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POSETS OF ORDERED COMPACTIFICATIONS

THOMAS A. RICHMOND

If (X',T',^.') is an ordered compactification of the partially ordered topologi-
cal space (X, T, $) such that ^' is the smallest order that renders ( X ' , T ' , ^ ' ) a
Tj-ordered compactification of X, then X' is called a Nachbin (or orders strict)
compactification of (X,T,^) . If ( X ' , T ' , ^ * ) is a finite-point ordered compacti-
fication of (X,T, ^ ) , the Nachbin order ^' for (X',T') is described in terms of
(X, T,$C) and X'. When given the usual order relation between compactifications
(ordered compactifications), posets of finite-point Nachbin compactifications are
shown to have the same order structure as the poset of underlying topological
compactifications. Though posets of arbitrary finite-point ordered compactifica-
tions are shown to be less well behaved, conditions for their good behavior are
studied. These results are used to examine the lattice structure of the set of all
ordered compactifications of the ordered topological space (X, T, $C).

0. INTRODUCTION

It is well known that for a completely regular topological space X, the following
are equivalent:

(a) the poset K(X) of compactifications of X is a complete lattice,
(b) X has a smallest compactification,
(c) X has a 1-point compactification,
(d) X has a finite-point compactification, and
(e) X is locally compact.

The equivalence of (a) and (b) is purely lattice theoretic once it is known that K{X) is
a complete upper semi-lattice. Blatter [1] has noted that the poset KO(X) of ordered
compactifications of an ordered topological space A* is a complete upper semi-lattice,
and thus the statement (a) •<=>• (b) generalises to the case of ordered topological
spaces and compactifications. Along with the trivial implication (c) ==> (d), these are
the only implications from above that generalise. Here, we pursue the question from
[1] of determining which ordered spaces admit a smallest ordered compactification.
Specifically, we focus on generalising the implication (d) => (b) above.
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PRELIMINARIES. The graphs of partial orders < and ^* on a set X with be denoted by
9 and 9* , respectively. If (X, <) is a poset and x 6 X, then ix(x) — {y £ X :y ^ x}.

For B C X, the increasing hull of S is i * ( £ ) = U *Jt(x)- Typically, »*(.#) and

be shortened to i(B) and t*(I?), respectively. B is an increasing set if
£ = i(-B). Decreasing hulls and decreasing sets are defined dually. A set B is convex
if B = i(B) n <f(I?), or equivalently, if a,b £ B and a < x ^ 6 imply * G 5 . We will
write A < B if a < ft for every a £ J4, 6 £ 2? •

A partially ordered topological space, or simply an ordered space, is a triple (X,T, ^ )
where T is a topology on X and ^ is a partial order on X. (X*,T*, ^*) is an ordered

compactification of the ordered space (X,T, ^ ) if (X*,T*) is a topological compacti-
fication of (X,r) and <* extends < . A (quasi-) ordered space is T* -ordered if and
only if x ^ y implies there exists an increasing neighbourhood of x disjoint from a
decreasing neighbourhood of y. Equivalently, a (quasi-) ordered space (X,T, 9), is T2-

ordered if and only if 0 is closed in X x X. Recall that a quasi-order is a transitive
reflexive relation. An ordered space has a T2 -ordered compactification if and only if it is
completely regular ordered as defined in [6]. We will only consider completely regular or-
dered spaces and T2 -ordered compactifications. For two ordered compactifications of an
ordered space, we write {X*,r*,^*) < (X',T',^') if ( X * , T * ) ^ {X',T') as topological
compactifications and the canonical quotient map from X' to X* is increasing.

If (X,T, ^ ) is an ordered space and (X*,r*) is a topological compactification of
(X,r), we say (X*,r*) is an orderable compactification if there exists some order ^* on
X* that makes (X*, T*, ^*) an ordered compactification of (X, T, ^ ) . Such an order ^*
will be called a compactification order {OT (X*,r*). The abundance of compactification
orders for a given orderable compactification makes matters difficult. If 9* and 9 are
two compactification orders for (X*,T*), then (X*,T*,9*) < (X*,T*,9') if and only if
9' C 9* . Thus, if the collection KO(X) of ordered compactifications of ordered space
X is partitioned into equivalence classes under the relation of topological equivalence
of compactifications, then the largest member of an equivalence class is the member
of that class with the smallest order. Since the intersection of compactification orders
on a given orderable compactification is again a compactification order, each equiva-
lence class has a largest member, called an order-strict compactification, or following
[1], a Nachbin compactification. (Elsewhere, the term "Nachbin compactification" is
sometimes used for the Stone-Cech ordered compactification). The Nachbin order of
an orderable compactification (X*,r*) is the intersection of all compactification orders
on (X*,T*). The equivalence class of all ordered compactifications of (X,T,^) topo-
logically equivalent to (X*,r*) has a smallest member if and only if there is a largest
compactification order on (X*,r'), that is, if and only if the union of compactification
orders on (X*,rm) is also a compactification order.
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1. NACHBIN COMPACTIPICATIONS

Let (X',T',8*) be a finite-point ordered compactification of completely regularly
ordered space (X,T,8). We wish to characterise the Nachbin order 8' for (X',T').

Define a partial order 8' on X' by a ^ ' b if and only if there exist Co, c\,... ,cn € X'
with Co = o and cn = 6, such that for » = 1 , . . . ,n , there exists a net (x\,y\) in 8
with (xx,yx) ~* (C,--I ,CJ) . The set {co, . . . , c n } will be called a trail from a to b .with
n + 1 nodes and length n. It is easy to check that 0' is a partial order that extends 9,
and 8' C 0" for any 8" such that (X',r',8") is an ordered compactification of X.

Observe that if {co, . . . , cn} is a trail of length n from Co to cn and CJ_I , Cj, c*+i G
A" for some t , then the constant net (CJ_I ,C ;+I ) guarantees that {c O l . . . ,c,-_i,c^i,
. . . , cn} is a trail of length n — 1 from Co to c n . Since there are only a finite number
of compactification points to appear as nodes, and since no trail ever needs more than
two consecutive nodes from X, we see that there is an upper bound on the number of
nodes needed in any trail. We define a minimal trail from a to b to be a trail from a
to b with minimal length.

THEOREM 1 . 1 . The order 8' described above is the Nachbin order for {X',T').

PROOF: It only remains to show that the order 8' is closed. Let Sk be the state-
ment that if {A, B) is any member of X' x X' such that there exists a net (Ay, B-,) e r

in 8' converging to (A,B) with max{length of a minimal trail from A7 to B-,} ^ k,

then {A,B) G ff. Suppose {A,B) G X' x X' and {Ay,BJ is a net in 0' converging
to (A, B) such that for all 7 , there is a trail of length 1 (or 0) from A-, to B-,. Then for
each 7 , there is a net (<*j[i&j![) in 9 converging to {A^,By). Now for any open neigh-
bourhood N of (A,B) in X' x X', there exists 7 ^ such that (A^N,ByN) G N D8',

and thus there exists Ajy such that ( O A ^ > ^ ) = (a*N>foK) e N n8. Letting U

be the directed set of open neighborhoods of (A ,B) , we have a net {aXtfi^Xff)NpU

in 6 converging to {A,B), and thus (A,B) G 8'. This proves S i . Suppose Si, is

true, and suppose (A,B) is the limit of a net (Ay,B~,) e r in 8' such that for all

7 G F there is a trail {CQ,CI,... ,C^L} of length less than or equal to Jfe + 1 from

A-, to By. The net (C7)^€r of second nodes from these trails must have a convergent

subnet I C" J —» C G X'. Now the induction hypothesis applies to the nets

( A ^ . C f ™ ) and ( C f ™ , * ^ , ) ) to imply (A, (7) G 0' and (C.fl) G 8', whence

(i4,B) G 0', and thus St+i is true. D

THEOREM 1 . 2 . If Jfjy and X'N are Unite-point Nachbin compactifications of X

and X* and X' are ordered compactiScations of X topologicadly equivalent to X^,

and X'N, respectively, then
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a. X' ^ X* implies X'N ^ Xff, and
b. (X'NtT',e'N)^(X'N,T\e'N

PROOF: For b., suppose (X'N,T') ^ (Xjy,T*), with continuous function / : Xfr -*
X'N such that f \x= id-X • We will show / is increasing. Suppose (o, b) G 8*. Then for
a trail {co,... ,cn} in X^ between a and 6, there exists nets {x\,y\) in 9 converging
to (cj_i,c<) for each t = 1, . . . ,n . The nets (x\,y\) must converge in X'N, say to
(di-i,d{). Now {do,.. . ,dn} forms a trail of length ^ n in X'N from /(a) to /(&).

The converse is trivial. The proof of part a. is similar. D

The following result is immediate.

COROLLARY 1 . 3 . A set of finite-point Nachbin compactifications has the same
poset structure as the set of underlying topological compactifications.

COROLLARY 1 . 4 . If X admits a 1-point ordered compact ideation, then the
finite-point Nachbin compactifications of X form a lattice that is a complete lower
semi-lattice.

PROOF: If {X^}7gr is a collection of finite-point Nachbin compactifications of
X, inf{-X^}-rer = sup{A"* : X* is a lower bound of {X^}}. Note that this supremum
is a finite-point Nachbin compactification since the Nachbin compactifications form a
complete upper semilattice (see [1]) and this supremum is bounded above by a finite-
point compactification. U

2. UNIONS OF ORDERS

Let (X',T') be a fixed finite-point orderable compactification of (X,T, ^ ) . Among
the ordered compactifications topologically equivalent to (X',T'), there is a smallest if
and only if the union of compactification orders on (X',r ') is a compactification order.
We write a d (3 and say a is optionally less that /9 if a <* /3 in some compactification
order ^* on (X',T'). Thus, the graph of C is the union of the graphs of all com-
pactification orders on (X',T'). In general, Q is not a partial order. With the goal of
determining when C is a compactification order for (X',T'), we first consider adding
order to a compactification order.

THEOREM 2 . 1 . Let {X',8') be a poset, and define

6" = 0'U{(a,&): a< ' a,0 ^ b}.

a. If j3 £ a, then 6* is a partial order on X.
b. If (X',r',8') is a £nite-point ordered compactification of (X,T,8) with

f3 5̂ ' a and if x < y for every pair x,y G X such that x ^' a and /? Sj' y,
then (X',T',6*) is a T2-ordered compactification of X with a <* 0.
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b ' . If (X', T ' ,0 ' ) is a Unite-point ordered compactification of (X,T,8) with
P •£' a and if x ^ y for every pair x,y € X such that x ^ ' a and 0 ^ ' y,
then (X',T',9*) is a T2-ordered compactiScation of X with a <* /?.

PROOF: a. is straightforward. For b.', note that the condition x < y when z G
d'(a) D X and y G i'(/3) (~l X guarantees that 8* introduces no new order on the
underlying poset X, that is, that 8* C\ X2 = 8. To see that (X',r',0*) is T2-ordered,
suppose x 5̂ * y. Then i ^ y, so there exists a 8' -increasing neighbourhood N of x
disjoint from a 8' -decreasing neighbourhood M of y. Because 8' is T2 -ordered and
X' is a finite-point compactification, we may assume, without loss of generality, that
p. G (N\X) U {a,/3} if and only if x ^ ' /i, and ^ G (M\X) U {a,/?} if and only
if fx 4:' y- Now **(iV) and d*(M) are ^'-monotone neighbourhoods of x and y,
respectively. Suppose z € i*(JV) D d*(M). Then there exist o € JV and 6 € Af with
o <* z <* 6. This implies either (1) o ^ ' z o r (2) a <' a,/3 ^ ' z; and either (a) z <' 6
or (b) z <' a,^ ^ ' 6. Case (la) implies a <' b, contrary to M D N — 0. In case (2b),
a G N and a ^ ' a imply a G N, and thus i <' o by our choice by N. Similarly, we
have j8 ^ ' y . But x ^' a and /? ^ ' y imply x ^* y, a contradiction. The remaining
two cases imply a G N and /? G M, whence x ^ ' a,/9 ^ ' y, contrary to e ^ ' y.
Thus, i*(N) and d*(M) are disjoint 0*-monotone neighbourhoods separating x and
y, so 0* is T2-ordered. D

Theorem 1.1 gave an intrinsic characterisation of the Nachbin order on a finite-
point orderable compactification. We now utilise this Nachbin order to characterise the
relation C.

THEOREM 2 . 2 . Let (X',T',9') be a finite-point Nachbin compactification of
(X,T,0). Then an/3 if and only if (3 £' a and x < y for every pair x,y G X
such that x <' a and (3 <' y. Also, aC/3 if and only if f3 •£' a and x ^ y for every
pair x,y G X such that x ^ ' a and (3 <' y.

PROOF: If otCf3, then a <* /3 in some compactification order 9* on ( X ' , T ' ) .

Now 0 ^ ' a would lead to the contradiction that a <* 0 ^ ' a. Also if x G d'(a) 0 X
and y G i'(/3) D X, then because 0' C 8*, we have x ^* a,/3 ^* y. Now a <* /3
implies a; <* y, and since 8* fl -Y2 = 8, we have x < y.

The converse follows from 2.1.b. D

In particular, if x G X and « G Jf ' \X, then xC w if and only if x < y for every
y G. X with u <' y, and uC x if and only if y < x for every y G X with y <' u. Or,
letting J4^ represent the set of strict upper bounds of A in X, and defining A* dually,
we have xC w if and only if x G [i '(u)nX]J and uC x if and only if x G [d'(w)nX]T.
A direct consequence of Theorem 2.2 is the result below.

COROLLARY 2 . 3 . If X' = X U {w} is a one-point ordered compactification,
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then C is a partial order if and only if [i'(w)nX]i- < [ d ' ( u ) n l ] ' , that is, if and only
if [i'(«) n xp x [d'(w) n xy c e\A.

Now let us consider some strong restrictions on a Nachbin compactification
(X',T',^'). For a G X', we will say a is accessible from above if there exists a
net a\ in i'(ct) D X converging to a. Accessibility from below is defined dually. Note
that points from X are accessible from above and below. If x G X and a G X'\X,
then by Theorem 2.2, xQa if and only if (a) x ^ a Va £ X with a ^ ' a, and (b)
a -ft' x. If a is accessible from above, then (a) implies x ^' a, which in turn implies
(b), and thus xQa is equivalent to z <' a . Similarly, if (3 is accessible from below,
then /?C y if and only if /? ^ ' y. If a is accessible from below and /9 from above, then
aC/? is equivalent to /? 5 '̂ a and x < y whenever z,y G -X with a; ^ ' a,/? ^ ' y.
By the accessibility assumptions, this last condition implies a <' /?. Thus, when a is
accessible from below and /3 from above, aC/3 if and only if a <' /?. As a result, if
every compactification point is accessible from above and from below, then C agrees
with ^ ' , so that X has a unique compactification order.

We mention two more special cases in which it can easily be determined whether
C is a partial order or not. If (X',r', ^ ' ) has an order-isolated compactification point,
that is, a compactification point u> such that w ft' a and a •£' u> for all a G X', then
Q is not a partial order, for by Theorem 2.1.b. we could make u> a maximum or a
minimum element. Also, if aC/3 implies there exists x G X with a ^ ' x ^ ' 0, then
C is a partial order.

Suppose (X*,T*,0*) and (X',T',6') are finite-point Nachbin compactifications of
(X,T,6) with {X',T') < (X*,T*). By 1.2.b, the canonical quotient map / : X* -> X'
is increasing and thus i'(/?) D X C i'(/(/3)) n X and d*(a) D X C d '( / (a)) D X.
From Theorem 2.2, it follows that /(a)C'/(/3) implies a\Z*P, where C' is the union of
compactification orders on (X',T') and C* is similarly defined.

THEOREM 2 . 4 . If S is the set of all finite-point Nachbin compactifications X*

of (X,T, ^ ) such that the union C* of compactification orders on X* is a partial order,

then S is a decreasing set in the poset Kfpn(X) of finite-point Nachbin compactifica-

tions of X.

PROOF: Suppose X* and X' are finite-point Nachbin compactifications of X with
X' ^ -X"*, and suppose C* is a partial order. We will show Q' is a partial order.
Clearly C' is reflexive, and antisymmetry of C' follows from the transitivity of C1,
which we now show. Suppose /(a)c ' /( /3) and / ( ^ ) C / ( 7 ) . If f {<*)$:' / ( ? ) , then
there exists x,y G X such that x •£' y, yet x <' f(ot) and f(y) <' y. In particular,

x C 7 ( a ) , / ( a ) c ' / ( ^ ) , / (0 )C7(7) , and / ( 7 )C'». Since / ( « ) c 7 H i m P ^ ^C*" *nd
since C* is a partial order, we arrive at the contradiction x < y. D
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The example below illustrates that the set 5 described in Theorem 2.4 need not
be increasing in K/pn(X), and that S is, in general, a proper subset of K/pn{X).

EXAMPLE 2.5. For y E R , define the following subsets of R 2 : r(y) = (0,1] x
{y},R(y) = [0,1] x {»},/(») = [-1,0) x {y},L(y) = [-1,0] x {„}, and ll(y) =
[—2,-1) x {y}. Unless otherwise indicated, all ordered spaces and compactifications
described with this notation carry the subspace topology inherited from R2 and the
"due north" order (a, b) ^ (c, d) if and only if a = c and b ̂  d.

Define X = R(0) U r(l) U 1(1) U i?(3). Let X' = X U {(0,1)} be the 1-point
Nachbin compactification of X, and let X* be the two-point Nachbin compactification
X* = i?(0)Ur(l)U/Z(l)Ui2(3)U{^i,/i2} where /xi = (-1,1) and /x2 = (0,1) are
the compactification points. The order ^ ' on X' is the only compactification order
for X', so C.' is a partial order. As Nachbin compactifications, X' ^ X*, but C* is
not a partial order: The ordered compactification R(0) U r(l) U R(3) U 1(4) U {fii,^}
where n\ = (0,1), [*2 = (0>4) and x = (0,3), and the ordered compactification R(0) U
r(l) U 1(2) U .R(3) U {m,n2} where m = (0,2),/i2 = (0,1), and x = (0,3), are both
topologically equivalent to X* and illustrate that C* is not transitive since zC'/Xi and

If the union C of compactification orders on (X' ,T ' ) is a closed partial order, then
there is a smallest ordered compactification topologically equivalent to (X',T') , namely
(X',T',C.'). The example below shows that the union C of compactification orders on
(X', T') need not be closed.

EXAMPLE 2.6. With the notation of Example 2.5, let X = r(0)Ur(l). For a G (0,1],
let Xa = X U {a,/3} be the two point ordered compactification of X with (a, 0) <
(o,l) <o /? <o a. Now if (OA,1) is a net in r(l) converging to a = (0,1), then
(aA,l)C/3 for each A, yet ct[JL(3, and thus C. is not closed.

The following proposition shows that the situation in the previous example is es-
sentially the only way Q could fail to be closed.

PROPOSITION 2 . 7 . The union C. of compactification orders on a finite-point
Nachbin compactification (X',r', ^ ' ) is a closed relation on X' if and only if for /? ^ ' a
in X', there is no net ct\ in X'\{a} converging to a with a\C(3 for each A and no
net (2\ in X'\{(3} converging to (5 with aC(3x, for each A.

PROOF: The former condition above clearly implies the latter, so assume the latter.
Let (a,/?) be the limit of a net (a\,/3\) where ctxtZpx for all A. We will use Theorem
2.2 to show a(Z/9. First, 0 £' a, for otherwise there would exist a ^'-increasing r ' -
open neighbourhood N of a disjoint from a ^'-decreasing r '-open neighbourhood M
of 0. The assumed condition guarantees that there exists Ao such that (otXo,0Xo) €
(JV x M) D 0, contrary to M and N being disjoint. Next, x ^ y whenever (x,y) 6
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[d'(a) x i'(0)] PI X2, for otherwise there exists a ^'-increasing neighbourhood N of
x disjoint from a ^'-decreasing neighbourhood M of y. But (z,y) G M'(a) x *'{P)]
implies a G N and f3 6 M, and the argument above again contradicts M 0 N = 0. D

3. DT COMPACTIFICATIONS

Let C represent the union of compactification orders on a finite-point Nachbin
compactification {X',T',^'), and consider the following statements about a,/3 G X'.

3.1.b. Either a = 0 or x < y for every x,y G Jf with i C a , ^ C y .
3.1.c. / 3 < ' a .

Using Theorem 2.2, it is easily shown that 3.1.b. and 3.I.e. together imply 3.1.a.
We will say C is determined by transitivity, or DT, if for each a,/3 G X', the following
implications hold: 3.1.a. =>• 3.1.b. = > 3.I.e. A finite-point ordered compactification
( X ' , T ' , ^ * ) will be called a DT compactification if the union C of compactification
orders on (X',T') is DT. Note that in a DT compactification, 3.1.a. is equivalent to
3.1.b. In this section, we show that C being DT is closely related to C. being a partial
order. But first, we have an example to illustrate that the DT compactifications form
a proper subset of the finite-point ordered compactifications.

EXAMPLE 3.2. (3.1.a. ^=> 3.1.b): With the notation and conventions of Example
2.5, let X = .R(O) U R(l) U r(2) U Z(3). From the two-point ordered compactification
X* = X U {a,/?} where a = (0,2) and 0 - (0,3), we see that ad/3 . However, if
x = (0,1) and y = (0,0), the two-point ordered compactification X** depicted by
R(0) U R(l) U r(2) U / ( - I ) U {a,/3} where a = (0,2) and 0 = (0,-1) is topologically
equivalent to X* and shows that xfZa,0E.y does not imply x <y.

If C is a partial order, then clearly C is DT. The converse need not be true, as seen
by this example. Let X = { ( - l ,y) G R2 : y € [0,1)} U {(l,y) G R2 : y G [0,1)} U
{(0,2)} have the topology inherited from R2. Impose the 'due north' order on the
two segments of X, and put x < (0,2) = g for every x G X. The two-point Nachbin
compactification of X is XU{a,/3} where a = (—1,1) is greater than each point of the
left segment, /? = (1,1) is greater than each point of the right segment, and g remains
the greatest element. Topologically equivalent two-point ordered compactifications X*
and X"* of X can be obtained by additionally imposing a <* (3 and /3 <** a. Thus,
aC/J and /3Ca even though a and 0 are distinct. Thus CZ fails to be antisymmetric
even though Q is DT.

PROPOSITION 3 . 3 . If Q is DT and antisymmetric, then it is a partial order.

PROOF: Since (Z is clearly reflexive, only transitivity remains to be checked. Sup-

pose aCy and 7C/?. If all three of the points a,/3,y are from the space X, then
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clearly aC/3. One can easily show that transitivity holds when the middle point 7
is from X. If x,y £ X and i d 7 , 7 c y, then x < y follows from defining condition
3.1.a. =>• 3.1.b. of C being DT, applied to 7 ^ 7 - If z l l 7 , 7 C / 3 , where x 6 X,
then to show xC /?, it suffices to show z < y for any y £ I such that /? < ' y. But
0 <' y implies 0Cy. Now i C 7 , / 3 C y , and the definition of DT applied to 7C/3 imply
x < y. The dual argument also holds, leaving only the case aQj,jC.fi where a,fi and
7 are all compactification points. Recalling the equivalence of 3.1.a. and 3.1.b. in a
DT compactification, it suffices to show 3.1.b, that is, for x,y £ X, x < y whenever
xCa and fiCy. If x,y £ X with i C a and fiCy, by the preceding case, xC-a and
a.C.j imply xCj, and dually, jCy. Applying the DT property 3.1.a. =>• 3.1.b. to
JCJ shows x < y. D

In determining whether C is a partial order, we see that if C. is DT, transitivity
would hold if antisymmetry does, but antisymmetry need not hold. Since C agrees
with ^ on X, antisymmetry cannot fail for two points from X. The DT property
guarantees that antisymmetry holds for any pair x £ X,a £ X'\X, for iC a implies
x < y whenever aCy (y € X), and thus xCct,aCx would lead to the contradiction
x < x. Thus, antisymmetry of C in a DT compactification can only fail between two
compactification points. We will show that if C is DT but fails to be antisymmetric, then
two offending compactification points can be identified. The needed ordered quotient
construction is provided below.

Let ( X , T , ^ ) be an ordered topological space with a finite-point orderable com-
pactification ( X ' , T ' ) . Let ^ ' be a Tj-ordered quasi-order on X' that extends ^ .
Suppose {ui}i£A is a (finite) set of compactification points from X'. Identify the set
{u>i}i£A into a single point ID, and define a relation ^ " on this quotient space (X",T")

by

a <" w if and only if a <' wj for some i £ A (a £ X"\{u})

w <" a if and only if W{ <' a for some t £ A (o £ X"\{w})

a <" 6 if and only if a ^ ' b OR a ^ ' W,-,WJ ^ ' b for some i,j £ A (a,b £ X"\{w})

Some of the properties of this "ordered quotient space" are summarised below.

THEOREM 3 . 4 .

a. Tie relation ^ " is a T2-ordered quasi-order on X".
b. Tie quotient map from X' to X" is increasing

c. If {u>i}ieA is ^'-convex, then <" is antisymmetric whenever <' is.

d. If (X',T',^') is a DT compactification, then ^ " introduces no new order

on X.
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PROOF: We only show ^ " is T2-ordered; the other verifications are routine. Sup-
pose a £" b, and first consider the case a , 4 / w . Then a ^' b, so there exists a ^'-
increasing neighbourhood N of a disjoint from a ^'-decreasing neighbourhood M of
b. Without loss of generality, w,- £ N if and only if a ^ ' a>,- and w; G M if and only if
Wi ^ ' b. Now JVn{wj}i6A = 0 or Mn{u>j}jg.A = 0, for otherwise a ^ ' u>i,u>j ^ ' 6 leads
to the contradiction a <" 6. We will consider the case N n{u>i}i£A = 0- Let N" = N,
and M" = [M\{wi}i€A]U{w}. Now i"(tf") and d"(M") are <"-monotoneneighbour-
hoods of a and 6. We will show that they are disjoint. Suppose c G t"(JV")nd"(M").
Since a;,- ^ AT for all i, we have w $ i"(7V"). In particular c ^ w. Now by choice of
c, there exist n G N",m G M" with n <" c and c <" m. Since c,n ^ w, we have
two cases: either m = w or m ^ u . Ifm = u>, we have n ^" c7c ^ " w. Since ^ " is
transitive, this would give the contradiction n ^" w. If m ^ w, then n ^" c,c ^ " m
imply either (1) n ^ ' c or (2) n ^ ' u>i,u>j ^ ' c for some i,j £ A; and either (a) c ^' m
or (b) c ^ ' u>jfc,u>/ ^ ' m for some &,/ € >1. Case (la) implies n ^' m, contrary to
our choice of M and N. In case (lb), n ^' c ^' u>k,u>i ^ ' m implies w £ i"(N"), a
contradiction. Cases (2a) and (2b) also lead to this contradiction.

Now we return to the case o ^" w. Then a ^ ' Wi for all i G .A, so for all
t £ 4 , there exists a ^'-increasing neighbourhood Ni of a disjoint from a <'-
decreasing neighbourhood Mi of a^. Let N = N" = f] Ni,M = \J Mi, and

i£A i£A

M" = [M\{wi}ieA]l}{u>}. Notice that i"(N") and d"(M") are ^"-monotone neigh-
bourhoods of a and w respectively, and w ^ i"(iV"). The argument of the paragraph
above shows that i"(N") and d"(M") are disjoint. The case w ^ " a is similar, and
this completes the proof. D

Note that if ^ " is antisymmetric and extends <, then (X",T", ^") is a Tj-ordered
compactification of X. Thus, from 3.4.c. and 3.4.d. we see that if we identify a convex
set of compactification points from a DT compactification, this construction yields a
smaller ordered compactification. We note a particular case of this in the corollary
below.

COROLLARY 3 . 5 . If (X',T',^') is a Unite-point N&chbin comp&ctiUc&tion of
(X,T, ^ ) with wi,fa>2 G X'\X such that W1CW2 and W2CW1, then the ordered quo-
tient space (X",T",^") obtained by identifying w\ and o>2 is a finite-point ordered
compactification of (X,T, ^ ) .

Since every finite-point orderable compactification X' has a Nachbin order, the
corollary above guarantees that identifying two points at which antisymmetry of C
fails always results in a smaller orderable compactification of (X,T, ^ ) . Thus, we may
speak of the union C" of compactification orders on ( A " " , T " , ^ " ) , where X" is the
ordered quotient obtained by identifying a pair of non-antisymmetric compactification
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points from X'.

If X' is a DT compactification for which C is not a partial order, then there
must be compactification points in X' at which C is not antisymmetric. Can these
compactification points be identified in the equivalent Nachbin compactifications, two
at a time, until we arrive at a smaller ordered compactification X^n^ of X for which
the union C.^ of its compactification orders is antisymmetric, and therefore a partial
order? The answer would be affirmative if our ordered quotient construction preserved
the DT property, and could thereby the repeated. It can be shown that if wi C w2 and
W2CW1 in X', if X" is the ordered quotient formed by identifying u»i and u>2, and
if 3.1.b. implies 3.1.c. in X", then aC"/? in X" if and only if aC/3 in X', and in
particular, X" is DT.

In summary, Proposition 3.3 shows that C being DT is equivalent to CZ being a
partial order if and only if C is antisymmetric. If X' is a DT compactification and
in each successive ordered quotient 3.1.b. implies 3.I.e., then there exists an ordered
compactification A"(n) of X such that X<n) ^ X' and C ( n ) is a partial order. In
particular, if we define a strong DT apace to be a DT space in which 3.1.b. implies
3.I.e. in all successive ordered quotients in which convex sets of compactification points
are identified, then every strong DT space is larger than some ordered compactifica-
tion X<n> which is smallest among the equivalence class of ordered compactifications
topologically equivalent to it. An open question significant to this discussion is whether
every DT space is strongly DT.

4. LATTICE CONSIDERATIONS

The existence of a smallest ordered compactification of (X,T, 4 ) would imply that
the poset KO(X) of ordered compactifications of X forms a complete lattice. If the set
Kfpo(X) of finite-point ordered compactifications of X has a smallest member, then
Kfpo(X) is a lattice and a complete lower semilattice. If (X',r',^') and ( J C ' , T ' , ^ * )

are topologically equivalent ordered compactifications of X, then the larger ordered-
compactification is the one with the smaller order. We can now apply some of our
results on unions of compactification orders to the question of determining when X
has a smallest finite-point ordered compactification. Existence of a one-point ordered
compactification is neither necessary nor sufficient for the existence of a smallest or-
dered compactification, as seen by the intervals (0,1) and [0,1) in R , given the usual
topology and order. The smallest ordered compactification of (0,1) is a two-point com-
pactification, and by taking the compactification point of [0,1) to be maximum in one
and minimum in another one-point ordered compactification, we see that [0,1) has no
smallest ordered compactification. But first, we present some lattice results on the two
extreme cases of partial orders: when all orders involved are equality, and when the
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order is total. In the former case, we are simply considering topological spaces.

THEOREM 4 . 1 . Let (X,T) be a locally compact topological space, and let
Kfp(X) be the poset of finite-point compactifications of X. Then the following are
equivalent.

a. X has a largest finite-point compactification X* .
b. Kfp(X) is a complete lattice.
c. X has no countable compactification (that is, no compactification X'

such that X'\X is countably infinite).

PROOF: a. = ^ b: Since K(X) is a complete lattice, K/p(X) is closed under
the formation of arbitrary infima. Also, inf{X' € K(X) : X" < X' for all X" G C}
exists and is a finite-point compactification necessarily less than or equal to X*. This
infimum is sup C.

b. =>• c: If Kfp(X) is a complete lattice, then there is no n-point compactifi-
cation of X for n > | sup(Kfp(X))\X |. By [3, Theorem 2.1], X has no countable
compactification.

c. ==> a: Suppose X has no countable compactification. McCartney has shown
[5, 2.1 and 2.4ff] that X has a maximum totally disconnected compactification X', and
that X' = sup{K/p(X)}. By [3, Theorem 2.1], every totally disconnected compactifica-
tion of X is a finite-point compactification. Thus, X' is a finite-point compactification,
and the largest one. D

Of course, the simple example of the real line shows that the largest finite-point
compactification need not be @X, the largest compactification.

In case (X,T, ^ ) is a totally ordered topological space, the poset KO(X) of ordered
compactifications of X is always a complete lattice, and either Kfpo(X) — KO{X) or
Kfpo(X) = 0. In the latter case, all members of KO(X) are of the same cardinality.
Details of totally ordered compactifications can be found in [2].

We now return to the general partially ordered case.

PROPOSITION 4 . 2 . If X* and X** are finite-point ordered compactifications
of X with X** < X* and if C* is a closed partial order, then (JC*,T*,C*) is a "strong
order Hfting" of X", in the sense that for any o, b E X" with a <** 6, and for any
a* 6 <p~1(a)t b* 6 #~1(&) where <j> : X* —* X" is the canonical increasing quotient
map, we have a*O*b* .

PROOF: Suppose a <** b in X**. Since <j>: X* -> X** is increasing, 6* ^* a* for
any b* € ^~1(6),a* 6 <p~1(a). Thus, to see a*Q*b*, we must show that x ^ y for any
x,y e X such that z ^ i n a*,b* <^ i n y, where ^£,in i8 the Nachbin order on X*.
Given such x and y, it follows from the hypothesis and the fact that <f> is increasing
that x < " a,a <** b, and b <•• y, whence x < y. Thus a ' C f . Clearly a* ^ b*
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since their images under <f> are not equal. D

An already obvious result of this proposition is that if (X*,T*, ^*) is the supremum
of a collection of finite-point ordered compactifications of X and C* is a closed partial
order, then <* is C*. The proposition could be rephrased to say that, under the
hypotheses, X** is an 'ordered quotient space' of X* in the sense of McCartan [4].

We conclude with some conditions sufficient to insure that the infimum of a collec-
tion of finite-point ordered compactifications exists.

THEOREM 4 . 3 . Suppose sup{Jf,- : i £ A} = X*, X* is a finite-point strong
DT ordered compact ideation, and the union C* of compa.ctifica.tion orders on X* is
a closed partial order. For each i £ A, let </>i : X* —> X{ be the canonical increasing
quotient map, and let Ti = {F C X* : F = fa1 (a) for some a £ Xf}. Define an
equivalence relation ~A on X* by v ~ x V if and only if there exists a finite chain
{ujYj^o with uo = v and um = t] such that for each j = 1,2, . . . ,m, there exists
F £ U Ti vrith {UJ-I,WJ} C F. If the ~ x - equivalence classes of X* are convex

relative to £* = <*, then inf{Xt- :t £ J 4 } exists.

PROOF: Note that X*/ ~ x is the topological compactification infimum of {Xt :

i £ A}. Since X* is a strong DT space and the ~ A - equivalence classes are convex,
they can be identified one at a time using the ordered quotient construction described
in Theorem 3.4. Thus, the topological compactification X*/ ~ A can be ordered to get
an ordered compactification which we will call X". For each i £ A, clearly X" ^ Xi

as topological compactifications, so it only remains to show that the quotient map
V»t : Xt —> X" is increasing. Note that identification of the points of X* to get to X"

can be performed in such a way that X{ is one of the intermediate steps. By Theorems
2.4 and 3.4, the union C ; of compactification orders on Xt is a closed partial order,
and now Proposition 4.2 applied to X* and X\ implies V»i is increasing. D
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