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(Received 20th March 1961)

1. Introduction.
For any positive integer n and positive real variables xu x2, ..., xn write

Sn\xl> X2> ••••> xn) ~

where xr is defined for all integers r by the relations

x,+n = xr (2)

H{n)= inf Sn(xu x2, ..., xn), (3)
Xr>0

and

m-e®. (4)
n

it is known that (1, 3, 4)
and

(even n^ 14, odd n^53).
It is also known that (2) X(ri) tends to a limit X as n-* oo and that

X = lim X(n) = inf X(ri).

Further (4),
AgA(24)<0-49950317.

No positive lower bound for X(ji), and so for A, appears to be known,
however, other than the lower bound

i (2V2- l ) = 0-3047 (5)
stated by me, without proof, in 1957 (2), although the problem of estimating
X(n) has aroused considerable interest in the last few years. For this reason I
give here an account of the method used to obtain the lower bound (5), which
I have since improved, so that I can now prove the

Theorem. X(n) >0-33 for all n ̂  1.
The lower bound arises as the minimum of the expression

3 21~'s-g
2 9-10£

https://doi.org/10.1017/S0013091500002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500002777


140 R. A. RANKIN

subject to the condition 0££^i; a more accurate estimate of this minimum is
0-330232.

As will be realised from its length, the proof of this result is not simple,
although the ideas involved are fairly elementary. The details are abbreviated
as much as possible.

2. Some Lemmas.
We shall make considerable use of the functions / and g which are defined

on the non-negative numbers as follows:

fix) = x (O^xgi), fix) = V(2x)-±
g(x) = x (Ogx^l) , g(x)=l + logx

Lemma 1. fix) and g(x) are convex functions of log xfor x>0; i.e., for any
positive integer m and positive xu x2, ..., xm

fix1)+fix2)+...+f(xm)^mf{(x1x2...xm)l/m},

and g satisfies a similar inequality. Further

Proof. Both/(x) and g(x) are continuous and have continuous derivatives
for x^.0. They possess second derivatives/"(x) and g"(x) except for x = \ and
x = 1, respectively, and

*/"(*) +/'(*) > 0. xg"(x)+g'(x) ^ 0,
except at these points, from which the convexity properties follow. The last
inequality for / i s easily verified.

In the following four lemmas we are concerned with finding lower bounds
for partial sums of (1); we write, for any positive integer L,

<I>L= <l>iX.Xo>xl,...,xL+i)= £ -f (6)
r — 0 Xr + i ~r Xr + 2

where x0, xt, ..., xL+1 are any L+2 positive numbers, subject only to the
restrictions imposed in the lemmas.

Lemma 2. IfL^l andx1^x2^...^xL+1, then <j>L^:iL(xo/xL)1/L.

Proof. By the inequality of the arithmetic and geometric means,
I l / L
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Lemma 3. IfL = 2 and x1i£x2, x 3 ^x 2 , then 02^/(xo/x2).

Proof. For x ̂  0 and 0 g u g 1, write

h(x, u) = - 5 - + | « , (7)
1 + M

so that
+ ^ +

xt+x2 x2 + x3 xt + x2 2x2

(8))
V2 xj

We prove that
h(x,u)^f(x) (x^O.O^ugl) (9)

For 0^x^$ this follows since

If x > i it is easily verified that, for fixed x, h{x, u) has a minimum where
u = s/(2x)-l,so that

*(*, u)^h(x,J(2x)-l)=f(x).
The result follows from (8) and (9).

Lemma 4. IfL = 3 a/u/ J C 1 ^ X 2 ^ X 3 , x4^x3, then <l>3^g(.xo/x3).

Proof. We have, by (6) and (7) and (9),

2x3

(10)

where

^(x, u) = - 2 - +/(M),

1 + M
and we suppose that x^O, O ^ M ^ I . We prove that

, u) = - 5 _ +/(u)-ff(x)10 (11)
1 + M

and may clearly suppose that u>0. Since

x, u) = g\x),
l +
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there is, for fixed u, a minimum where x = 1+M, and so

This last expression has a non-negative derivative for «S0, so that

Mx, M)^/(0)-log 1 = 0.

This proves (11), and the lemma follows, by (10).

Lemma 5. IfL^4 and xl^x2^--^xL, xL+l^xL, then

Proof. We have, by (7), (9) and Lemma 1,

-?J, +0+ *L + -*£ + ...
2 2 2

+ +0+ + + ...+ +
xt+x3 2x3 2x5 2x6 2xL 2xL

1/(1,-3)

The functions / and g, whose values appear as lower bounds in Lemmas 3,
4 and 5, can be replaced by functions taking larger values over certain parts of
their domains; thus, for 1^x^9/4, 1 + logx can be replaced by 2s/x—\.
These improvements, however, produce no corresponding improvements in the
main lemma, which is Lemma 7, and so are not given.

Lemma 6. Let a, b, c, d, A, B and C be non-negative constants with A + B+C
= 1. Then, if x, y and z are any non-negative numbers such that

xAyBzc = d,
we have

aAx+bBy+cCz^daAbBcc,

where 0° is always to be interpreted as 1.

The proof is straightforward and is omitted.

Lemma 7. Let

Fix, y, z, i) = px+q'(yj2-i) + r(zj2
where x, y, z and t are positive numbers satisfying

xpyq'z'f = 1

andp, q,q',r and s are non-negative numbers such that

p+q+r + 3s = n>0.
Then

F{x,y,z, 0>0-66M.

https://doi.org/10.1017/S0013091500002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500002777


A CYCLIC INEQUALITY 143

Proof. We put m = p+q' + r. If m = 0, then s = %n, t = 1 and

F(x, y, z, t) = $ng(l) = |« .

We may therefore suppose that w>0, and put

p = mu, q' = mi), ^ = mw,
so that

m(l+ii;+3w)S« (12)
By Lemma 6, with a = m, b = c = m *J2, A = u, B = v,

F(x, y, z, t^mir^w-^-Ul-^ + lwgit)} = Fu

say. We find the minimum of Fj subject to (12) and the inequalities

We have

^ 1 = ±mrw{fw-2*(1-B)log 2} (13)

du

It is convenient to write

a = log 2 = 0-69315, p = -loglog 2 = 0-36651,

all decimals being correct to the number of places given. There are three casesp
to be considered: (i) a2*wgr^a2*, (ii) r^a2±°, and (iii) fw^a2*.

(i) In this case t< 1, since x2i = 0-98026< 1, and the inequalities for tw may
be expressed in the form

w

2 log t ~ ~ 2 log t

It follows from (13) that Ft has a minimum where a2*(1~") = tw, so that

Ft^F2 = ma'1^~P+w(2at-log t)}>0.
We suppose first that 0<t^i; since 2(xt—log t decreases with /,

- *~<x f+3w
since 9(1-)?)-8a>0.

We may therefore suppose that £< t< 1. Then

= Tl

and dF3/dw<0, since

Hence, by (14),

a C -
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where
A = 2apt-log t, 0 = ia(2otf-log 0,
C = 30-logt, D = i<x+$logt.

We show that F4^in; this will follow if we prove that
@) (15)

Now
3B-2aD = -3a{a(l-0+Tiflog0>

which decreases for \ < t < 1, since 18a < 13, and so exceeds zero. Hence we can
take v = 1 in (15) and must prove that

i.e. that
•K0 = (18-25a)logf-18a(2j?-a)(l-0>0.

Now
«A'(0 = 18a(2)S-a)-(18-25a)/-1

= 0-49755-0-67132r1<0,
so that *l/(t)^ip(l) = 0, as required. Thus we have shown that, if case (i) holds,

n i^f r t .
(ii) In this case 0<t<l and

>0
2 log t

Then dFJdu^O, by (13), so that, since u^l-v,

(16)

(17)

The numerator is positive since 2iv>$v. Regarded as a function of t, F5 has a
minimum at

/ = 2"«, where £ = l-^-.
l + w

We put

so that

Now O^u^l and so, by (16),

and

< ^ l - £ = 0-47123.
a

We have
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and

for 23 ? + 6£ — 9 < 0 for £ < \. Thus F decreases with r\ and so, since r\ g \

5 = 5 6 9 —10?
It therefore suffices to show that

i.e. that

This holds since F7(^) has a minimum where 2? = •§• log 2, so that

F ^ ^ | l o g _ ( j £ j o g 2 ) _ t - 9 g = 0 . 0 0 1 0 7 > 0

log 2

(iii) In this case we can again show that Ft ^ f n. We have dFJdu ^ 0, so that

1
and

If / ^ 1, g'(0 = t~l so that 8F8/dt>0 and

3
since 9(2*-$)>8.

We may therefore suppose that t< 1 and we then have

By (17), the right-hand side is the same as nF5 with v = 1 and so has a minimum
for / = 2"4, where £ = 1/{2(1 + w)}. Now t) = 1 gives r\ = IE,, so that, by (18),

The conditions on ^ are different in this case, however. They are

It is easily verified that 9-21~5> 18 — 11^ in this range, so that F6(£)>$. This
completes the proof of the lemma.

3. Proof of the Theorem. Let xu x2, ..., xn be any n positive numbers. We
prove that

Sn(xu x2, ..., xn)>O-33n.
E.M.S.—L
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We may suppose that the n numbers are not all equal, since otherwise Sn = \n.
We divide them into disjoint subsets of numbers with consecutive suffixes by
the following method, which we first describe in general terms.

Because of our convention (2), we may regard the n numbers as being
arranged in cyclic order, for example, on the circumference of a circle. This
circumference we divide into subsets by making a cut before every minimum and
after every maximum. This yields subsets of two types, (i) increasing subsets
running from a minimum to a maximum, and (ii) decreasing subsets running
from just after a maximum to just before a minimum.

More precisely, if L^n, a subset xq+1, xq+2, ..., xq+L is called an increasing
subset of length L, if L^2 and

Xq>Xq+1, Xq + 1^Xq + 2^.-

It is called a decreasing subset of length L, if L^ 1 and

Xq^>Xq+l = Xq + 2=---

In either case xq/xq+L is called the ratio of the subset.
In this way the set of n numbers xu x2, ..., xn is divided into a number of

disjoint subsets, the product of whose ratios is 1. Two increasing subsets may
follow one after the other, but two or more consecutive decreasing subsets can
always be combined into a single decreasing subset, and we shall suppose that
this is done.

The sum S(xu x2, ..., xn) also splits up into a number of subset sums, one
from each subset; for example, the contribution to 5(x,, x2> ••-, xn) from the
subset xq+1, xq+2, ..., xq+L is

y -^q + r
r = 0

and is a sum of the form (6). Lemmas 2 to 5 are applicable to these subset sums.
In fact Lemma 2 applies to decreasing subsets of any length L^ 1, while Lemmas
3, 4 and 5 apply to increasing subsets of lengths 2, 3 and L 2:4, respectively.
We can split S = S(xu x2, ..., xn) into four corresponding parts, namely

S = D+I2+I3+I4,

where, for example, 74 denotes the sum of all increasing subset sums of length

If p is the total length of all decreasing subsets, Lemma 2 combined with the
inequality of the arithmetic means shows that

where xp is the product of all the ratios associated with these subsets. Similarly,
Lemmas 1 and 3 show that
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where r is the total length of all increasing subsets of length 2 and zr is the product
of their ratios. Also, Lemmas 1 and 4 show that

where 3s is the total length of all increasing subsets of length 3 and fs is the product
of their ratios. Finally, if

the summations being over all lengths L ^ 4 of increasing subsets, Lemmas 1 and
5 show that

where y9' is the product of their ratios. By the last part of Lemma 1 we have

and, since L— 1 2:$L for Z-^4,

q"^\q and p+q + r + 3s = n.

Also, since the product of all the ratios is 1,

xpy"'zrf = 1.

The Theorem now follows from Lemma 7.
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