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A NOTE ON T H E R O O T S OF TRINOMIALS OVER A F INITE FIELD

ROBERT COULTER AND MARIE HENDERSON

For non-negative integers n we determine the roots of the trinomial Xp" — aX — b,
with a^O, over a finite field of characteristic p.

Throughout q = pk where p is a prime and k is a positive integer. Let ¥q be the
finite field of order q, F* be the set of non-zero elements of F , and F, [X] be the ring of
polynomials in the indeterminate X over ¥q. In this article we determine the roots of
the trinomial / € F, [X] given by

(1) f(X) = X'n - aX - b

where n is a positive integer. Throughout we assume a € F* as otherwise / is a binomial
and the factorisation is known, see [3]. The trinomial (1) has been considered in [2] for
the case a = 1. The article [4] mainly considers the case where n divides k. There is
one result in [4] concerning the general case which we include below (see Lemma 2). We
determine all roots of the trinomial (1) in Theorem 3 below and then cast these against
the previous results described above.

We make use of the following lemma. This is essentially [1, Theorem 57].

LEMMA 1 . For positive integers r and k = md define

Ir = {ir mod k | 0 < i ^ m - 1}.

Ifn is a positive integer satisfying gcd(n, k) = d, then In = Id.

The following lemma appears as Theorem 2 of [4].

LEMMA 2 . Let q = pk, n be a positive integer and f{X) - Xp" - aX - b where
a e ¥'q and b e F, . Then, in the Geld ¥q, f has either zero, one or pd roots where
d = gcd{n,k).

Following the statement of [4, Theorem 2] the author remarks that it seems difficult
to characterise the roots of (1). The following theorem gives the full solution to this
problem.
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THEOREM 3 . Let q = pk, n be a non-negative integer and f e Fq[X] be t ie
trinomial f(X) = X"" - aX - b where ae¥'q. Setd = gcd(n, k) and m = k/d. Let Trd

m-2

be t i e trace function from F , onto Wpd. For 0 < i < m - 1, define U = £ p n ( j + 1 ) . Put

ao = a and fio = b. Ifm> 1, tien for 1 ^ r ^ m - 1, set ctT = a1+p"+'+p"r and

w

t=0

r - l

Sj = JZ p n ( j + 1 ) for 0 ^ i ^ r - 1 and sr = 0. Tie trinomiai / ias no roots in Fq if

and only if am_i = 1 and /?m_i ^ 0. Wien am_i ^ 1 then ,f has a unique root x e F, ,
namely, x — /3m_i/(l — am_i) . Otierwise / i a s pd roots in F, given by x + 5T where
S € Fpd, r is a fixed element of F, satisfying T^'1 = a and, for any c € F* satisfying
Trrf(c) € F; , ,

Trd(c) ^

PROOF: For any y e F , we have yp"m = j/P*(n/'° = y. It follows that c?^_x = a m _

and Pm-i — cL0m-i — bam-i+b. ForO $ r ^ m—2, similar calculations give ap" = a ^ ^ r

and # " = a p n ( r + ' ^ r - o - ' t o r+x + 6p"(r+1).

Suppose we have yp" = ay + b for some y € F 9 . Given an integer i, l ^ i ^ m -

for which yp"' = c*i_iy + 0i-i then

= aiV + a~lbai + a""'ft_! - a"16a{ + &""

where we have used the identity 0r = apnr f3T-\ + bPnr, for 1 ^ r ^ m - 1.

As yp" = aoy + /So. it; follows that yp"' = ttj_iy + &_! for all positive integers z < m.
In particular, yp"m = am-\y + Pm-\. Since yp"m = y, then {am-\ - \)y + ^m_i = 0.
Immediately it is seen that no root exists when am_i = 1 and (3m-\ ^ 0. Also, if
o.m-i ¥" !> t n e n there exists a unique root y = /3m_i/(l - am_i) .

It remains to deal with the case when am_! = 1 and fim-i = 0. Firstly, let c 6 F,

satisfy Tid{c) ? 0. Put 7 i = £ c''"-' for 0 < i ^ m - 1 and
j=0

m-1

X = ——r-;
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Then
m - l

For 0 ^ ! ^ m - 2 we have

For i = m — 1, (o5m~')pn = 1. We thus have

m-2

as 7m_i = Trd(c) from Lemma 1. We proceed with the calculation of xp" - ax:

m—1 m—1

xp — ax = b + ^

Now 7o = c and for 1 ^ i ^ m — 1 we have

€: " 7, = iV+" - j ;
Therefore

m-l

5>" '
and as /?m_i = 0 we have x is a root of / .

From Lemma 1, am_i = Nd(a) = 1 where Nd is the norm function from Fp* onto
Fp*. From [3], Nd(a) = 1 if and only if a = /t^"1 for some K € FJ. Since gcd(pn - 1 , q- 1)
= pd - 1 , then p n - 1 = (pd - l)t where (t, g - 1) - 1. In other words, there exits a r e FJ
satisfying rP""1 = /c^"1 = a. It follows that x + <5r is a root of / for each (5 € ¥pd (giving
us pd roots). From Lemma 2 there are at most pd roots of / so we have obtained them
all. D

In [2] the trinomial g(X) - Xp" - X - b, where 6 € F'q, is considered. It is shown
that g has no roots when Tra(b) ^ 0 and pd roots when Tr<j(6) = 0. The final theorem
of [2] aims to give a root of g when k/d is odd but the root given is instead a root of
the polynomial h(X) = Xp" + X - b (in addition to this error, there is also a misprint
in the statement of the theorem). We note that the proof given in [2] makes implicit use
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of Lemma 1. The root given in [2] can be shown to agree with that given by Theorem
3 by a direct calculation. The root constructed above when am_i / 1 coincides with [4,
Theorem 1] for the case n divides k.

The following corollary is easily obtained from Theorem 3.

COROLLARY 4 . Let q = p*, n be a positive integer and f(X) = Xpn - aX - b

where a e Wq and b € F , . Set I = lcm{k,n). The splitting Geld off is W^,, where It is

the smallest integer for which a((t/n)_i = 1 and /?(/t/n)-i = 0.
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