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UNITS AND CYCLOTOMIC UNITS IN Z,-EXTENSIONS

JAE MOON KIM!

Introduction

Let p be an odd prime and d be a positive integer prime to p such that d # 2
mod 4. For technical reasons, we also assume that p  ¢(d). For each integer n =
1, we choose a primitive nth root {, of 1 so that Cm% = {, whenever #n|m. Let
K=K,=Q(,) and K,= U,.,K, be its cyclotomic Z,-extension, where
K, = Q({,,) is the nth layer of this extension. For # = 1, we denote the Galois
group Gal(K,,/ K, by G,, the unit group of the ring of integers of K, by E,, and
the group of cyclotomic units of K, by C,. For the definition and basic properties
of cyclotomic units such as the index theorem, we refer [6] and [7]. In this paper
we examine the injectivity of the homomorphism H'(G,, C,) — H'(G,, E,)
between the first cohomology groups induced by the inclusion C,— E,.

In [4], it is shown that the Tate cohomology group IT(G,,,,,,, C,,) depends on
the splitting of p in Q({,) where G,,, = Gal(K,,/K,) for m > n. To be more pre-
cise, let k be the decomposition field of p in Q({,). Then

(Z/p"7"Z)'" ifiis even

Hi(Gm,m Cm) = { ]
(Z/p™"L)' ifiis odd,

where

[k:Q] if kis real
| =
{—;“ [k:Q] otherwise.

In particular, H'(G,, C,) = (Z/p"Z)' and by taking the direct limit under the in-
flation maps, we have H'(I", C.) = (Q,/Z,)', where C,= U ,.,C, and I'=
lim G, = Gal(K,,/K,).
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It is interesting to compare this result to that of K. Iwasawa. In [3], he proved
that H'(I', E,) = (Q,/Z,)' ® M for some finite group M, where E, = U, E,.
Thus H'(I", C.) seems to control the p-divisible part of H'(I", E,.). However the
injectivity is still unknown. The aim of this paper is to examine the injectivity
when d = ¢q is a prime. Later in Section 3 of this paper, we will give a criterion of
the injectivity of this map via generalized Bernoulli numbers. This paper is orga-
nized as follows. In Section 1, we find explicit generators {4,,, .. ., 5%,} of
H'(G,, C,) = H'G,, C,). For each i,1<i <1 the sequence {3,]},s, pro-
duces a Coates-Wiles series %,;(x). This series #,(x) is studied in [5]. In Section 2,
we briefly review h,(z) and establish a criterion of the injectivity of the map
H'(G,, C,) = H'(G,, E,) in terms of the determinant of a certain matrix. We
then express the determinant by Bernoulli numbers.

§1. Generators of H '(G,, C,)

In [4], it is shown that H7(G,, C,) = (Z/p"2)', where [ is the number of
prime ideals of Q({)" = Q(&, + &) above p. The proof of this theorem, howev-
er, is theoretical and it does not provide generators of ﬁ_l(Gn, C,). In this sec-
tion, we will exhibit generators of this cohomology group explicitly when d = ¢ is
a prime. For this we need a theorem of V. Ennola on the relations among cycloto-
mic units (see [1]). But instead of quoting his theorem in detail, we just state what
is necessary for us.

THEOREM (V. Ennola). Suppose 6 = I, o, o (1 — &)™ is a root of 1 for some

integers x,. Then for every even character X ¥+ 1 of conductor f belonging to Q(C,),
Y(x, 0) = 0, where

N U -7

and
d—-1
D=1
The following properties of Y can be justified from the definition of Y, so we

omit the proofs.

LEMMA 1.1. Let x # 1 be an even character belonging to Q((,) and J,, 0,, 0 be
cyclotomic umits in Q(C,). Then
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i) Y(x, 0,0, = Y(x, 6,) + Y(x, d,).

(ii) If (root of 1) X G, = (voot of 1) X §,, then Y(x, 0,) = Y(x, J,).
(iii) For any 0 € Gal(Q(L,)/Q), Y(x, 6°) = x (o) Y(x, ).

(iv) Y(x, 8" = (x(0 — DY(y, 0.

From now on, we fix an odd prime g and consider the Zp—extension K, over
K, = Q({,,) such that p ¥ ¢(g). We fix a topological generator ¢ of the Galois
group I' = Gal(K,,/K,) such that {;» = {,»” for any # = 1. The restrictions of &
to various subfields of K, such as Q({,+) = U,5,Q({n), Q., and Q. () will
also be denoted by o. Here, Q., is the Z,-extension of Q. We even use ¢ for its
restrictions to finite layers of Z,-tower such as K,. Let w be a generator of the
cyclic group Gal(K,,/Q..({,)). Again, the restrictions of w to various subfields
are also denoted by w. Thus <w> = Gal(K,/Q..({)) = Gal(X,/Q,({)) =
Gal(Q(C1)/Q,). Nontrivial even characters belonging to the field Q({,) will be
denoted by 7,. Finally we fix a generator ¢, of the character group of Gal(Q,/Q)
in such a way that ¢,(6) = {y». Thus ¢, is an even character of conductor p”“ of
order p”, and ¢),, = ¢,

For later use, we compute Y(x, 0) for an even character x = ¢,7, and for
some cyclotomic unit § in K,. First of all, note that ;= — {, is a cyclotomic unit
in K, since

Cr — = (Ll — 1) = (&40 — 1.

Similarly, elements of K, of the form II,, ({mn — Q;’)b""‘ for some integers x, y
and b,, are also in C, except for obviously bad choices such as x =y = 0.

Let & = (root of 1) X II,;, (C;;f'll - C:)c""‘ for some integers ¢;;, with 0 < ¢
<p',0<j<p—1,0<k<gq For an even character x of the form x = ¢,7,,
we have

Y, €7 = (x(0) —DY(x, &
= (0 — 1) 2 ¢;;, Y(x, C;:i”: - )
ik

by Lemma 1. Since
i 1, [_ n+
(L5 — L) = (root of 1) X (1 — L™,
we have

1

—(Fq') T(X, Pnﬂq, 1- Cﬁff'ff,’_“’”ﬂ)
@

atu
Y(X, Cpml - C:) =
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= o — k™)
A
= 0.0 ™),
1)
Hence
Y(x, &) = (p,(0 — 1D = —c% Gu(qa’) y, (kp™™)
ik @ Q)
—1 +1
=GO @r.6"aty,
o @
where a(y) = X, €i;.i®n(0)7,(k), which is an algebraic integer depending on
Te

Now we describe [ elements of C, which generate H'(G,, C,). Let 4 be the
Galois group Gal(Q({)/Q), or any Galois group isomorphic to it such as
Gal(K../Q({,-)). Let D be the decomposition subgroup of 4 for p, and k be its
fixed subfield of Q({,). Let {r}, 7,,..., 7, = id} C 4 be a set of coset representa-
tives of 4 modulo {— 1, D). Notice that this / coincides with the earlier [ in the
introduction. For brevity, we write N, for the norm map from K, to K, N, for
N, . and N, for the norm map from K to k or from K, to k({sm1). We shall use
the following equation quite often: for m > n,

Ny, s — C) = Cua — 7
Foreach k, 1 £k < let

w Ty _ —
Nax = 0 = 11 (Cp”” =G, ), and 0, = 0, = Np(np).

1<i<p-1
Then
u'i . 1 _ Cq”+lrk
N,6) = NpeNy(r) = Np(1E = €7%) = Ny~ ) =1
j 1— Tk
q
since D is generated by p.
Hence we have [ cyclotomic units 6y, 0,, ..., 0, in K, whose norms to K,

equal 1. This set, however, is not always the right set of generators of HI(G,,,
C,,). We have to change this set a little. Namely we throw away any one of these,
say 0,, and instead we throw in 71',,0"1 to this set, where @, = {»1 — 1, which is a
generator of the prime ideal of Q({,») above p. nz—l is obviously a cyclotomic
unit in C, whose norm to K, is 1.
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TueoreM 1. H'(G,, C,) is generated by {0,,. .., 6,_,, ) '}.
First, we need a lemma.

LeEmMA 1.2. Let F be an abelian field of degree m over Q. Let {z, = 1id, 7,,.. .,
Tpotd and {1, =1, 71, . .., Twoi) be the set of Gal(F/Q) and its character group
Gal(F/Q)" respectively. Let A be the (m — 1) X (m — 1) matrix with 1,(z;) for the
yth entry for 1 <14,j<m— 1. Then the only prime ideals of the field
Q(y;(z)) that can divide the ideal (det A) arve those above the prime factors of m,
where Q(r,(z;)) is the field obtained by adjoining to Q the value 7,(t;) for 1 <
,7<m—1

Proof. Let B be the (m — 1) X (m — 1) matrix with 7,(z;") for the #jth en-
try for 1 <4, j < m — 1. Then since 2, <pcmy 7:(7s D7;(z) =1 G| 5, — 1,

m—1
m—1 -1 -
det(B'A) = det| . =m""
m—1
Hence prime ideals of Q(7;(z;)) that can divide (det A) are prime factors of .
Proof of theorem. Suppose 07" - -+ (% = £°7 for some & € C,. Since
we already know that H'(G,, C,) = (Z/p"Z)’, it is enough to show that a, =
“ =@, = 0modp". We shall show this by induction on # > 1. To treat the
case when # =1, suppose 0 -+« (P % = &7 for some & € C,, where
0, = N,II, C;f;j — C;“)‘ Since we apply 0 — 1 to & after all, we may assume that
£ is of the form

=T (0" — CH* X (root of 1)
1,5,k

for some integers ¢;;, with 0 <i<p,0<;<p—1,0<k<gq Let 6 =20

. 5a,_1 (c-1a,;

Y . By Lemma 1.1, we have Y(x, 6) = Y(x, £&°7") for every even
character x # 1. Compute both sides when y is of the form x = ¢,7,, where 7, #
1 is an even character belonging to k. By (i) of Lemma 1.1, we get

-1
Yx, 0 = 2 a,Y(, 6,) +a,Yx, n]).
k=1

One can easily check that Y(y, 71';’_1) = 0. For Y(x, 5k), we use earlier computa-
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tion in the middle of this section and the facts that D is generated by p and
7.(») =1 to obtain

Y, 80 = % Yl 04— = S —1 6.7, (cp™)
0r2p1 (g
0<:<|D|
— (P_1)|Dt¢1(Q)
- 2 Tq(Tk)'
X0)]
Thus
Y(x, 0) = =1 ZD| 9@ ’_Zl a1, (7).
o10a)] k=1

On the other hand, from earlier computation, we have

Yz, €7 = ——— () — Dh(@aly,).
100

Therefore, by comparing both sides, we obtain
-1
@®—1D|D| X ar,(t) = (.0 — Daly,).
k=1

By letting 7, vary over all nontrivial even characters belonging to k, we have a
system of linear equations

a, :
G-DIDIAl : |= (@ —D|al) ],

a,,

where A is the (I —1) X (I — 1) matrix with entries 7,(z,). Hence A4 is a matrix
of the type given in Lemma 1.2, so prime ideals above p can not divide (detA)
since p is prime to ¢(¢) and I| @(g). Let € be one of the prime ideals of Q({,,
a(7,)) above p. Since ¢,(06) —1 = {, — 1 is divisible by & and since p /| D],

we have
a, 0
= (mod #).
a,_, 0
Hence a, € € N Z = (p), which means that @, = -+ = q,_, = 0 (mod p).
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a;.; _(o-Da (c—-Da o—-1
. 51111 [ l=y

From the equation &7 i = £°7' we have 7, for
some u € C,, since 8, € C; ' for each k=1,...,1— 1. Thus 7' = up, for
some B, € K,. As ideals, we have (r,)® = (B,). But this is impossible unless
a, = 0 mod p, since primes of K, above p totally ramify in K. This finishes the
first step of the induction argument. Notice that HI(GI, C)) is also generated by
{6),..., 0j_, m{ "} where 8, =N, I ., 1(sz — ™) for any integer ¢
prime to gq.

Now we will prove the theorem for # with assuming the result for # — 1.
Thus we assume that HI(G,, » C,_y) is generated by {8},..., §_,, mo_,}, where
0r=Np (ycj<py (C,,n - C;T ) for any integer ¢ prime to g, in partlcular when
t=p. In the proof, we will use the fact the inflation map H'(G,, C,) —
H'(G,, C,) is injective. By taking N,,_, on both sides of the equation d7' - - -

571‘1‘77::;7_””’ = £ we have
w’ Py o w Ty 1 (6~1a,
Npy\II Gpn — &, e AN\ — G Ty
7 ]
= (Nn,n—ls)a—l'
Hence ¢, = -+ =q, = Omodp"—1 by the induction hypothesis. Let a, = p"’lbk

for k=1,2,...,l. Foreach k, 1 <k <[ —1,
51,” r =N (H (Cpml _ thk)P”—l>

(G — EN )

=N, <H an (cp’"l - C;k) N (Cwi ~ CT;‘)
7,1\ 5p"Ht q

W Ly
) ND(I;I (C;:); - C:n—lrk)> N (IJI OSIEIP”'I ﬁ)
=N <H (Cp2 - C:” T")) X N (HII (Cp”ﬂ _ C;k)l_g,,)
= Np{I1 (5 = &%) x

where u, = ND<H IT (C:::u - T") = ) € C,. Also,
J ot
ﬂﬂ—l

1 n
t, = (N, 1) X — = mu,
n n,1%n Nn,lnn

1~¢*?) . .
where #; = i<, < pn1 ({n1 — 1) € C,. Hence we can rewrite the equation

-1
a ,,. sS4 (c-Da; __ p0-1
61 51—1 Ty - &
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as

by

b
w pr-1 ! w 1 b (e-1b, (6-Db (0-Db,
No(TH (G = 7)o Np(I1 (G — 7)) e
7 7
=§¢7—1
Therefore we have

(= ) = ) e =

where w = &u;" - u; "' € C,,.
Let 6 = N, (L (L& — ¢ ™) -+ Ny, (g — )= 27" Then 6
€ C,, N6=1and 6 € C/™". But since the inflation map H'(G,, C,) — H'(G,,

C,) is injective, d is in C{ . In this case, we already know that b, = -+ = b, =
0 mod p. Therefore @, = -+ = @, = Omod p". This finishes the proof.
o1 S N _
CorOLLARY. For m 2mn, <8,77",..., 8,72, @, ) generatess H ~(G,,,

C,) = H'G,, C,).

Proof. Since Co™ = C, (see [2]), we have the following exact sequence:

inflation restriction

0—H'G, ¢)——H'G,, C,) H'(G,,,, C,).
Since "H'(G,, C,) =p", "H'(G,, C,) = p"" and "H'(G,,, C,) =p"™",

the restriction map must be surjective. Hence

restriction
H'(G,,,, C,) = ImH'(G,, C,) H G C))
= (res(8,,,),..., res(d,,, ), res(m,, >
a‘pn—-l G‘ﬂ”—l ot
=<5, 80,58, T .

§2. Injectivity of Hl(Gm,n, c,)— Hl(Gm,m E,)

In the section we will find a criterion of the injectivity of HI(G,M, c,)—
H'(G,n E,). Since H'(I', C) = (Q,/Z,)" and H'(I', E) = (Q,/Z,)' ® finite
group (see [3], [4]), the map is likely to be injective. And the following proposition
shows that the Greenberg's conjecture on the vanishing of the Iwasawa
A-invariant for a totally real field implies the injectivity for m > n > 0.
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PROPOSITION 2. Suppose the Iwasawa invariant 2" for the field K, = Q(L,,) is
zevo (equivalently, the Sylow p-subgroup of E/C is a finite group). Then H 1(Gm’,,,
C,)— H'(G,,,, E,) is injective for m > n > 0.

Proof. Let B, be the Sylow p-subgroup of E,/C,. It is known that B,— B,,
is injective for m > n (see [2]). Since we are assuming the Greenberg’s conjecture,
li_rp B, = B is finite, and hence is obtained at some finite layer K,,o. That is, B,,n =~
B,, = B for all m 2 n,. Therefore G,,, acts trivially on B, for m > n = n,.
From the short exact sequence 0— C,,— E,,— E, /C,,— 0, we obtain the long
exact sequence of cohomology groups:

0— C,"*— E»*— (E,/C,)°"*— H'(G,,,, C,) = H'(G,,,, E,)—
In this sequence, Co™ = C, (see [2]) and Eg™ = E,. Thus we have:
0—E,/C,~ (E,/C)""— H Gy, C,) = H'(G,,, E,)

Hence, if m > u 2 ny, H'(G,,,, C,) — H'(G,,,, E,) must be injective since
B, =B,

Now we discuss the injectivity of the map when d = ¢ is an odd prime with-
out assuming the Greenberg’s conjecture. We assume that p = 1 mod ¢ so that p

1
splits completely in Q({,)) and I = 7 o(g).

Let R={w <€ Z, | w”™ =1} be the group of p — 1th roots of 1 in the ring

of p-adic integers Z,. Let h,(x) = M,z (A + 2" — #) in Z,[#][[x]]. The follow-
ing expansion of 4,(x) as a power series in x with coefficients in Z,[f] plays an
important role in our discussion of the injectivity.

TreEOREM (see [5]). A, =T, (A1 + 2" —H =1 — H T+ g(z‘)x”’1 +
higher terms, where g(f) = (1 — H* ™% + % Q=97+ + jb—éAl (mod p).

For each #, let us fix a prime ideal ®, of K, in such a way that €, lies
above §, for m > n. Then the set {&}} is the set of all prime ideals of K, above
p when 7 runs over 4 = Gal(Q({,)/Q). For 7 € 4, let K, - be the completion of
K, at the prime ideal &} and let ¢,:K,— K, ¢ be the natural embedding. Put
s, = ¢.({)) be the image of {, in K, . For brevity, we write s for s,; = ¢;4({,).
Let p(7) be the integer modulo ¢ corresponding to 7 under the identification of 4
with (Z/qZ)*. Then st = ¢ ()" = ¢, (L2) = ¢.(£)). Since the completion
of K, at the prime ideal #, is the same as the completion of K, at &, we have

) P Pt _ Sp(r“‘)p(r’) _ Sﬂ(r“r')

S, 0. (L) = ¢,({,) = s. Therefore s, = s and s,
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for any 7, T’ € A.

ProposiTion 3. Let g(f) € Z,[t] be the polynomial introduced above and T,
Tj (S5 A Let 5”,1’,» = HweR (C;ﬂml - C;’) Then, m Kn,@:‘,

5,”] =1+ g(sp(r,-'lr,)) ﬂ:—l mod (7[::)’

where T, = Ly — 1.

Proof. In K, ¢,
Ope, = I (Lp — 52

weER

1z
=1I (C::“l . si)(r, r,))

wER
— hsp(ff'f])(Cp”+l ha 1)

(T7iTy)\ p— (z717y) -
=1 =T+ g(s" T2l mod (z)

p(r;lr,))p—x

by the above theorem. Since (1 —'s = 1 mod p, we obtain the congru-

ence.

Let S= {7, 7,,..., 7,1, T, = id} be a set of coset representatives of 4 mod-
ulo {£ 1}. Let A = (a,;) be the I X [ matrix with entries in Z, such that

o= [ g i< —1
ij .
1 ifg=1.

TuroreM 2. H'(G,,,, C,) = H'(G,,,, E,) is injective for all m > n =0 if
det A # O mod p.

First, we prove a lemma which reduces the theorem to the case when
m=n+1

LEmMMA 2.1. Suppose Hl(GHLS, Cort) —’HI(GSH,S, E.,) is imjective for all
s 20, then H'(G,,, C) = H'(G,,, E) is injective for all t > s = 0.

Proof. Fix s, and write t = s + k. We use an induction on k. If k = 1, then

there is nothing to prove. We will prove the injectivity when t=s+ k+1
assuming the result for ¢t = s + k. Consider the following commutative diagram:
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Hl (Gs+k,s’ Cs+k) - Hl(Gs+k,s’ Es+k)

l inflation l inflation
1 1
H (Gyipirsr Covirt) = H (Gyppyrgr Egipnd)
l restiction l restiction

1 1
H (Gs+k+1,s+k’ Cs+k+1) - H (Gs+k+l,s+k’ Es+k+1)

Note that inflation-restriction sequences are exact and that inflation maps are in-
jective. By hypothesis the top and the bottom of the diagram are also injective.
With these in mind, one can easily check the injectivity of the middle map.

Proof of theorem. By the lemma, we may assume that m = n + 1. We know
0,

that, from the corollary of Theorem 1, {5;‘3’—1 , 5m, 1 T, 1} generates
Hl(Gm‘n, C,) where 8,,; =TI ,p Cm — ;' Suppose 5fl'l_a' .o 5m", 11

7[,(,,”’”*1)“‘ = r]fn‘m_l for some integers a,, ..., @, and for some 7,, in E,,. Since m =
n + 1, it is enough to show that @, = - -+ = a, = 0 (mod p). We write the above
equation as (85, * + * Oui Ty Dayy oot ;Z_l)(op”_“. Thus 62, -+ 0at e V4

-1 . . . -1
= Ny u, for some unit u, € E,. We read this equation in K, ¢-. Since §,,;, 7,

and 7, = are all congruent to 1 modulo 7, #, — 1 € (x,,) N K, o= = (m,) =
(r,)”. Hence by reading the above equation in consequence modulo (nm) , we have

a ... S%- (o-Va; — _0-1 ?
O Ot =1, mod (m,).

By Proposition 3, 0%, = (1 + g(s* Tz ™)% =1 + a,g(s" " )’ mod (r2).
It is easy to check that 7y ' =1+ 7’ 'mod (x’) and that 73, ' = 1mod (x)).
Therefore we get

alg(sﬂ(ﬁlrl)) + azg(sﬁ(‘r,—lrz)) + o+ al_lg(sl’(‘t“lrl_l)) + a, =0 modp.

Since this equation is true for all 7, 1 < { < [, we have a system of linear equa-

tions
a, 0
Al =] mod p.
a, 0
But since det A # Omod p, a, = = g, = O mod p.

Finally, we interpret det A in terms of generalized Bernoulli numbers. We fix
an embedding ¢ from Q (algebraic closure of Q) to C, (completion of the algebraic
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closure of Q,) such that ¢(,) = s and we drop ¢. So, for example, g({;) should
be understood as g(s*®).

Lemma 2.2. detA= II X x(c)g(C).

X€4, even 7;€S
x#1

We omit the proof of this lemma since it is a simple consequence of the fol-
lowing well known fact (see [7)): If f is a function on a finite abelian group G with
values in some field of characteristic 0, then det(f(o67 ), ,ce = M g

2ec x(0) f(0).

THEOREM 3. Let w be the character of Gal(Q((,)/Q) = (Z/pZ)” such that
w(a) = amod p for all integers a with (a, p) = 1. Then we have

q\i-1 1
detA = <_) ——————= Il  B;,,+ modp
27 Jdisc Q)" redgren
Proof. Let yx € A be a nontrivial even character. We will show that
oo 4 - - a
> r,eSX(Tj)g(qu) = -_2’[()2) Bl,;w-l mod (sz — 1), where T(X) = Zamodq x(a) Cq

is the Gauss sum of ¥ . Since IL, v(x) = ydisc Q(Cq)+, the theorem follows
immediately from Lemma 2.2. Let s # 1 be a gth root of 1 in C,. Since

I, (A +2D"—5 =1+ g(s)2" " mod (p, 2”), we have
I (§— =1+ g(s) (e — 1)’ mod € —D.

WER

Hence, by taking p-adic logarithm, we obtain

tog,( I (42 = ) = log, (1 +¢(5) G = 1’™) mod (€, — D).

By expanding out the right hand side, we get
2 log, (L — )
WER

=g — 1" = % () (L= D2+ - +%(g(s)(cp2 —DY .

. . 1 _ )
In this expression every term except —+ (g(s)(C,e — 1) "’ is congruent to

P
0 modulo ({,2 — 1). And one can easily check that ({, — D /p=—1mod
({2 — 1). Thus, X ez log,({ — s) = — g(s) mod ({,. — 1). Therefore,
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(%) - 2 x(zg) = Z x (tlog, (L — {;) mod ({y: — 1

7;€S
r,es

Let ¢ = ¢, be the character of Gal(Q,/Q) as in Section 1 so that ¢(0) = {,
for the generator ¢ of Gal(Q,/Q) = Gal(K,/K)). For 0<i<p—1,0<k<

p— 1, let
T,= 2 x(c)log, ({5 — ¢
oes
and
p_
S, = X ¢*(a" T,
i=0
When k = 0,
-1
So= 2T,
i=0
=X x@ T log G )
7,E€S 0<1<p-1
wWER
1 -
= > x(z) log, —*—
T]esX 73 108, 1— ¢
=0,

since p =1 mod gq.
When k # 0,

S, = 3 x¢'(r;0) log, (€' — )

zwt,

—2* Z x¢" (t;0'w) (log,(szo -+ log,,(C,’,"z'J -4,
=1 3 19" Blog,d — Ly
1<b<p%
_ 1 P q %
=—35 L, 1, x¢).

t(x¢")

Thus we have a system of linear equations:
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0
PO PG - @@\ T, L, 29)
P ¢ - 9 ™™ T, \__1 T(7€¢)
: : 2 :
¢p_1(00) ¢p—1(0_1) ¢ﬁ—1(ap—1) T, M
t(x¢" ™)
By solving this equation, we obtain
T, = ZR X(Tj)Ing(C:’Z - C;,)
;€8
=-4 5 LA, x¢H.

1<k<p-1 T(X(/’)

For the Gauss sum 7(x¢"), we have

k
2 19 @y
a mod p%q
(@,pg)=1

= X 1@+ el

z,y
zmod ¢ (z,9)=1
ymod p2 (y,p)=1

(% i@ Cf)(% " (g L)

)

= (@D ¢* @7 (gh.

Since gbk(q)?(q) =1 and 2'(?‘) 7(¢") = p°, we get
pq 1
__P1 s -

2t(0) 2, 1¢‘ ( )r(gb)

_ T((l))

i

L,a, x¢".

Note that 7(¢)/p is a root of 1, hence, in particular, integral. Let f be the Iwasa-
wa power series giving rise to the p-adic L-function ie., f7(C +p°— 1) =
LG, x</)k) for a suitable p-th root { of 1 depending on gbk‘ Since f; has integral
coefficients,  L,(1, x¢") = (LA + pg) — 1) = £5(0) = L,0, 7) = — B3
mod ({, — 1). Therefore

r(¢ )

T,= —od0 3 gf TEL

— B3, mod (¢, — 1
22 2, 170-) mod (§, — 1)
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-4 p_ . x T mod (¢, — 1)
27(x) “txe 1<k<p-1 » ’ ’
k
Now, we examine the sum 2 T(f).
1<k<p-1
k
1 a
s o 5 25 s
1<k<p-1 1<k<p-1 a(;n;)d:iz

1 i i
= gy
1<k<p-1 P

wWER
0<i<p-1

= 2567 (S0 0h)

—slep-nrsier-

i#0

w 1 wo'!
Tre TRy

= %: C;"z

Hence,

—_ 49 w

To = T(X)Bl‘;w—l % sz mod (Cp -1

_ 49

= WBL;M-I (» — 1) mod (C: — D).
Therefore,

w N _

(% %) ugR x (t)log, (L, — () = 27(3) Bizo1mod (§p: — 1)

;€8

From (%) and (* %), we obtain the desired congruence equation, and this finishes
the proof of the theorem.

CoroLLARY. Let L= Q(L, ) and L™ = Q(C, &), where ¢ =, + ¢
+ - hy
and §, =, + (, LIrp X ;I;— then Hl(Gm,,,, C,)— HI(G,,,,,,, E,) is injective for

»
allm > n > 0. Here hy is the relative class number of L, i.e., hy = h,/h;. Similarly
h, is the relative class number of Q(L,).
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Proof. From the class number formula, we have

h, = Qu 1 (—%BM)

p odd

=2, I By Bis® * B 02

x€d even
x#1

h
for a suitable integer f. Hence if p*h—f, then Il,cf even Biyot  Omod p. By
x#1

)
Theorems 2 and 3, we obtain the injectivity.

CorOLLARY.  Suppose I, i even Birot & 0 mod p. Suppose also the class number
x#1

of Q)" is prime to p. Then, the class number of Q(Cym,)" is prime to p for every
m.

Proof. 1t is enough to show that p X [E,,: C,] for every m (see[6]). From the
short exact sequence 0— C,,— E,— E, /C,,— 0, we have a long exact sequ-

ence

0—C,— E,— (E,/C,)‘"—HG,, C,)— H (G, E,).

Since H'(G,,, C,) — H'(G,, E,) is injective by Theorems 2 and 3, we have
(E,/C,)" = E,/C, Thus (E,/C,)’" ®Z, = E,/C, ®Z, = {0}. Therefore p

Y IE,:C,l
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