Lx/u∗∞. The values of Cf in laminar flows over a 12
degree wedge and over the double wedge are also plotted for comparison. The skin-friction
coefficient drops because of flow separation but it grows again after reattachment. Near
and downstream of reattachment, we observe a significant difference between laminar
and turbulent values of Cf . After Rex = 11.5 × 105, when Cf starts to decay with x, the
wall-friction coefficient is approximately seven times larger than its laminar counterpart. A
comparison with the Van-Driest turbulent correlation for standard compressible boundary
layers demonstrates that the flow on the second wedge is approaching fully developed
turbulent values towards the end of the computational domain. In addition to skin friction,
transition also has a significant impact on wall temperature. Additional details about the
mean temperature and the wall statistics are included in Appendix F.

6.2. Towards a turbulent compressible boundary layer
To illustrate the onset of turbulence, we also examine first- and second-order statistics
in the latter stages of transition. At a given streamwise location, we report statistics in
terms of the inner coordinate η+ that is obtained by non-dimensionalizing the wall-normal
coordinate with the local viscous length δν . Figure 20(a) shows the mean streamwise
velocity u+ non-dimensionalized by the local friction velocity uτ . The mean profile is
obtained by averaging in time over 2Lx/u∞ and in the spanwise direction over the extent of
the computational domain Lz. In the presence of density variation along the compressible
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Figure 20. The wall-normal profiles of mean (a) streamwise velocity and (b) temperature.

boundary layer, we utilize the Van-Driest transformation,

uc(η) =
∫ 〈u〉

0

√
〈ρ〉
〈ρ〉w

dû =
∫ η

0

√
〈ρ〉
〈ρ〉w

∂〈u〉
∂η̂

dη̂, (6.2)

to compare the transitional velocity profiles with the ‘log law’ observed in incompressible
turbulent boundary layers (White & Majdalani 2006), where 〈 · 〉 denotes averaging over
time and spanwise direction, and 〈ρ〉w is the mean density at the wall. A fully developed
turbulent boundary layer is characterized by the presence of the viscous sublayer close to
the wall (η+ < 10), where u+

c = η+, and further away from the wall the mean velocity
obeys the log law,

u+
c = (1/κ) ln(η+)+ C, (6.3)

where κ = 0.41 and C = 5.2.
Figure 20(a) shows that the mean velocity in the boundary layer approaches the fully

turbulent profile at Rex = 1.2 × 106. Upstream of this location, within the transition zone,
the boundary layer has a significantly greater momentum and most of it lies away from
the wall. Furthermore, closer to the wall, the slope of the streamwise velocity profile is
larger than the slope obtained using the viscous sublayer profile of a fully turbulent flow.
This observation is consistent with the overshoot in skin-friction coefficient within the
transition zone; cf. figure 19(b).

In addition to the mean velocity, the mean temperature profile plays an important role
in heat transfer and material response analysis of hypersonic flows. Walz’s modified
Crocco-Busemann relation,

〈T〉
〈Te〉 = 〈Tw〉

〈Te〉 + 〈Tr〉 − 〈Tw〉
〈Te〉

〈u〉
〈ue〉 + 〈Te〉 − 〈Tr〉

〈Te〉
( 〈u〉

〈ue〉
)2

, (6.4)

is commonly used to describe the relation between temperature and velocity in a zero
pressure gradient turbulent boundary layer. Here, 〈ue〉 and 〈Te〉 denote the mean boundary
layer edge velocity and temperature, respectively, 〈Tr〉 is the mean recovery temperature
and, since the wall is adiabatic, the mean wall temperature is determined by 〈Tw〉 = 〈Tr〉.
In spite of pressure variations post-reattachment, figure 20(b) demonstrates that the
quadratic relation in (6.4) holds throughout the transition zone. As the flow approaches
a fully turbulent profile, we see a slight deviation from this relation in the outer region
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Figure 21. The wall-normal profiles of density weighted r.m.s. values of (a) streamwise, (b) wall-normal and
(c) spanwise velocity fluctuations at different Reynolds numbers. (d) Energy spectrum as a function of spanwise
wavenumber β at Rex = 1.2 × 106.

away from the wall; this observation is in agreement with prior studies of fully turbulent
compressible boundary layers (Duan, Beekman & Martín 2011; Franko & Lele 2013).

We next examine spatial development of flow fluctuations by evaluating second-order
statistics and comparing them with those observed in a Mach 5 fully developed turbulent
flat-plate boundary layer (Duan et al. 2011). Figure 21(a–c) shows the streamwise variation
of the density-weighted r.m.s. values of the streamwise, wall-normal and spanwise velocity
fluctuation components. In the transition zone we observe large values of fluctuations away
from the wall in all three plots. Further downstream, at Rex = 1.2 × 106, the r.m.s. values
closer to the wall are in agreement with fully turbulent values. However, away from the
wall, the r.m.s. values of u′ and w′ deviate from the flat-plate profiles. We attribute this
deviation to the presence of 3-D oblique waves and streaks that persist downstream because
of continuous upstream forcing in our set-up.

To illustrate the broadband nature of velocity fluctuations in the later stages of transition,
in figure 21(d) we evaluate the spanwise wavenumber dependence of the individual
contributions of velocity fluctuations to the one-dimensional energy spectrum at Rex =
1.2 × 106 and η+ = 40. At this location, the energy spectrum of streamwise velocity
fluctuations clearly exhibits inertial and dissipative subrange features, indicating that the
flow is approaching a fully turbulent stage.
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Figure 22. The wall-normal profiles of (a) the fluctuation Mach number, Mt; (b) the fluctuation Prandtl
number, Prt; and (c) Huang’s modified strong Reynolds analogy parameter, ψsra.

Our DNS also provides data for evaluating non-dimensional parameters which can be
utilized for low-complexity modelling of high-speed compressible turbulent flows using
time-averaged NS equations (Hirsch 2007). In particular, we examine the spatial evolution
of the fluctuation Mach number, Mt, the fluctuation Prandtl number, Prt, and Huang’s
modified strong Reynolds analogy parameter (Huang, Coleman & Bradshaw 1995), ψsra,

Mt =
√

〈u′
iu

′
i〉

γ R 〈T〉 , Prt = 〈u′v′〉
〈v′T ′〉

∂η〈T〉
∂η〈u〉 , ψsra =

(
1 − ∂ 〈T0〉

∂ 〈T〉
)

Prt

(γ − 1) 〈M〉2
〈u〉
〈T〉

T ′
rms

u′
rms
.

(6.5a–c)

Here, 〈u′
iu

′
i〉 = 〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉, γ and R denote the specific heat ratio and the gas

constant, respectively, and T0 is the stagnation temperature. In a fully developed turbulent
boundary layer, ψsra provides a measure of correlation between velocity and temperature
fluctuations (Huang et al. 1995).

Figure 22 shows that towards the end of the computational domain, at Rex = 1.2 × 106,
these parameters are close to those observed in canonical hypersonic boundary layers,
i.e. Mt ≈ 0.2 − 0.3, Prt ≈ 0.9 and ψsra ≈ 1 (Pirozzoli & Bernardini 2011). However,
upstream of the breakdown region, at Rex = 1.0 × 106, there is a significant deviation
compared with these canonical values. Here, Mt becomes as high as 0.45 which suggests
that compressibility effects on flow fluctuations cannot be neglected in the transition
zone. Similarly, Prt can reach values close to 1.5 that correspond to decreased fluctuation
temperature fluxes in the breakdown region. Furthermore, Prt exhibits large variations
away from the wall, which is in contrast to the observations in flat-plate turbulent
boundary layers, where Prt has a value of 0.9 throughout the boundary layer (Saffman &
Wilcox 1974; Smith & Smits 1993; Pirozzoli & Bernardini 2011). Similar deviations from
canonical values in the outer region of the boundary layer are also observed in ψsra. We
conjecture that, in the presence of persistent upstream excitations, the resulting unsteady
fluctuations are primarily responsible for these discrepancies.

7. Concluding remarks

Axisymmetric cone-flare experiments (Benitez et al. 2020; Butler & Laurence 2021)
identified unsteady fluctuations in the separation zone and it is believed that these play
an important role in initiating hypersonic flow transition. As demonstrated in figure 23,
we observe a strong qualitative similarity between the spatial structures of fluctuations
observed using schlieren measurements in a Mach 6 reattaching flow on axisymmetric
cone-flare (Butler & Laurence 2021) and dominant oblique density fluctuations that we
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(b) Input–output analysis

Reattachment

location

Reattachment

location

(a) Experiments

Figure 23. Qualitative comparison of spatial structures of (a) unsteady fluctuations observed using schlieren
measurements in a Mach 6 reattaching flow on axisymmetric cone-flare at U∞/ν∞ = 3 × 106 m−1 (Butler
& Laurence 2021); and (b) dominant oblique density fluctuations resulting from input–output analysis of
linearization around a laminar 2-D Mach 5 reattaching flow at U∞/ν∞ = 13.6 × 106 m−1.
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Figure 24. The streamwise evolution of (a) streamwise specific energy and (b) fluctuation shear stress of the
dominant output mode φ1 of the resolvent associated with linearization around laminar flows over double and
single wedges with (ω = 0.4, λz = 3.0).

identify via resolvent analysis of separated flow over a slender double wedge. Inspired by
these observations, we have examined transition mechanisms in a Mach 5 hypersonic flow
over a slender double-wedge subject to unsteady upstream disturbances.

To investigate the early stages of transition, we employ resolvent analysis to evaluate
responses of the laminar 2-D base flow to exogenous time-periodic inputs. This allows us
to identify prevailing spatio-temporal scales, the spatial structure of disturbances that most
effectively excite the double-wedge flow, as well as the spatial structure of the resulting
responses and the underlying physical mechanisms. In the presence of flow separation,
our analysis shows that two types of disturbances are strongly amplified by the linearized
dynamics: steady streamwise vortices and unsteady oblique waves. While amplification of
steady upstream vortical disturbances has been studied in Dwivedi et al. (2019), oblique
waves that amplify within the separation–reattachment zone have not been investigated.
Recently, Lugrin et al. (2021) examined the growth of unsteady perturbations that arise
from the ‘first mode’ instability of an axisymmetric boundary layer over cylinder-flare
geometry. In the presence of stochastic disturbances in the inlet of the computational
domain, DNS was used to demonstrate that oblique waves that emerge in the upstream
boundary layer (i.e. before separation) can undergo nonlinear interactions similar to those
observed in attached compressible boundary layers (Chang & Malik 1994; Mayer et al.
2011) and cause transition in separated high-speed flows (Lugrin et al. 2021). In contrast,
we show that unsteady disturbances that are localized upstream of the corner trigger
oblique waves downstream of the corner even in the absence of local or global boundary
layer instabilities. These oblique waves experience significant amplification within the
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separation–reattachment zone and their role in initiating transition in flows with SWBLI
has not been studied before.

By carrying out resolvent analysis of the linearized flow equations subject to
disturbances that are introduced in a plane immediately upstream of separation, we identify
the physical mechanism responsible for non-modal amplification of oblique waves in the
presence of flow separation. The subsequent nonlinear interaction of dominant unsteady
oblique fluctuations is examined using a weakly nonlinear analysis to demonstrate the
emergence of steady reattachment streaks inside the recirculation bubble. Direct numerical
simulation confirms the predictions of our analysis and provides a detailed characterization
of transition initiated by time-periodic upstream oblique disturbances.

Next we briefly summarize our main contributions as follows.

(i) Amplification of oblique waves by base flow curvature: We analyse the
fluctuations’ kinetic energy in a streamline-aligned orthogonal coordinate system
to identify physical mechanisms responsible for amplification of oblique waves
in the separation zone. Large energy amplification arises from the growth of the
fluctuation shear stress due to streamline curvature in the separated shear layer. This
is in contrast to the attached boundary layers, where no such mechanism exists. To
compare separated and attached boundary layers, we also conduct resolvent analysis
of the flow over a wedge that does not contain the compression corner (this wedge
is identical to the first wedge in the double-wedge configuration analysed in the
paper). Figure 24 demonstrates that the presence of a recirculation zone in the
double-wedge flow significantly increases amplification relative to the single-wedge
flow. The amplification profiles of the fluctuation shear stresses differ in these two
cases because of fundamentally different physical mechanisms.

(ii) Steady reattachment streaks through base flow deceleration: We utilize a
weakly nonlinear analysis to show that the resolvent operator associated with the
linearized dynamics governs the evolution of steady streaks that arise from quadratic
interactions of unsteady oblique waves. Vortical excitations in the reattaching
shear layer generated by these interactions lead to the formation of streaks in the
recirculation zone and their subsequent amplification downstream. Additionally,
we use SVD of the resolvent operator to demonstrate that secondary reattachment
streaks are well approximated by the second output resolvent mode. Similar to the
most amplified steady output in compression ramp flow (Dwivedi et al. 2019), our
analysis of the energy budget shows that deceleration of the laminar base flow near
reattachment is responsible for amplification of reattachment streaks associated with
this sub-optimal mode.

(iii) Transition to turbulence: We use DNS to examine nonlinear stages of
the evolution of flow fluctuations. In the presence of strong upstream oblique
disturbances, steady streaks saturate after reattachment and experience sinuous
subharmonic oscillations. The resulting 3-D boundary layer breaks down further
downstream and the observed flow structures are similar to those in other
canonical configurations: nonlinear interactions of streaks with oblique waves
lead to the development of staggered patterns of lambda vortices, followed by
a rapid emergence of higher harmonics in fluctuations and multiple inflection
points in the mean velocity profile before breakdown to turbulence (see, e.g. Hall
& Horseman 1991; Yu & Liu 1994; Reddy et al. 1998). As the flow transitions
to turbulence, the wall friction increases rapidly before settling to the values
predicted by turbulent correlations. Within the transitional zone, non-dimensional
parameters that are critical for modelling temperature and compressibility effects
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in high-speed turbulent flows (Hirsch 2007), e.g. the fluctuation Prandtl and
Mach numbers, significantly differ from their fully developed turbulent values.
Post-breakdown, the boundary layer develops mean and fluctuation statistics that
agree well with observations made in attached hypersonic turbulent boundary layers,
thereby demonstrating the efficacy of unsteady oblique waves in triggering transition
in separated high-speed boundary layer flows.

Unsteady disturbances in hypersonic boundary layers can arise from free-stream
turbulence in wind tunnel experiments (Schneider 2001, 2015), interactions of unsteady
free-stream disturbances with surface roughness (Wu 2001; Gonzalez & Wu 2019),
atmospheric particulates associated with ice clouds and volcanic dust (Turco 1992;
Chuvakhov, Fedorov & Obraz 2019) and atmospheric turbulence (Bushnell 1990). Novel
physical mechanisms that we identify are unique to high-speed boundary layers with a
separation–reattachment zone. We expect that insights about transition mechanisms that
we provide using a combination of resolvent and weakly nonlinear analyses with DNS will
motivate a systematic evaluation of specific disturbance environments that appear in wind
tunnels or free flights and guide the development of low-complexity models for the fast and
accurate prediction of transition in hypersonic flows under realistic in-flight conditions.
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Appendix A. Nonlinear terms at O(ε2)

As shown in § 4.1, d̂(2)0 := N (2)
0 (ψ̂

(1)
± ) accounts for quadratic interactions between ψ̂ (1)+

and ψ̂ (1)− at O(ε2). For steady streaks ψ̂ (2)0 , d̂(2)0,ρ = 0 and the contributions to the equations
for the momentum and total energy fluctuations are given by

d̂(2)0,ρu = (γ − 1)
∂

∂x
ρ̄

(
γ − 3
γ − 1

(u(1)+ u(1)− )+ (v
(1)
+ v

(1)
− )+ (w(1)+ w(1)− )

)

− ∂

∂y
ρ̄
(

u(1)− v
(1)
+ + u(1)+ v

(1)
−

)
− iβρ̄

(
u(1)− w(1)+ + u(1)+ w(1)−

)
,

d̂(2)0,ρv = (γ − 1)
∂

∂y
ρ̄

(
γ − 3
γ − 1

(v
(1)
+ v

(1)
− )+ (u(1)+ u(1)− )+ (w(1)+ w(1)− )

)

− ∂

∂x
ρ̄
(

u(1)− v
(1)
+ + u(1)+ v

(1)
−

)
− iβρ̄

(
v
(1)
− w(1)+ + v

(1)
+ w(1)−

)
,

d̂(2)0,ρw = iβρ̄ (γ − 1)
(
γ − 3
γ − 1

(w(1)+ w(1)− )+ (u(1)+ u(1)− )+ (v
(1)
+ v

(1)
− )

)

− ∂

∂x
ρ̄
(

u(1)− w(1)+ + u(1)+ w(1)−
)

− ∂

∂y
ρ̄
(
v
(1)
− w(1)+ + v

(1)
+ w(1)−

)
,
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d̂(2)0,Et
= −iβρ̄ w(1)+

(
γCvT(1)− + ūu(1)− + v̄v

(1)
−

)
− iβρ̄ w(1)−

(
γCvT(1)+ + ūu(1)+ + v̄v

(1)
+

)
− (γ − 1)

∂

∂x
ρ̄ū

(
γ − 3
γ − 1

(u(1)+ u(1)− )+ (v
(1)
+ v

(1)
− )+ (w(1)+ w(1)− )

)

+ (γ − 1)
∂

∂y
ρ̄v̄

(
γ − 3
γ − 1

(v
(1)
+ v

(1)
− )+ (u(1)+ u(1)− )+ (w(1)+ w(1)− )

)

− ∂

∂x
ρ̄ u(1)+

(
γCvT(1)− + v̄v

(1)
−

)
− ∂

∂x
ρ̄ u(1)−

(
γCvT(1)+ + v̄v

(1)
+

)
− ∂

∂y
ρ̄ v

(1)
+

(
γCvT(1)− + ūu(1)−

)
− ∂

∂y
ρ̄ v

(1)
−

(
γCvT(1)+ + ūu(1)+

)
− iβλ

(
w(1)+

∂

∂x
u(1)− + w(1)−

∂

∂x
u(1)+

)
+ iβμ

(
u(1)+

∂

∂x
w(1)− + u(1)−

∂

∂x
w(1)+

)

− iβλ
(

w(1)+
∂

∂y
y(1)− + w(1)−

∂

∂y
v
(1)
+

)
+ iβμ

(
v
(1)
+
∂

∂y
w(1)− + v

(1)
−
∂

∂y
w(1)+

)

− 2β2μ

(
u(1)+ u(1)− + v

(1)
+ v

(1)
− + λ+ 2μ

μ
w(1)+ w(1)−

)

+ i2β
∂

∂y

(
(μ+ λ)(w(1)+ v

(1)
− + w(1)− v

(1)
+ )

)

+ i2β
∂

∂x

(
(μ+ λ)(w(1)+ u(1)− + w(1)− u(1)+ )

)

+ ∂

∂x
μ

(
v
(1)
+
∂u(1)−
∂y

+ v
(1)
−
∂u(1)+
∂y

)
+ ∂

∂x
λ

(
u(1)+

∂v
(1)
−
∂y

+ u(1)−
∂v
(1)
+
∂y

)

+ ∂

∂y
μ

(
u(1)+

∂v
(1)
−
∂x

+ u(1)−
∂v
(1)
+
∂x

)
+ ∂

∂y
λ

(
v
(1)
+
∂u(1)−
∂x

+ v
(1)
−
∂u(1)+
∂x

)

+ ∂

∂x
μ

(
∂v
(1)
+ v

(1)
−

∂x
+ ∂v

(1)
+ v

(1)
−

∂x
+ λ+ 2μ

μ

∂u(1)+ u(1)−
∂x

)

+ ∂

∂y
μ

(
∂u(1)+ u(1)−
∂y

+ ∂w(1)+ w(1)−
∂y

+ λ+ 2μ
μ

∂v
(1)
+ v

(1)
−

∂y

)
, (A1)

where we drop the caret notation on the right-hand side of (A1) for brevity. Here, Cv =
R/(γ − 1), where R is the gas constant, γ = 1.4 is the ratio of the specific heat capacities,
and μ(x, y) and λ(x, y) are the coefficients of viscosity and bulk viscosity, respectively.
We utilize Sutherland’s law for computing viscosity and assume that λ = −2μ/3.
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Appendix B. Relation between the state Ψ and the output Φ

Herein, we utilize a weakly nonlinear expansion to establish the relation between the
components of the state vector Ψ = (Ψ1,Ψ 2, Ψ3) := (ρ, ρu,Et) in conserved variables
and the components of the vector Φ = (Φ1,Φ2, Φ3) := (ρ,u, T) in primitive variables.
Here, Et is the total energy per unit volume of the gas,

Et = CvρT + 1
2
ρ|u|2, (B1)

Cv is the specific heat at constant volume and |u|2 := uTu. Within the weakly nonlinear
framework, we can decompose Ψ andΦ into the sums of base and fluctuating components,

Ψ = Ψ̄ + ψ = Ψ̄ + εψ (1) + ε2ψ (2) + O(ε3),

Φ = Φ̄ + φ = Φ̄ + εφ(1) + ε2φ(2) + O(ε3),

}
(B2)

and utilize the following relations between the components of Ψ and Φ,

Ψ1 = Φ1,

Ψ 2 = Φ1Φ2,

Ψ3 = CvΦ1Φ3 + 1
2
Φ1|Φ2|2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (B3)

to obtain

O(1) : Φ̄1 = Ψ̄1, Φ̄2 = Ψ̄ 2

Ψ̄1
, Φ̄3 = 1

CvΨ̄1

(
Ψ̄3 − |Ψ̄ 2|2

2Ψ̄1

)
,

O(ε) :

⎡
⎢⎢⎣
φ
(1)
1

φ
(1)
2

φ
(1)
3

⎤
⎥⎥⎦ = 1

Φ̄1

⎡
⎢⎢⎢⎣

Φ̄1 0 0

−Φ̄2 I 0
1

2Cv
|Φ̄2|2 − Φ̄3 − 1

Cv
Φ̄T

2
1

Cv

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
C

⎡
⎢⎢⎣
ψ
(1)
1

ψ
(1)
2

ψ
(1)
3

⎤
⎥⎥⎦ ,

O(ε2) :

⎡
⎢⎢⎣
φ
(2)
1

φ
(2)
2

φ
(2)
3

⎤
⎥⎥⎦ = C

⎡
⎢⎢⎣
ψ
(2)
1

ψ
(2)
2

ψ
(2)
3

⎤
⎥⎥⎦ + 1

Φ̄1

⎡
⎢⎢⎢⎣

0 0

I 0

0
1

2Cv

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
D

[
−φ(1)1 φ

(1)
2

−2Cvφ
(1)
1 φ

(1)
3 − Φ̄1|φ(1)2 |2

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B4)
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Appendix C. Energy transport equation in streamline coordinates

The terms on the right-hand side of transport equation (3.17) for streamwise specific kinetic
energy Es := u′

su
′
s are determined by

Production: P := −u′
su

′
n∂nūs − u′

su
′
s∂sūs − ρ′u′

s
ūs

ρ̄
∂sūs,

Source: S := −u′
s

ρ̄
∂sp′,

Viscous: V := μ̄

ρ̄

(
2u′

s∂su′
s + u′

s∂n
(
∂nu′

s + ∂su′
n
) + ∂zu′

s
(
∂sw′ + ∂zu′

s
))
,

Curvature: K := −Kcu′
su

′
n − 2μ̄

ρ̄ū2
s

(
K2

s u′
su

′
n + K2

c u′
su

′
s

)

+ 1
ρ̄

(
u′

s∂s

(
2μ̄Kcu′

n

ūs

)
− u′

s∂n

(
μ̄(Kcu′

s + Ksu′
n)

ūs

))

+ 2μ̄
ūsρ̄

(
Ksu′

s∂su′
s + Kcu′

s
(
∂nu′

s + ∂su′
n
) − Ksu′

s∂nu′
n
)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C1)

Here, Kc and Ks denote contributions that arise from the curvature normal to the
streamlines and from deceleration along the streamline direction, respectively, and μ̄ is
the coefficient of viscosity associated with the laminar base flow. The curvature terms Kc
and Ks result from transformation into a streamline coordinate system (Yousefi & Veron
2020) and they can be analytically expressed using the mean vorticity and the velocity
gradients of the laminar 2-D base flow (Finnigan 1983); see (3.19b).

Appendix D. Transport equation for the fluctuation shear stress

The transport equation that governs the evolution of time and spanwise-averaged
fluctuation shear stress Rsn := 〈u′

su
′
n〉 in (s, n, z) coordinates is given by

ūs
∂Rsn

∂s
= Pr + Sr + Kr. (D1)

The viscous terms are neglected because they do not contribute to the transport of Rsn and
the terms on the right-hand side are determined by

Production: Pr := −Rsn∂sūs − 〈u′
nu′

n〉 ∂nūs + 〈ρ′u′
s〉
∂np̄
ρ̄2 + 〈ρ′u′

n〉
∂sp̄
ρ̄2 ,

Source: Sr := − 1
ρ̄
(〈u′

n∂sp′〉 + 〈u′
s∂np′〉),

Curvature: Kr := (
2Es − 〈u′

nu′
n〉
)

Kc − RsnKs.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(D2)

Appendix E. Grid convergence for DNS

Figure 25 plots the energy of the streaks at (ω, λz) = (0, 1.5) generated by the interaction
of oblique waves with (ω, λz) = (±0.4, 3.0) in a computational domain with the following
number of grid points: (G1) 600 × 249 × 96, (G2) 900 × 249 × 192 and (G3) 900 ×
249 × 384. The disturbance amplitude is set to aob = 2.50 × 102A0. As shown in
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Figure 25. Comparison of the energy of the streaks at λz = 1.5 for three different grid resolutions.

Duan (1) Mayer (2) Pirozzoli (3) Franko (4) Our study

Mach 5.8 3.0 2.25 6.0 5.0
Reθ,max 5775 1985 4250 2652 1670
�x+

max 7.8 3.3 14.5 4.4 4.2
(�y+

wall)max 0.3 0.49 1.0 0.3 0.22
�z+

max 3.1 1.4 6.56 2.97 2.5

Table 1. Summary of DNS computations of transition and turbulence reported in (1) Duan et al. (2011), (2)
Mayer et al. (2011), (3) Pirozzoli & Bernardini (2011), (4) Franko & Lele (2013).

figure 25, the spatial evolution of the energy of the streaks is almost identical throughout
the separation zone for all grids. All of our numerical computations in the paper are
reported for (G3). In table 1 we also compare the resolution of (G3) with the discretization
utilized in recent DNS studies of supersonic and hypersonic transitional and turbulent
flows.

Appendix F. Distribution of wall temperature

In addition to the skin friction, the distribution of wall temperature provides insights
into the thermal effects encountered in compressible boundary layer flows along the
transition zone. In flows with adiabatic walls there is no heat transfer to the wall and
viscous dissipation near the wall converts kinetic into internal energy. This leads to high
temperatures near the wall as well as in the associated thermal boundary layer and 3-D
patterns in the wall temperature are caused by temperature transport within the boundary
layer by flow fluctuations.

Figure 26(a,b) illustrates instantaneous and mean wall temperatures in the transition
zone. In contrast to the instantaneous skin friction, where the streaks determine the
spanwise modulation prior to flow transition, the instantaneous wall temperature contains
strong imprints of unsteady oblique waves. The role of the streaks and higher spanwise
harmonics becomes apparent when we examine the time-averaged wall temperature.
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Figure 26. Streamwise variations of (a) instantaneous, (b) time-averaged, and (c) time- and
spanwise-averaged wall temperatures.

In figure 26(c) we illustrate the mean wall temperature along the double wedge.
Even though temperature variations are not significant under present conditions, its
analysis can be informative for different free-stream conditions. Comparison with the
double-wedge laminar solution shows that the wall temperature is higher in the 3-D flow
field immediately after the separation point and that it rises rapidly post-reattachment. In
the transition zone we observe an overshoot before reduction to its turbulent value.
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RAN, W., ZARE, A., HACK, M.J.P. & JOVANOVIĆ, M.R. 2019a Modeling mode interactions in boundary
layer flows via parabolized Floquet equations. Phys. Rev. Fluids 4 (2), 023901.
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