Testing Twin Means and Estimating Genetic Variance

Basic Methodology for the Analysis of Quantitative Twin Data

Joe C. Christian

Department of Medical Genetics, Indiana University School of Medicine, Indianapolis

Twin methodology for the analysis of continuously distributed traits is presented as a guideline for initial steps in the analysis of twin data. Tests for heterogeneity of twin means and variances are reviewed along with estimates of genetic variance.

Analysis of twin data appears on the surface to be a rather simple task, but investigators may well be confused by the wealth of choices available for hypothesis testing. This paper is designed to help the less experienced investigator, with perhaps a modest amount of data, begin analysis with maximum attention to testing all testable assumptions of the twin model, and using recent examples of applications of the methods.

Key words: Twin data analysis, Genetic variance, Associations with twin type, Twin placentation, Environmental covariance, Heritability estimates

Twins are commonly used to study continuously distributed or quantitative traits, but there is little agreement among investigators about how to analyze and present twin data. This paper is an attempt to answer the often asked question of where to start on twin analysis, but is far from inclusive of all possible analytic strategies.

No attempt is made to answer the question raised by responsible investigators as to whether there is any place for twins in studies of biometric traits in man [11, 19]. How-

This manuscript was reviewed by the members of the Working Group on Standardization of Twin Data Analysis of the International Society for Twin Studies, including (besides the present author) Drs. G. Allen (Rockville, Maryland, USA), G. Brenci (Rome, Italy) E. Defrise-Gussenhoven (Brussels, Belgium), R.C. Elston (Chapel Hill, North Carolina, USA) and R. Garrison (Bethesda, Maryland, USA). A review of multivariate methods of analysis, authored by D.W. Fulker (London, Great Britain), will follow.

This is publication no. 77-71 from the Department of Medical Genetics and was supported in part by the Indiana University Human Genetics Center, PHS P50 21054, and research grants PHS R01 HL 20034 and PHS P50 HL 14159.

0001-5660/79/2801-0035$01.40 © 1979 Alan R. Liss, Inc.
ever, I have a firm conviction that twins will prove to be one of the most effective and
cost-efficient methods of quantitative genetic analysis if attempts are made to prevent
biases of ascertainment, to test all testable assumptions of the twin model, to use the most
efficient methods of analysis available, and to finally test on singletons hypotheses formu­
lated from twin studies.

TEST FOR ASSOCIATION OF A VARIABLE MEAN WITH TWIN TYPE

Comparisons of monozygotic (MZ) and dizygotic (DZ) twins are used to estimate genetic
variance or heritability. Comparisons of monochorionic and dichorionic MZ twins are also
made, as are comparisons of twin types divided by race, sex, etc. Whenever two types of
twins are compared, an important early step in the analysis is a test of the differences be­
tween the means of the twin types. Discovery of a difference between twin means is evi­
dence for an association between twin type and the trait being studied. Detection of such
associations is important to prevent possible bias in further steps in the analysis and to pro­
vide insight into sources of variation for the trait being studied.

Christian and Norton [8] proposed that the appropriate test for significance of the dif­
ference between the means (\bar{Y}) of MZ and DZ twins (applicable to other types of twins)
is the following t' test:

$$t' = \frac{(\bar{Y}_{MZ} - \bar{Y}_{DZ})}{\sqrt{\frac{M_{AMZ}}{2n_{MZ}} + \frac{M_{ADZ}}{2n_{DZ}}}}$$

with approximate degrees of freedom =

$$\frac{\left[\left(\frac{M_{AMZ}}{2n_{MZ}} + \frac{M_{ADZ}}{2n_{DZ}}\right)^2\right]}{\left[\left(\frac{M_{AMZ}}{2n_{MZ}}\right)^2/(n_{MZ} - 1) + \left(\frac{M_{ADZ}}{2n_{DZ}}\right)^2/(n_{DZ} - 1)\right]}$$

This test is based upon the nested structure of twin data. Twin type is a fixed effect. The
twin pairs nested within twin types constitute a random effect. Finally, individuals nested
within twin pairs are another random effect. The appropriate test of the fixed effect (the
difference between the means of the twin types) uses the mixed model nested or hier­
archial analysis of variance [23: pp 266 ff].

The usual analysis of variance among and within twin pairs is shown in the Table
and may be used as the first step in the nested analysis referred to above. The t' test (1)
can then be calculated.

There is little data available about how common associations are between trait means
and twin type. Many early studies used the independent-samples t test, making positive re­
sults suspect because this test tends to overestimate the significance of differences be­

<table>
<thead>
<tr>
<th>TABLE. General Analysis of Variance Model for Twin Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of variation</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Among pairs</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Within pairs</td>
</tr>
</tbody>
</table>

$df =$ Degrees of freedom; $n_{MZ} =$ number of MZ pairs, $n_{DZ} =$ number of DZ pairs.
between twin means [8]. Havlik et al [15] used a test very similar to the t' test (an F test the equivalent of Christian and Norton's t_0 [8]) and found that 4 of 11 clinical chemistry values had evidence for unequal means of MZ and DZ twins (P < 0.05) in 514 pairs of adult male twins. These twins were studied in the US National Heart, Lung and Blood Institute (NHLBI) Collaborative Twin Study. The association of twin type and the means of quantitative traits may therefore be relatively common.

TEST FOR ASSOCIATION OF TOTAL VARIANCE WITH TWIN TYPE

Kempthorne and Osborne [16] proposed that the total variance of twin types be compared to search for associations between sources of variation and type of twin. Haseman and Elston [14] proposed the appropriate F' test:

\[
F' = \frac{(M_{ADZ} + M_{WDZ})}{(M_{AMZ} + M_{WMZ})}, \text{ or }
\]

\[
F' = \frac{(M_{AMZ} + M_{WMZ})}{(M_{ADZ} + M_{WDZ})}
\]

with the larger sum in the numerator and the approximate degrees of freedom for the DZ sum calculated as follows:

\[
\frac{(M_{ADZ} + M_{WDZ})^2}{[(M_{ADZ})^2/n_{DZ}^{-1}] + [(M_{WDZ})^2/n_{DZ}]}
\]

and similarly for the MZ sum.

As with associations of twin type and the mean, associations of the variance of a trait and twin type may indicate sources of variation that seriously bias further analyses, such as estimating genetic variance or heritability. In the NHLBI Twin Study, 15 of 31 quantitative variables were found to have significant evidence (P < 0.05) for unequal total variance of MZ and DZ twins [9]. Reed et al [20] reported that 20 of 71 dermatoglyphic variables had significantly (P < 0.05) unequal total variances for MZ and DZ twins. Association of twin type with the variance of quantitative traits, therefore, does not appear to be unusual.

Possible causes for association of total variance with twin type are prenatal environmental influences due to placental types of MZ twins. After finding evidence for a smaller plasma cholesterol total variance for MZ compared to DZ twins in adults [5] and newborn infants [4], the newborn MZ twins were then divided into monochorionic and dichorionic pairs. The monochorionic pairs were found to have a within-pair mean square one-fifth of that of dichorionic MZ twins (P < 0.05 [10]). A similar finding was reported for plasma cholesterol variation in adult monochorionic and dichorionic MZ twins [6]. Evidence for unequal variance of monochorionic and dichorionic MZ twins has also been found for hematocrit [24], IgG [1], IQ [17], and dermatoglyphics [21, 22].

FUNCTIONS OF POPULATION GENETIC VARIANCE

The commonly used estimates of genetic variance from twin data (5 and 7) are a complex fraction of population genetic variance [2]. An estimate of population genetic variance may be obtained from the following estimates by assuming that dominance and epistatic deviations are zero and multiplying the twin estimates by two.
Several estimates of genetic variance have been proposed for use with twin data
[2, 12, 14, 16]. For studies involving large numbers of twins, and for traits where there is
no inequality of the total variances of MZ and DZ twins, all of these estimates are very
similar. The within-pair estimate (\hat{G}_{WT}) is the most commonly used of these estimates:

$$\hat{G}_{WT} = M_{WDZ} - M_{WMZ}$$ (5)

The significance of \hat{G}_{WT} is tested by the following F ratio:

$$F = M_{WDZ}/M_{WMZ}$$ (6)

with the appropriate degrees of freedom for these two mean squares as shown in the Table.

If the trait being studied has evidence for association of its mean or variance with a
twin type, then it is possible that \hat{G}_{WT} is a biased estimator. For some traits it may be possible
to remove apparent associations of the variance and the mean with twin type by
appropriate transformations.

Falconer [12] published an among-twin-pair component estimate of genetic variance,
and Haseman and Elston [14] presented an unweighted least-squares estimate of genetic
variance equal to two times the among-pair component estimate of Falconer. Christian
et al [2] proposed that Falconer’s estimate, designated G_{CT}, is an unbiased estimator of
genetic variance when the total variances of MZ and DZ twins are unequal due to environ-
mental influences. G_{CT} is calculated as follows:

$$\hat{G}_{CT} = \left[\left(M_{AMZ} - M_{ADZ} \right) + \left(M_{WDZ} - M_{WMZ} \right) \right]/2$$ (7)

with the following significance test:

$$F' = (M_{WDZ} + M_{AMZ})/(M_{ADZ} + M_{WMZ})$$ (8)

$$\text{numerator df} = \frac{(M_{WDZ} + M_{AMZ})^2}{[(M_{WDZ})^2/n_{DZ}^2] + [(M_{AMZ})^2/n_{MZ}^2]}$$

and similarly for denominator degrees of freedom.

Kempthorne and Osborne [16] reviewed several theoretical environmental influences
that could cause the total variances of MZ and DZ twins to be unequal. The recent find-
ings of placental type associated with total variance of quantitative traits is evidence for
unequal environmental influences on twin types and a situation where G_{CT} would be expected
to give an unbiased estimate of genetic variance. Feinleib et al [13] further com-
pared the properties of G_{CT} and G_{WT} when the environmental variances and covariances
of MZ and DZ twins differ.

Nance, in a letter to the Editor of the American Journal of Human Genetics [18], gave
an example of unequal total variances due to unequal genetic backgrounds of MZ and DZ
twins and proposed use of \hat{G}_{WT} even though the variances of MZ and DZ twins are found
to be unequal. It was subsequently pointed out [7] that this example would be expected
to cause an association of twin type with twin means as well as variances.

There has been no estimate of genetic variance proposed to be unbiased when the
means of MZ and DZ twins are different.
TEST OF EQUALITY OF ENVIRONMENTAL COVARIANCES OF MZ AND DZ TWINS

A serious possibility for bias of all commonly used estimates of genetic variance is inequality of the environmental covariances of MZ and DZ twins. If, for example, the environmental covariance of MZ twins is greater than the environmental covariance of DZ twins, then most estimates of genetic variance and heritability will be biased upward. To guard against spurious estimates of genetic variance, a screening F test of \(\frac{M_{\text{ADZ}}}{M_{\text{VDZ}}} \) has been suggested [3]. If an estimate of genetic variance is significant and this F ratio is not appreciably greater than 1.0, then the possibility of greater environmental covariance for MZ twins should be suspected.

HERITABILITY ESTIMATES FROM TWIN DATA

Numerous heritability estimates have been proposed for use with twin data. Heritability is a decimal fraction between 0 and 1.0 obtained by dividing an estimate of population genetic variance by an estimate of population variance. The estimates of genetic variance discussed in the previous section (\(G_{\text{VT}} \) and \(G_{\text{CT}} \)) are a complex fraction of population genetic variance, and only by assuming no dominance or epistasis can they be transformed into an estimate of population genetic variance by doubling them. It is also difficult to obtain an unbiased and stable estimate of population total variance, further complicating estimation of heritability.

REFERENCES

Correspondence: Dr. J. C. Christian, Department of Medical Genetics, Indiana University School of Medicine, 1100 West Michigan Street, Indianapolis, IN 46202, USA.