A NOTE ON THE ROOTS OF TRINOMIALS OVER A FINITE FIELD

Robert Coulter and Marie Henderson

For non-negative integers n we determine the roots of the trinomial $X^{p^{n}}-a X-b$, with $a \neq 0$, over a finite field of characteristic p.

Throughout $q=p^{k}$ where p is a prime and k is a positive integer. Let \mathbb{F}_{q} be the finite field of order q, \mathbb{F}_{q}^{*} be the set of non-zero elements of \mathbb{F}_{q} and $\mathbb{F}_{q}[X]$ be the ring of polynomials in the indeterminate X over \mathbb{F}_{q}. In this article we determine the roots of the trinomial $f \in \mathbb{F}_{q}[X]$ given by

$$
\begin{equation*}
f(X)=X^{p^{n}}-a X-b \tag{1}
\end{equation*}
$$

where n is a positive integer. Throughout we assume $a \in \mathbb{F}_{q}^{*}$ as otherwise f is a binomial and the factorisation is known, see [3]. The trinomial (1) has been considered in [2] for the case $a=1$. The article [4] mainly considers the case where n divides k. There is one result in [4] concerning the general case which we include below (see Lemma 2). We determine all roots of the trinomial (1) in Theorem 3 below and then cast these against the previous results described above.

We make use of the following lemma. This is essentially [1 , Theorem 57].
Lemma 1. For positive integers r and $k=m d$ define

$$
I_{r}=\{i r \bmod k \mid 0 \leqslant i \leqslant m-1\}
$$

If n is a positive integer satisfying $\operatorname{gcd}(n, k)=d$, then $I_{n}=I_{d}$.
The following lemma appears as Theorem 2 of [4].
Lemma 2. Let $q=p^{k}, n$ be a positive integer and $f(X)=X^{p^{n}}-a X-b$ where $a \in \mathbb{F}_{q}^{*}$ and $b \in \mathbb{F}_{q}$. Then, in the field \mathbb{F}_{q}, f has either zero, one or p^{d} roots where $d=\operatorname{gcd}(n, k)$.

Following the statement of [4, Theorem 2] the author remarks that it seems difficult to characterise the roots of (1). The following theorem gives the full solution to this problem.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 $\$ 42.00+0.00$.

THEOREM 3. Let $q=p^{k}$, n be a non-negative integer and $f \in \mathbb{F}_{q}[X]$ be the trinomial $f(X)=X^{p^{n}}-a X-b$ where $a \in \mathbb{F}_{q}^{*}$. Set $d=\operatorname{gcd}(n, k)$ and $m=k / d$. Let Tr_{d} be the trace function from \mathbb{F}_{q} onto $\mathbb{F}_{p^{d}}$. For $0 \leqslant i \leqslant m-1$, define $t_{i}=\sum_{j=i}^{m-2} p^{n(j+1)}$. Put $\alpha_{0}=a$ and $\beta_{0}=b$. If $m>1$, then for $1 \leqslant r \leqslant m-1$, set $\alpha_{r}=a^{1+p^{n}+\cdots+p^{n r}}$ and

$$
\beta_{r}=\sum_{i=0}^{r} a^{s_{i}} b^{p^{n i}}
$$

where $s_{i}=\sum_{j=i}^{r-1} p^{n(j+1)}$ for $0 \leqslant i \leqslant r-1$ and $s_{\tau}=0$. The trinomial f has no roots in \mathbb{F}_{q} if and only if $\alpha_{m-1}=1$ and $\beta_{m-1} \neq 0$. When $\alpha_{m-1} \neq 1$ then f has a unique root $x \in \mathbb{F}_{q}$, namely, $x=\beta_{m-1} /\left(1-\alpha_{m-1}\right)$. Otherwise f has p^{d} roots in \mathbb{F}_{q} given by $x+\delta \tau$ where $\delta \in \mathbb{F}_{p^{d}}, \tau$ is a fixed element of \mathbb{F}_{q} satisfying $\tau^{p^{n}-1}=a$ and, for any $c \in \mathbb{F}_{q}^{*}$ satisfying $\operatorname{Tr}_{d}(c) \in \mathbb{F}_{p^{d}}^{*}$,

$$
x=\frac{1}{\operatorname{Tr}_{d}(c)} \sum_{i=0}^{m-1}\left(\sum_{j=0}^{i} c^{\rho^{n j}}\right) a^{t i} b^{p^{n i}}
$$

Proof: For any $y \in \mathbb{F}_{q}$ we have $y^{p^{n m}}=y^{p^{k(n / d)}}=y$. It follows that $\alpha_{m-1}^{p^{n}}=\alpha_{m-1}$ and $\beta_{m-1}^{p^{n}}=a \beta_{m-1}-b \alpha_{m-1}+b$. For $0 \leqslant r \leqslant m-2$, similar calculations give $\alpha_{r}^{p^{n}}=a^{-1} \alpha_{r+1}$ and $\beta^{p^{n}}=a^{p^{n(r+1)}} \beta_{r}-a^{-1} b \alpha_{r+1}+b^{p^{n(r+1)}}$.

Suppose we have $y^{p^{n}}=a y+b$ for some $y \in \mathbb{F}_{q}$. Given an integer $i, 1 \leqslant i \leqslant m-1$, for which $y^{p^{n i}}=\alpha_{i-1} y+\beta_{i-1}$ then

$$
\begin{aligned}
y^{p^{n(i+1)}} & =\alpha_{i-1}^{p^{n}} y^{p^{n}}+\beta_{i-1}^{p^{n}} \\
& =\alpha_{i-1}^{p^{n}}(a y+b)+\beta_{i-1}^{p^{n}}+b \\
& =\alpha_{i} y+a^{-1} b \alpha_{i}+a^{p^{n i}} \beta_{i-1}-a^{-1} b \alpha_{i}+b^{p^{n i}} \\
& =\alpha_{i} y+\beta_{i} .
\end{aligned}
$$

where we have used the identity $\beta_{r}=a^{p^{n r}} \beta_{r-1}+b^{p^{n r}}$, for $1 \leqslant r \leqslant m-1$.
As $y^{p^{n}}=\alpha_{0} y+\beta_{0}$, it follows that $y^{p^{n i}}=\alpha_{i-1} y+\beta_{i-1}$ for all positive integers $i \leqslant m$. In particular, $y^{p^{n m}}=\alpha_{m-1} y+\beta_{m-1}$. Since $y^{p^{n m}}=y$, then $\left(\alpha_{m-1}-1\right) y+\beta_{m-1}=0$. Immediately it is seen that no root exists when $\alpha_{m-1}=1$ and $\beta_{m-1} \neq 0$. Also, if $\alpha_{m-1} \neq 1$, then there exists a unique root $y=\beta_{m-1} /\left(1-\alpha_{m-1}\right)$.

It remains to deal with the case when $\alpha_{m-1}=1$ and $\beta_{m-1}=0$. Firstly, let $c \in \mathbb{F}_{q}$ satisfy $\operatorname{Tr}_{d}(c) \neq 0$. Put $\gamma_{i}=\sum_{j=0}^{i} c^{p^{n j}}$ for $0 \leqslant i \leqslant m-1$ and

$$
x=\frac{1}{\operatorname{Tr}_{d}(c)} \sum_{i=0}^{m-1} \gamma_{i} a^{t i} b^{p^{n i}}
$$

Then

$$
x^{p^{n}}=\frac{1}{\operatorname{Tr}_{d}(c)} \sum_{\imath=0}^{m-1} \gamma_{i}^{p^{n}}\left(a^{t i}\right)^{p^{n}} b^{p^{n(i+1)}}
$$

For $0 \leqslant i \leqslant m-2$ we have

$$
\left(a^{t_{i}}\right)^{p^{n}}=\left(a^{p^{n(i+1)}+\cdots+p^{n(m-1)}}\right)^{p^{n}}=a^{t_{i+1}} a .
$$

For $i=m-1,\left(a^{s_{m-1}}\right)^{p^{n}}=1$. We thus have

$$
\begin{aligned}
x^{p^{n}} & =\frac{\gamma_{m-1}}{\operatorname{Tr}_{d}(c)} b^{p^{n m}}+\frac{a}{\operatorname{Tr}_{d}(c)} \sum_{i=0}^{m-2} \gamma_{i}^{p^{n}} a^{t_{i+1}} b^{p^{n(i+1)}} \\
& =b+\frac{a}{\operatorname{Tr}_{d}(c)} \sum_{i=1}^{m-1} \gamma_{i-1}^{p^{n}} a^{t_{i}} b^{p^{n i}}
\end{aligned}
$$

as $\gamma_{m-1}=\operatorname{Tr}_{d}(c)$ from Lemma 1. We proceed with the calculation of $x^{p^{n}}-a x$:

$$
\begin{aligned}
x^{p^{n}}-a x & =b+\frac{a}{\operatorname{Tr}_{d}(c)} \sum_{i=1}^{m-1} \gamma_{i-1}^{p^{n}} a^{t_{i}} b^{p^{n i}}-\frac{a}{\operatorname{Tr}_{d}(c)} \sum_{i=0}^{m-1} \gamma_{i} a^{t_{i}} b^{p^{n i}} \\
& =b+\frac{a}{\operatorname{Tr}_{d}(c)} \sum_{i=1}^{m-1}\left(\gamma_{i-1}^{p^{n}}-\gamma_{i}\right) a^{t_{i}} b^{p^{n i}}-\frac{a \gamma_{0}}{\operatorname{Tr}_{d}(c)} a^{t_{0}} b .
\end{aligned}
$$

Now $\gamma_{0}=c$ and for $1 \leqslant i \leqslant m-1$ we have

$$
\gamma_{i-1}^{p^{n}}-\gamma_{i}=\sum_{j=0}^{i-1} c^{p^{n(j+1)}}-\sum_{j=0}^{i} c^{p^{n j}}=\sum_{j=1}^{i} c^{p^{n j}}-\sum_{j=0}^{i} c^{p^{n j}}=-c .
$$

Therefore

$$
x^{p^{n}}-a x=b-\frac{a c}{\operatorname{Tr}_{d}(c)} \sum_{i=0}^{m-1} a^{t_{i}} b^{p^{n i}}=b-\frac{a c}{\operatorname{Tr}_{d}(c)} \beta_{m-1}
$$

and as $\beta_{m-1}=0$ we have x is a root of f.
From Lemma 1, $\alpha_{m-1}=N_{d}(a)=1$ where N_{d} is the norm function from $\mathbb{F}_{p^{k}}$ onto $\mathbb{F}_{p^{d}}$. From [3], $N_{d}(a)=1$ if and only if $a=\kappa^{p^{d}-1}$ for some $\kappa \in \mathbb{F}_{q}^{*}$. Since $\operatorname{gcd}\left(p^{n}-1, q-1\right)$ $=p^{d}-1$, then $p^{n}-1=\left(p^{d}-1\right) t$ where $(t, q-1)=1$. In other words, there exits a $\tau \in \mathbb{F}_{q}^{*}$ satisfying $\tau^{p^{n}-1}=\kappa^{p^{d}-1}=a$. It follows that $x+\delta \tau$ is a root of f for each $\delta \in \mathbb{F}_{p^{d}}$ (giving us p^{d} roots). From Lemma 2 there are at most p^{d} roots of f so we have obtained them all.

In [2] the trinomial $g(X)=X^{p^{n}}-X-b$, where $b \in \mathbb{F}_{q}^{*}$, is considered. It is shown that g has no roots when $\operatorname{Tr}_{d}(b) \neq 0$ and p^{d} roots when $\operatorname{Tr}_{d}(b)=0$. The final theorem of [2] aims to give a root of g when k / d is odd but the root given is instead a root of the polynomial $h(X)=X^{p^{n}}+X-b$ (in addition to this error, there is also a misprint in the statement of the theorem). We note that the proof given in [2] makes implicit use
of Lemma 1. The root given in [2] can be shown to agree with that given by Theorem 3 by a direct calculation. The root constructed above when $\alpha_{m-1} \neq 1$ coincides with [4, Theorem 1] for the case n divides k.

The following corollary is easily obtained from Theorem 3.
Corollary 4. Let $q=p^{k}$, n be a positive integer and $f(X)=X^{p^{n}}-a X-b$ where $a \in \mathbb{F}_{q}^{*}$ and $b \in \mathbb{F}_{q}$. Set $l=\operatorname{lcm}(k, n)$. The splitting field of f is $\mathbb{F}_{p^{t t}}$, where $l t$ is the smallest integer for which $\alpha_{(l t / n)-1}=1$ and $\beta_{(l t / n)-1}=0$.

References

[1] G.H. Hardy and E.M. Wright, An Introduction to the theory of numbers, (fifth edition) (Oxford University Press, Oxford, 1979).
[2] J. Liang, 'On the solutions of trinomial equations over finite fields', Bull. Calcutta Math. Soc. 70 (1978), 379-382.
[3] R. Lidl and H. Niederreiter, Finite fields, Encyclopedia Math. Appl. 20 (Addison-Wesley, Reading, 1983), (now distributed by Cambridge University Press).
[4] K. Vilanova, 'Certain trinomial equations over finite fields', Trudy Univ. Druz̆by Narod. 21 (1967), 17-31.

Department of Mathematical Sciences
University of Delaware
Newark, DE 19716
United States of America
e-mail: coulter@math.udel.edu marie@math.udel.edu

[^0]: Received 6th November, 2003
 The second author performed some of this work while at RMIT University and was supported by a RMIT VRII grant.

