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TRAJECTORIES OF SET VALUED INTEGRALS

NIKOLAOS S. PAPAGEORGIOU

The purpose of this paper is to study the trajectory multifunction

$(•) determined by the indefinite set valued integral of a

measurable Banach space valued multifunction F(•) , that is for

t*
all t € [0, T] , $(£) = F(s)ds , where the set valued

J0

integral is interpreted in the sense of Aumann. We study the

topological and algebraic properties of S. equaling the set of

selectors of $(•) whose primitive is an integrable selector of

F(') . We also determine several useful properties that $(•)

possesses and finally we present some convergence and stability

results using the Kuratowski-Mosco convergence of sets.

1. Introduction

Consider the multifunction F : [0, T] •*• 2 , where X is a Banach

space. We are interested in studying the properties of the set valued

ft
integrals defined by 4>(t) = | F(s)ds , t t [0, T] . The importance of

Jo
this multifunction comes from the fact that it is essentially (that is

after an appropriate substitution) the attainable set of a linear control

system. More specifically we have a linear control system determined by

the following evolution equation
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(*) x = A(t)x + g(t, u)

where A(') is a densely defined, closed linear operator which generates a

strongly continuous semigroup and for every u € U equalling another

Banach space, /(•, u) € L^{T) (T = [0, T]) . The set of all admissible

controls is the set of selectors of a multifunction (often called the

"control multifunction") r : T •*• 2 . Denote by x = x( •, u) the

solution of (*) corresponding to an admissible control function u{m) and

fixed initial condition. The set

A(t) = {x(t, u) : u = admissible control function}

is called the attainable set and is of major importance in the study of

control systems. This set is up to a linear transformation and translation

the "integral" of the multifunction F{•) defined by

F(') = {x € X : x = R(t, O)f{t, u), u € T(t)}

where i?(•) is the semigroup of operators generated by A(') (see [S]).

Also in control theory, as well as in mathematical economics we often

encounter generalized differential equations (differential inclusions) of

the form x{t) (. F[t, x(t)) , x(0) = x . Such equations are also called

contingent equations and set valued integration is a basic tool in their

study (see Hermes [74], [75]).

Such applications motivated the present work.

Briefly the organization of the paper is as follows. In Section 2 we

establish our terminology and notational conventions and we recall some

basic facts from the theory of multifunctions. In Section 3 we study the

ft
set of selectors of the trajectory multifunction t •*• *(i) = F(s)ds .•f.
In Section k we examine the properties of $( •) . Finally in Section 5 we

present some convergence theorems using the Kuratowski-Mosco convergence of

sets and we also establish a stability property of *(•) .

2. Preliminaries

In this section we fix our terminology and notation and we recall some

basic facts about multifunctions. For more details we refer to Castaing
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and Valadier [ 6 ] , Himmelberg [18] , Himmelberg et al [19] , Hildebrandt [17]

and Rockafellar [23] , [24].

y

So let F : il -*• 2 be a multifunction (set valued function) from the

space Q , to the power set of the space X . The graph of F{•) is the

set Gr F = {(w, a:) d Q * X : x t F(w)} . Also if V c x the weak inverse

image of V by F( •) is the set F~{V) = {u ? n : F(io) n y # 0} . When

X is a topological space we will use the following notation:

P~, AX) = {J4 c X ; nonempty, closed, (convex)} ;

P, , >(X) = {A c A' : nonempty, compact, (convex)} .

A w in from of / (respectively k ) will mean that the closedness

(respectively compactness) is with respect to the weak topology w{X, X*) .

The next theorem summarizes the major results about the measurability of

closed valued multifunctions.

THEOREM 2.1. Let (f2, E) be a measurable space and X a separable

metric space. Let F : Q. •*• P.(z) be a multifunction. Consider the

following statements:

(1) F~{B) € E for every B € B(X) equalling the Borel a-field

of X ;

(2) F~(C) € E for every C c x closed subset of X ;

(3) F~(U) € Z for every U^X open subset of X ;

ih) a) •* d[x, F(u))) is a measurable function for all x € X ;

(5) there exists a sequence of measurable selectors {f (•)}

of F(-) such that cl{f (w)} = F(a>) (Castaing's

representation of F(•) ) ;

(6) Gr F € E x B{X) .

Then we have the following results:

(i) (1) - (2) o (3) ~ (U) •» (6) ;

("iî  i / X is Polish (that is, is in addition complete) then

( 3 ) ' ~ (5) ;

fiiij if X is Polish and there is a complete o-finite measure
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on E then (l) -*• (6) are all equivalent.

Following Himmelberg [7S] we will say that F : ft •* PlX) satisfying

(l) (respectively (2), (3)J is Borel (respectively strong, weakly)

measurable.

Suppose now that X is a separable Banach space. For any multi-

function F : ft -»• 2 we can now define the set

S^ = If € LX(Q) : /(to) € F(w), y almost everywhere !• ,

that is, Sp contains all Bochner integrable selectors of F(•) . Clearly

£>£ may be empty. If it is nonempty and F(•) is closed valued then it is

easy to check that it is a closed subset of the Lebesgue-Bochner space

£̂ (ft) . Using the set we can now define an integral for F{') . This was

first introduced by Aumann [2] and is the natural generalization of the

single valued integral and of the Minkowski sum of sets. So we have

I F(u)d]i(oi) = { I" /(w)du(w) : f € si\ where the integral of f( •) is in

the sense of Bochner. If |F|(W) = sup ||x|| € L1 then we say that F( •)

is integrably bounded and in that case 5_ ± 0 , so that
t

0 .
9.

Finally we would like to introduce a mode of convergence of sets that

is more general than the usual convergence in the Hausdorff metric and

which will be our major tool in Section 5.

So let X be a Banach space and let {A } c P (X) . Let x be a

topology on X . We say that A T-converges to A in the Kuratowski-

Mosco sense \A • A\ if and only if T - lim A c A c x - lim A
\ n I n — — n

where x - lim A = \x € X : x • x. x (. A , n > l\
— n \ n ' n n' ~ /

and
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A = Ix € X : x —1-+ x, x € A , k > ll .T - lim A = \x € X : x >• x, x € A , fc > 1> . Since we always have
n \ n n nk

that T - lim A c T - lim A we deduce that A ' /4 if and only if
n

T - lim A = A = T - lim 4 . When s - lim A = A = W - lim A where

U = w(X, Z*) and s equals the strong (norm) topology on X we say that

A converges to A in the Kuratowski-Mosco sense and we write A >• A

as n -*• °° . Using this concept of set convergence we can define a new type

of convergence of functions, in general disjoint from the pointwise

convergence. So if {/ , /} c FT are proper, closed (that is, lower

semi-continuous) functions, then we say that / -»• / if and only if

K—M
epi f • epi / as n -*•<*>. For more details we refer to Mosco [27]

and Salinetti and Wets [25] and [26].

Throughout this work T wil be the interval [0, T] , E the

a-field of all Lebesgue subsets of T and ds the Lebesgue measure on

£ . Also X will be in general a separable Banach space. Additional

hypothesis will be introduced as needed. Finally by °\j(*) w e will denote

the support function of A c X , that is, a Ax*) = sup (a:*, x) ,
x64

x* € X* .

Our work on the one hand generalizes significantly previous works by

Artstein [7], Bridgland [4], [5] and Hermes [74] and on the other hand

contains several new results that provide a better understanding of the

evolution of an indefinite set valued integral. We believe strongly that

researchers from various areas of applied mathematics, such as

optimization, optimal control, and mathematical economics, will find here

several interesting theoretical results.

3. The set of selectors of the trajectory multifunction

Differential inclusions play an important role in optimal control

theory. The crucial point in the study of such equations is the

compactness of the set of trajectories, from which we can deduce easily the

existence of optimal controls. Our first result establishes this desired
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compactness property of the set of trajectories.

THEOREM 3.1. If F : T •+ P k U) is integrably bounded and

F{s)ds , t € T ,

then <£( •) is measurable and the set S, of selectors of 3>( •) which are

the indefinite integral of an element in S^ is a compact subset of

c[T; X ) [x = X with the weak topology).

Proof. I f cp(-) € SQ then <p(£) = f{s)ds for some f € SZ and
0

so <p(') is absolutely continuous.

First we will show that 5̂ ,(1") is a W-compact subset of lL{T')

where T' is any closed subinterval of T . To prove this we will proceed

as follows. Let g{ •) € L"h(2") = LyA (T
1) . Then we have

sup (g, f>= sup I [g(s), f{s))ds .

From Theorem 2.1 of Hiai and Umegaki [/6] we have that

sup [g(s), f{s))ds = sup [g(s), s)ds .
- 5 1 J2" h' xdF(s)

5

Consider L(s) = {x € F(s) : [g(s), x) = sup [g(s) , x)} . Since F{ •)
()

is w-compact valued L(s) # 0 for all s € 2" and clearly those sets are

closed. Let m{s) = sup [g{s),x ) . A straightforward application of
x(.F(s)

Castaing's representation shows that m(•) is measurable. If we set

ijj(s, x) = [g{s), x) - m(s) then ty(', •) is a Caratheodory function and

so is jointly measurable on T' * X . Thus Gr L € E , x B(X) . Applying

Aumann's selection theorem we can find x : T' -*• X measurable such that

x(s) € L(s) for all s € 2" . Clearly x(•) € si(2") . Hence
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sup (g,f)~(g,3:) • Since g € £„* (2") was a rb i t r a ry invoking

James theorem (see Floret [/3]) we deduce tha t SZ(T') i s a w-compact,

convex subset of £j(2") • Hence $(t) = F(s)<£s € pukc(^) •
 N e x ti

observe that for all x* € X* we have

= sup (x*, z) = sup (x*, z) = sup x*, [ /(s)ds

sup (x*, f(s))da = sup (x*, x)ds = a , Ax*)ds
, M •'0 JQ X£F(S) 'O

So t -* a,. Ax*) is absolutely continuous for all x* € X* . Then

Theorem 111-35 of Castaing and Valadier [6] tells us that t -*•$(£) is

measurable. Clearly 5, is an equicontinuous, bounded set and

{«>(£)} ,_ € P , (X) . Applying the Arzela-Ascoli theorem we deduce thatcp t o , W K O *••.•> "

S. is relatively compact in C\T\ X_) . We need to show that it is

closed. For that purpose consider a net <p such that

<PQ >• <p =* f (s)ds • cp(t) where {fa\ c 5^ . From the first

part of the proof we know that St, is u-compact in ^yC^7) • So let /,

be a convergent subnet. We have

/, »• / € si =» I fAs)ds -^+ I /(s)ds =» <p(t) = | /(e)ds
b F J0

 fc Jo JO
for all t € T . O

Now let X have the Radon-Nikodym property and consider the space of

normalized absolutely continuous functions (that is /(0) = 0 ). We know

that any such function is differentiable almost everywhere. Consider the
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subspace NAu(T; X) which consists of those functions with i J r )

derivatives. This becomes a Banach space when endowed with the norm

H/11 = ||f(s)||ds . In that case it is easy to see that
man*- J T'T

HACr{T; X) = Ly{T) . The first part of the proof of Theorem 3-1 gives us

the following interesting corollary.

COROLLARY. S^ is a w-compaet subset of NAC^iT; X) .

When F(') is not convex and we convexify it essentially what we do

is close topologically the trajectories, as the next result shows.

PROPOSITION 3.1. If F •. T + P AX) is integrably bounded then

cl $(t) = I conv F{s)ds and S , = conv 5, the closure taken in
j 0 ex* <p

Proof . C o r o l l a r y U.3 of [ 7 6 ] t e l l s us t h a t

f* /*
cl conv F(s)ds = cl F(s)ds .

J0 J0

Also from the Krein-Smulian Theorem ([10], p. 51) we know that

conv P(s) € P , (X) for all s € T . So | conv F(s)ds is closed
XOK.G

-rimplies cl #(t) = | conv F(s)ds . Finally recall that
J0

conv S, = S -. =* S , - = conv S, .
« conv* cl* v

Finally we can use S^ to extract information about F(') . Assume

that X is any separable Banach space.

PROPOSITION 3.2. S # is convex if and only if F(-) is convex

valued almost everywhere.

Proof. First assume that S, is convex. Consider the operator
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rt
I : L\{T) -* C(T; X) defined by (!/)(*) = f(s)ds . This is clearly

x Jo

linear and I S . = S . Since convexity is preserved by the inverse image

of a linear map we get that st, is convex. Then Corollary 1.6 of [16]

tells us that F{•) is convex valued almost everywhere.

Finally if F{•) is convex valued almost everywhere, SZ is convex

and so S. = I\st,\ is convex. •

4. Properties of the indefinite set valued integral

We will start with a set valued version of a well-known result from

integration theory. Assume that X is any separable Banach space.

THEOREM 4.1. If F •. T ->• Pka(X) is integrably bounded then

1 \t+e h
— F(s)ds —>• F(t) almost everywhere as e + 0 (h i s the Hausdorff
e >t

metric).
t+e

1 ! n

Proof. Let !(;(*)= F(s)ds . We know that, for all n > 1 ,

n ^ t

t -*• ]\) (t) , n > 1 , is measurable and closed, convex valued. Also for all

t+e
1 f n

x* i X* we have that a. (t)(x*) = ̂ - ap, Ax*)ds . Note that the
vrr ' n't

dual unit ball B* with the weak* topology is compact and metrizable and

Op, >(x*) is continuous in x* on B*A and measurable in s and is

bounded by |F|(«) € L . So invoking a result of Scorza-Dragoni [27] we

t+e
n

deduce that lim -r- anl Ax*)ds = ouf.Ax*) for all x* € X*
fl~^^° ft Is

outside a null set independent of x* and the convergence is uniform on

t+e

B* . Since ^- , u,,,., va.-,us = u t + e t h e t h e o r e m foliOws
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from Hormander's formula. D

REMARK. This result generalizes significantly Theorem U.3 of Artstein

[7] and Lemma 1.3 of Hermes [74].

In [3], Bradley and Datko introduced the following notion of

differentiability of multifunctions.

DEFINITION 4.1 [3]. A multifunction F : T -*• Pf (X) with bounded

values is said to be differentiable at t i T if, for each x* € X* such

that ||x*|| = 1 , (d/dt)a , Ax*) exists at t and equals g[tn, x*)

where x* -»• g[pQ, x*\ is a continuous, positively homogeneous, sublinear

function on B* . In this case the derivative DF[t ) is the set

DF[t ) = n {x € X : (x*, x) 5 g{t x*)} .
x*(.B*

We will call this differentiability for multifunctions D-

differentiability. Adopting the reasoning in the proof of Theorem U.I we

can have the following result.

PROPOSITION 4.1. If F : T •* Pkc(X) is integrably bounded then

D${t) = F(t) almost everywhere.

Next we will show that if the integrand multifunction has a nonempty

interior, then so does the trajectory multifunction and the two are related

in a natural way.

PROPOSITION 4.2. If F : T -• P„ {X) is integrably bounded and, for

all t 6 T , int F(t) t 0 then, for all t € T ,

int $(£) = int F(s)ds .

Proof. From CronwaI I [7] we know tha t , for a l l t € T ,

ft rt
int $(t) = int F{s)ds = int F(s)ds . It remains to show

Jo Jo

f
J0

that int F(s)ds + 0 . But recall that Gr(int F) € Z x B{X) . So we
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can apply Aumann's measurable selection theorem to find / : T -*• X such

that /(£) € int F[t) for al l t € T . Clearly / ( • ) € L^{T) . Hence

t
int F(s)ds + 0 . •

0

The first part of the next theorem provides a complement to the

previous result. It say that if at a certain time instant the trajectory

multifunction has a nonempty interior, then this fact propagates into the

future. The second part of the theorem gives us a necessary and sufficient

condition for equality almost everywhere of two trajectories.

THEOREM 4.2. (i) If F : T -*• P , {X) is integvably bounded and, for

some t € T , int *(t) * 0 then, for all t ' 2 t , . int *(t') + 0 .

(ii) If F , F : T ->• P , {X) are integrably bounded then
_L ^ WK.G

<£>(£) = *„(*) almost everywhere if and only if

FAt) = F (t) almost everywhere.

Proof. (i) Note that for t' € T , t' > t , we have

rt ft rt' ft'
#(£') = | F(s)ds = F(s)ds + [ F{s)ds = ${t) + | F(s)ds .

JO Jo H H

f*'
So $(£') 3 int 4>(t) + [ F(s)cfs . Since the right hand side is non-

H
empty and open we deduce that int $(£') t 0 .

(ii) First suppose that cl <i> (i) = cl $p(t) almost everywhere.

Then

* 0 i ) t){-] = a * ( t ) ( 0 a l m O S t

Recall that a , , (•) = | a , A-)ds and a. (+)(*) =

Differentiating with respect to t we have

d
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almost everywhere and the exceptional null set is independent of the

argument of the support function. Thus we have

°F (t)^'^ ~ °F (t)^'^ a111103* everywhere

^ FAt) = FAt) almost everywhere.

The converse is obvious. D

REMARK. The sufficiency part is true if we assume instead that

F : T -*• PlX) is integral)ly bounded and conv F (t) = conv FAt) almost

everywhere.

The last result of this section considers multifunctions paramatrized

by elements in X and examine their regularity properties.

THEOREM 4.3. If F : T x X -»• P , (X) is a multifunction such that

(1) there exists a measurable multi function G : T •* P , (X)

such that a , ,[x*(-)) € ̂ (T) for all x*{-) € L™ (T)

and F(t, x) c G(t) for all x € X almost everywhere;

(2) for all t € T , F{t, ') is w-upper semi-continuous;

± 0(3) for all x € X , F{-, •) is measurable with S

and closed in

ft
Let $[t, x ( - ) ) = | F(S, x{'))ds where x{') € LAT) . Then for all

J0

t € T , (t, •) is w-upper semi-continuous on £v(2") •

Proof. We will s tar t the proof by showing that | F[s, x(s))ds j: 0 .
>0

For x* € X* l e t cp At, x) = avl . Ax*) . Note t h a t , for a l l x € X ,
X £ \ V ,X)

<P A.t, x) is finite. Also from Theorem III-3T and 11-20 of [6] we know

respectively that (t, x) -*• cp ̂ (t, x) is measurable and x -*• cp ̂ {t, x) is

upper semi-continuous. So -*<(•,*) is normal in the sense of

Rockafellar [24]. Because cp *(•, •) is finite for all t , we deduce
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that <P *(*,*) is £ x B(X)-measurable. So for any x : T •* X

measurable, we have that t -*• (p ^{t, x(t)j is measurable. Once again

invoke Theorem 111-37 of [6] to deduce that t -*• F[t, x(t)) is measurable.
So we can find f : T -*• X measurable such that fit) € F[t, x(t)) for al l
t 6 T . For a l l x* € X* we have that (x*, fit)) 5 °Git\^

A) almost

everyvhere. Consider the multifunction

H[t) = {x* € B* : [x*, fit)) =

From the Hahn-Banach theorem we know that, for all t € T , Hit) + 0 .

Also it is closed valued and it is easy to see that it is measurable.

Hence we can find x* : T -*• B* strongly measurable such that

(x*(t), fit)) = ||f(t)|| 5 a . ,[x*it)) almost everywhere, which implies

that / € SZr , >•> ̂ 0 . Clearly S r , .•> is convex and as in the

proof of Theorem 3.1 we can get that it is w-compact in iy(2") • Now let

L\iT)
x i') *• x( •) . By passing to a subsequence we may assume that

x it) •* x(t) almost everywhere. Then we have

a * { t M ' ) ) { x t ) - \0 °F{P,xis))
{X*)dS ~

Applying Fatou's lemma we have finally that

which proves that x(•) •+ O~r. , ,-\(x*) is upper semi-continuous for the

norm topology on ^yC^) (°r even the topology of convergence in measure).

So finally Theorem 11-20 of [6] tells us that $(t, •) is weakly upper

semi-continuous on LviT) . O

5. Convergence and stability results

This section is devoted to the study of some convergence results in

set valued integration and also includes an interesting stability result
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for i>(•) with potential applications in differential inclusions.

We start with a very general set valued version of the celebrated

"dominated convergence theorem". Our theorem appears to be the most

general one existing in the literature and improves significantly those

obtained by Artstein [7] and Bridgland [5]. Assume X is reflexive.

THEOREM 5.1. If F , F -. T •* P, (X) are multifunctions uniformly
Yl K.G

integrably bounded by & ( • ) € L {T) and F (t) —=—* F(t) almost every-

where as n -+ °° then
7/ rg

(i) <£> (t) — =—>• *(£) almost everywhere as n -> °° ,

(ii) if k(') € L°(T) then S^ K~M> S^ in C(T; X) .
n

Proof. From Corollary TA of Salinetti and Wets [25] we know that
ar> l \ ( *) "*" °p/ \ ( *) almost everywhere as n -*• °° . Also we know that

••) - C o (-)ds

Applying Lebesgue's dominated convergence theorem we get that

iS " V ^ 0 = l n^ \^')dS = !0 °F(s)
{')dS = a*(*)(>) •

Since dom a ,,A') = dom a4/ + \(") = %* almost everywhere we can use

Corollary 2E of [25] and get that 0, /£,(•) >• a*(j-)(") almost every-

where as «->•«>. But then Theorem 3.1 of Mosco [2 7] tells us that

K—M
<S> (t) >•*(*) almost everywhere.

(ii) We will show that w - lim S^ c S c s - lim S, . To this end

let <p € W - lim S, . By definition we know that there exists a sub-

n

sequence {m} c {n} such that cp t S, and cp J >• <p a s m -*•<*>.
n
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For a l l m > 1 we have ip ( t ) = / (s)ds where f Z SZ . From
'0 m

Alaoglu's theorem B,,, ,, (0) = {x € ̂  : ||x|| 5 IÎ Ĥ } is W-compact and, for

all m > 1 , f (w) € S,|, ,, (0) almost everywhere. Hence Theorem 2 of
W Halloo

Diestel [ / I ] t e l l s us that \f } ^n i s r e l a t i ve ly u-compact in LV[Q) .
1 m rritX X

W-L\{T)
So we can find a further subsequence {1} c {m} such that /_ >• f .

_1 °°

Our claim is that f i ffZ, . If not there exists e > 0 and g( •) € L^CT)

such that <g, f) - e > a ig) where < •, •> are the duality brackets for

4
Ly{T) , Lyt{T)\ . Recall tha t a (g) = op, s [g{s))ds •

J s i Jo ns>

£
a . . [g(s))ds •*• \ a . ,{g{s))ds . So for I sufficiently large

Jo *iKS> in ns>

Also

Jo *i^>~~ ' Jo
we have that

(g, ft)-\± fa (g(s))ds = o (g)
0 l ^

a contradiction, because f, 6 S_ . Thus / € S_ . From Theorem 3

I Fz F

( p - 3 8 7 ) o f D i n c u l e a n u [ J I ] w e k n o w t h a t [ C { T ; X ) ] * = W ( E ; X * ) . S o f o r

M ( - ) € M ^ ( E ; X * ) w e h a v e t h a t

= *• (p(s)dm(s) = <cp,

o l JO

where < •, •> are now the duality brackets for [c(T; X), M (E; X*)) .

Employing Lebesgue's dominated convergence theorem we can write that

l im
ft ft rT ft ,T ft

I fAs)dsdm(t) = lim I fAs)dsdm(t) = | f(s)dsdm(t) .
>0 Jo L Jo 1-"° JO JO JO

Since m(•) E W (£; X*) was a rb i t r a ry we deduce that
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<P(£) = f(s)ds . So <p € S^ which means tha t

(1) U - lim S cS .
n**> n

Next let <p € 5, . Then there exists / € 5 p such that

<p(t) = f(s)ds . Define £ (a) = {x Z X : ||/(x)-x|| = inf ||/(s)-x||} ,
Jo x(.F (s)

n > 1 . Because F (e) € P , U ) , s € T , n i l , and x •*• ||/(s)-x|| is
Yi WKQ

lower semi-continuous, from Weierstrass1 theorem we get that L (s) is

nonempty and closed for all s € T and all n i l . Also Lemma 2.1 of

[76] tells us that s -»• inf ll/(s)-x|| is measurable and this in turn

implies that s •* L (s) i s measurable. So we can find f : T -* X
n n

measurable such tha t / (s) € L (s) , s € T , n > 1 . Hence

l\f(s)-Fn{s)\\ = \\f{s)-fn(s)\\ -+ 0 as n -• <*> . Thus

rt rt
cp ( t ) = I / (s)ds ->- (p(t) = I

n )Q n )Q

as « - * • < » . Cons ider

||<p ^>\\m = sup ||(p (*)-»(t)|| = sup If (/ (s)-/(s))ds

2 SUP ( | |f (8 )-

•* 0 as n

So we have tha t cp —^—J *• <p as n •* OT . This then means tha t

<p € s - lim S which in turn implies that
rz-*» n

(2) Sf<= s - lim 5 $ .
n

From ( l ) and (2) above we f inal ly conclude that
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n

a s n •*• °° . D

Next we pass to multivalued generalizations of Fatou's lemma.

THEOREM 5 . 2 . If Fn : T ->• PwkaW > n > \ , are uniformly

integrably bounded by g(-) e L (fi) and, for all t € T ,

s - l im F(t) € Pwko{X)

then

(t (t
s - l im F (s)ds c s - l i m [ F [s)ds .

JO «->«> n M-»«> Jo n

Proof. If s - lim F (t) = 0 almost everywhere then the conclusion
n

of the theorem is obvious. So assume without loss of generality that

s - lim F it) * 0 for all t E T . Since s - lim F it) 6 P , U ) and
n — ~ n WK.O

n* 0 0 n-*00

since £ -»• 8 - lim F (t) is measurable (see [26]), S, + 0 where
«-**> n

rt ft
= s - lim F (s)ds . Let <p € S. and * (t) = F (s)ds .
JO n^ n * w JO "

Consider r (t) = {a; € * U ) : ||ip(t)-x|| = ||<p(t)-* (t)||} . Recalling that

9 (t) € P , (X) , t 6 T , « > 1 , we can show as before that

r : r -»• P , (#) and i s measurable. So we can find ip : T •+ X
n wko n

measurable such that < p ( t ) € F ( t ) , t $. T , n > l . Then we have
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f* I
J 0 n '

< inf \\f(s)-f (i
1 0

n

•t

inf
0 (

t
\\f(s)-F (s)\\ds .

0

S i n c e f(s) € s - l i m F ( s ) s e t , we know t h a t \\f(s)-F (s)\\ -> 0

as n •* °° . So | | | f ( s ) - F (s)\\ds •* 0 as n -»•<»=» ||(p(£)-<p ( t ) | | -»• 0 as
J 0

 n n

n •*• °° . Thus <p(t) € s - lim # (t) for all t € T . From this we
^ n

ft ft
conclude that | s - lim F (s)ds c s - lim F (s)ds as desired. D

We have a version of this theorem involving limits superior.

THEOREM 5 . 3 . If F : T •* P . {X) , n > 1 , are measurable multi-
y\ WK.C

functions such that s - l i m F ( t ) f 0 for all t € T and, for all

1 °°
n 5 1 , S.p c w where W is weakly compact in Lj.(T) then

n
rt[t ft

- l im F (s)ds <£ \ w - lim F (s)ds
n-xx> Jo n '0 n^° n

P r o o f . We know t h a t f o r a l l n > 1 and a l l t € T , * ( t ) € P fe (X)

a n d t h a t t -»• s - l i m 4> ( t ) i s m e a s u r a b l e . Le t u> € S •——. . Then f o r
n 8-Hn*

a l l t £ T , <p(t) € s - lim * ( t ) . As before we can find cp € S such
n-wo n n w
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t h a t ||ip(*)-<p ( t ) | | = I M * ) - * (*)l| for a l l t € T , n > 1 . Reca l l t h a t

l im ||<p(t)-* (t)\\ = 0 . Let f € SZ, such t h a t cp (t) = / (s)ds .
TfZ n n Fn n JO n

Because {/ } c 1/ we can f ind a subsequence {/ } £ {/" } > such
71 W—L W, fe>] n n—^

y ( )
that / »• f as k •+ °° . From Khurana [20] we get that

nk

f ( t ) >• f(t) almost everywhere which means t h a t /" € S7T T^~"p • AlsoS7T T

" n

we have t h a t
ft rt

, for all t i T , f {s)ds - ^ [ /(s)ds . Exploiting the
J0 nk Jo

well-known fact that the norm functional is w lower semi-continuous, we

deduce that

0 = l im
I"* II II f* f*

- ( f (s)ds\\ > L ( t ) - | / ( s ) d s => <p(t) - I
j o

 n
k II II J0 J0

= 0

<p(t) = I f(s)ds .
>0

Thus <p(t) € | w - lim F(s)ds from which we conclude that
JO n^°

ft ft
s - lim F (s)ds c | w - lim F {s)ds . D

REMARK. If X is finite dimensional, then the weak and strong

ft ft
topologies coincide and so we can write lim I F {s)ds c [ lim F {s)ds .

n-w )Q n
 JQ n-w

 n

It will be very interesting, especially for mathematical economics (core

equivalence theory) to have a version of the above theorem without the

condition on the sets SZ, and have both limits superior taken in the same
r

n

topology.

We will conclude our work with a result that is important in the

theorem of differential inclusions and in particular in problems dealing

with the peripheral attainability of state.
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THEOREM 5.4. If F : T ->• ?„ (X) is measurable, si t 0 and

jo t

int F(t) # 0 almost everywhere then cp(t) € 2>d$(t) for all t € T

•implies that (p(t) € bdF(t) almost everywhere.

Proof. Suppose not. Then we can find A € Z with \(A) > 0 such

that (f>(t) f fcdF(t) for all t € -4 . On this set consider the multi-

function

t - T(t) = {e > 0 : B

= {e > 0 : \\y{t)-bdF{t)\\ > e} .

So Gr T = {(t, e) € 4 x (R+\{0}) : (̂ ( t)-bdF{ t)-c 2 0} . Let

u(t, e) = ||<p( t)—i>c£f( t ) || - e . From Theorem k.6 of Himmelberg [JS] we know

t h a t t •+ bdF(t) i s a measurable multifunction. So t -*• ||(p( t)-bdF{ t) \\ i s

measurable (see Theorem 2 . 1 ) . Hence « ( • , • ) i s a Caratheodory function

and so i s j o i n t l y measurable. This then implies that Gr T € E . n B(R )

where £. = Z n 4 . Applying Aumann's se lect ion theorem we can find

e : A -*• R+\{0} measurable such that e{t) € T(t) for a l l t € A . Then

we have tha t <*>(£) + B , ̂ , f«J>( t ) ) c f ( t ) for a l l t i A . Let

Git) =

{0} , t € T\A .

Clearly G{ •) is closed valued, measurable and SZ 4 0 . We have

<p(t) + G(t) c F{t) for all t € T implies

F(s)ds = $(t)
0

=* <p(t) - cp(O) + f Bp(^{q>{s))ds c $(*)

=> <p(t)

But from Cornwall [7] we know that

https://doi.org/10.1017/S0004972700009357 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009357


S e t - v a l u e d i n t e g r a l s 409

iAn[0tt]
 e(S)I

iAn[0tt]

Therefore we conclude that cp(t) € int $(t) for all t € 21' a

contradiction. D

More results in this direction were recently obtained by the author in

[22], One of them is a general differentiability result for multifunctions

that generalizes significantly Theorem U.I of Artstein [7] and also

introduces a different technique which is more appropriate when dealing

with multifunctions with values in an infinite dimensional Banach space.

This approach is based on the theory of multimeasures and vector measures.

For details and other representation results we refer to [22].
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Added in Proof. Concerning the remark of p. U07 the author has

recently proved a new Fatou's Lemma for w - lim in Lv . This result
A

appears in "On set valued random variables taking values in a separable
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