
JFP 13 (2): 261–293, March 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796802004501 Printed in the United Kingdom

261

Setoids in type theory

GILLES BARTHE, VENANZIO CAPRETTA

INRIA Sophia-Antipolis, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France

(e-mail: {Gilles.Barthe}{Venanzio.Capretta}@inria.fr)

OLIVIER PONS

CNAM, France

(e-mail: pons@cnam.fr)

Abstract

Formalising mathematics in dependent type theory often requires to represent sets as setoids,

i.e. types with an explicit equality relation. This paper surveys some possible definitions of

setoids and assesses their suitability as a basis for developing mathematics. According to

whether the equality relation is required to be reflexive or not we have total or partial setoid,

respectively. There is only one definition of total setoid, but four different definitions of partial

setoid, depending on four different notions of setoid function. We prove that one approach

to partial setoids in unsuitable, and that the other approaches can be divided in two classes

of equivalence. One class contains definitions of partial setoids that are equivalent to total

setoids; the other class contains an inherently different definition, that has been useful in the

modeling of type systems. We also provide some elements of discussion on the merits of each

approach from the viewpoint of formalizing mathematics. In particular, we exhibit a difficulty

with the common definition of subsetoids in the partial setoid approach.

1 Introduction

Proof-development systems such as Agda (Coquand & Coquand, 1999), Coq (2002)

and Lego (Luo & Pollack, 1992) rely on powerful type systems and have been

successfully used in the formalization of mathematics. Nevertheless, their underlying

type theories – Martin-Löf’s Type Theory (Nordström et al., 1990) and the Calculus

of Inductive Constructions (Werner, 1994) – fail to support extensional concepts

such as quotients and subsets, which play a fundamental role in mathematics. While

significant efforts have been devoted to embed subset and quotient types in type

theory (Altenkirch, 1999; Barthe, 1995a; Courtieu, 2001; Hofmann, 1994; Hofmann,

1995b; Hofmann, 1995a; Jacobs, 1999; Maietti, 1999; Salvesen & Smith, 1988), all

proposals to date are unsatisfactory, mostly because they introduce non-canonical

elements or lead to undecidable type-checking. Thus current versions of Agda,

Coq and Lego do not implement subset or quotient types. Instead, mathematical

formalizations usually rely on setoids, i.e. mathematical structures packaging a

carrier: the “set”, its equality: the “book equality” and a proof component ensuring

that the book equality is well-behaved. This notion was introduced in constructive

mathematics by Bishop (1967).
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While setoids have been extensively used in the formalization of mathematics,

there does not seem to be any consensus on their precise definition. Instead, setoids

come in several flavours: for example, they can be total (the book equality is an

equivalence relation) or partial (the book equality is a partial equivalence relation);

classical (apartness is defined as the logical negation of equality) or constructive

(setoids come equipped with an apartness relation independent from the equality

relation). Worse, literature about setoids fails to compare the respective merits of

existing approaches, especially from the viewpoint of formalising mathematics.

The purpose of this paper is four-fold:

• in section 2, we review existing approaches to define (the category of) setoids.

It turns out that there are several alternatives to define morphisms of partial

setoids, leading to different definitions of the category of partial setoids;

• in section 3, we show that there are, up to equivalence of categories, two

approaches to setoids. Further, we show that one approach to partial setoids,

that appears in the literature, uses a definition of function setoid that does not

give a correct exponent object for a cartesian closed category;

• in section 4, we assess the suitability of the different approaches by considering

choice principles. We show that both partial and total setoids can be turned

into a model of intuitionistic set theory by assuming the axiom of unique

choice. However, the axiom of unique choice for partial setoids is too weak,

in that it does not permit us to define some very natural functions on partial

setoids;

• in section 5, we introduce some basic constructions on setoids, such as subsets

and quotients, and assess the relative advantages of existing approaches w.r.t.

these constructions.

Setting and notations To fix ideas, we shall be working with an extension of the

Calculus of Constructions with dependent record types and universes. Dependent

record types are used to formalize mathematical structures and universes are used to

form the type of categories. Note that we do not need record subtyping and cumu-

lativity between universes and that equality between records is neither extensional

nor typed. However, our results are to a large extent independent from the choice

of a type system.

Following Luo (1994), we use Prop for the universe of propositions, Typei for the

i-th universe of types. By abuse of notation, we write Type for Type0 so we have

Prop:Type and Typei : Typei+1. Moreover, we use the notation 〈l : L, r : R〉 for a

record type with two fields l of type L and r of type R and 〈l = a, r = b〉 for an

inhabitant of that type. Finally, we let
.

= denote Leibniz equality, defined as

λA : Type.λx, y : A. ΠP : A→ Prop. (P x)→ (P y)

Proof scripts Most of the results presented in the paper have been formalized in

the proof assistant Coq V7.3 and can be obtained from the following web page:

http://www-sop.inria.fr/lemme/Venanzio.Capretta/setoids/index.html.
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2 Setoids

This section gathers some existing definitions of setoids. Here we focus on classical

setoids, i.e. setoids that do not carry an apartness relation. Similarly, we ignore issues

related to the decidability of equality and do not require equality to be decidable. In

this setting, there is a single reasonable definition for total setoids and morphisms

of total setoids. Also, there is a single reasonable definition for partial setoids, but

there are at least four possible definitions for morphisms of partial setoids.

Below we give these possible definitions of setoids. None of them is original. The

first definition has been used, for example, in the formalization of basic algebra

(Aczel, 1993; Barthe, 1995b) and of constructive category theory (Huet & Säıbi,

2000). The second definition has been used, for instance, in the formalization of

polynomials (Bailey, 1993). The other definitions have been used by Hofmann (1994,

1995a, 1995b) to interpret extensional concepts in intensional type theory.

2.1 Total setoids

A total setoid consists of a type T (the carrier), a binary relation R on T (the book

equality), and a proof that R is an equivalence relation over T .

Definition 1

The type of total setoids is defined as the record type

Sett = 〈elt : Type, eqt : elt → elt → Prop, er : Er elt eqt〉
where

Er = λA : Type.λR : A→ A→ Prop.

〈 reflt : ∀x : A. R x x,

symt : ∀x, y : A. (R x y)→ (R y x),

transt : ∀x, y, z : A. (R x y)→ (R y z)→ (R x z)〉
By abuse of notation, we write elt A for A · elt and =A for A · eqt.

Each type T induces a setoid ‡T defined as

〈elt = T , eqT = λx, y : T . x
.

= y, er = . . .〉
A map of total setoids is a map between the underlying carriers which preserves

equality. So, if A and B are two total setoids, a map of total setoids from A to B

consists of a function f : elt A→ elt B and a proof that f preserves equality.

Definition 2

Let A and B be two total setoids.

• The type mapt A B of morphisms of total setoids from A to B is defined as the

record type

mapt A B = 〈 apt : elt A→ elt B,

extt : ∀x, y : elt A. (x =A y)→ (apt x =B apt y)〉
By abuse of notation, we write apt f a for f · apt a.
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• The function space setoid Mapt A B of maps from A to B is defined as the

record

Mapt A B = 〈 elt = mapt A B,

eqt = λf, g : mapt A B. ∀x : elt A. (apt f x) =B (apt g x),

er = . . .〉
We conclude this paragraph by observing that it would have been equivalent to

define equality between morphisms from A to B as

λf, g : mapt A B. ∀x, y : elt A. (x =A y)→ (apt f x) =B (apt g y)

This alternative definition will be used later for partial setoids, but in that case the

two definitions will not be equivalent.

2.2 Partial setoids

A partial setoid consists of a type T (the carrier), a binary relation R on T (the

book equality) and a proof that R is a partial equivalence relation over T .

Definition 3

The type of partial setoids is defined as the record type

Setp = 〈elp : Type, eqp : elp → elp → Prop, per : Per elp eqp〉
where

Per = λA : Type.λR : A→ A→ Prop.

〈 symp : ∀x, y : A. (R x y)→ (R y x),

transp : ∀x, y, z : A. (R x y)→ (R y z)→ (R x z)〉
By abuse of notation, we write elp A for A · elp and =A for A · eqp.

In the framework of partial setoids, one distinguishes between defined and un-

defined elements. The defined elements of a partial setoid A are those expressions

x : elp A such that x =A x; they form the domain of the partial setoid.

Definition 4

• The domain of a partial setoid A is defined as the record type

domain A = 〈cont : elp A, def : cont =A cont〉
• The domain setoid of a partial setoid A is defined as

Domain A = 〈 elp = domain A,

eqp = λx, y : domain A. x · cont =A y · cont,

per = . . .〉
Note that the underlying equality of domain setoids is a total equivalence relation.

In the next section, we will use domain setoids to relate partial setoids to total setoids.

We now turn to the definition of morphism of partial setoids. It turns out that there

are several possible alternatives for this notion; below we present four alternatives

that appear in the literature. The alternatives are determined by the following two

issues:
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1. What is the status of extensionality? Following the definition of morphism

of total setoids, a morphism of partial setoids from A to B can be defined

as a pair 〈f, φf〉 where f is a type-theoretical function mapping “elements”

of A to “elements” of B and φf is a proof that f preserves equality; this

definition is similar to the one for total setoids. However, one can also take

advantage of the possibility to restrict the defined elements by using a partial

equivalence relation and choose (1) to define morphisms of setoids as type-

theoretical functions, (2) to embed extensionality in the definition of equality

for morphisms of setoids – in such a way that a morphism is defined w.r.t. the

equality of the setoid Map A B iff it preserves equality.

2. What is the domain of the function? A morphism of partial setoids from A to

B may either take as inputs elements of A, or elements of Domain A – in the

latter case, one will require that the morphism is constant in the def field of

the record.

This leaves us with four alternatives, which are summarized and described below.

Extensionality vs. inputs Elements of A Elements of Domain A

In the definition of morphism Setp Setq
In the definition of equality Setr Sets

• The first alternative, which appears in Bailey (1993), is to adapt to partial setoids

the definition of map of total setoids. Indeed, one can define a map of partial

setoids as a map between the underlying carriers which preserves equality.

Definition 5

Let A and B be two partial setoids.

• The type mapp A B of P -morphisms of partial setoids from A to B is defined

as the record type

mapp A B = 〈 app : elp A→ elp B,

extp : ∀x, y : elp A. (x =A y)→ (app x =B app y)〉
By abuse of notation, we write app f a for f · app a.

• The P -function space setoid Mapp A B of maps from A to B is defined as the

record

Mapp A B = 〈 elp = mapp A B,

eqp = λf, g : mapp A B. ∀x : elp A.

(x =A x)→ (app f x) =B (app g x),

per = . . .〉
Note that f =Mapp A B

f for every A,B : Setp and f : mapp A B.

• The second alternative requires that a function from A to B takes two arguments,

namely an element a : elp A and a proof φ : a =A a. The second argument is here

to prevent some anomalies with empty sets (see section 3.2), but the result of the

application of the function does not depend on it.
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Definition 6
Let A and B be two partial setoids.

• The type mapq A B of Q-morphisms of partial setoids from A to B is defined

as the record type

mapq A B = 〈 apq : Πa : elp A. (a =A a)→ elp B,

extq : ∀x, y : elp A.∀φ : x =A x.∀ψ : y =A y.

(x =A y)→ (apq x φ =B apq y ψ)〉
• The Q-function space setoid Mapq A B of maps from A to B is defined as the

record

Mapq A B = 〈 elp = mapq A B,

eqp = λf, g : mapq A B. ∀x : elp A. ∀φ : (x =A x).

(apq f x φ) =B (apq g x φ),

per = . . .〉
This approach makes function application awkward; perhaps for this reason it

has never been used in practice. Note that f =Mapq A B
f for every A,B : Setp

and f : mapq A B.

• The third alternative, which appears in Hofmann (1995b) and has been used

extensively in Čubrić et al. (1998) and Qiao (2000), does not require inhabitants

of the carrier type of the function setoid to preserve equality: instead, the function

space between A and B is defined as a partial setoid with carrier elp A → elp B.

Equality is defined in the obvious way; as a consequence, the defined elements of

this partial setoids are those type-theoretical functions preserving equality.

Definition 7
Let A and B be two partial setoids.

• The type mapr A B of R-morphisms of partial setoids from A to B is defined

as the type

mapr A B = elp A→ elp B

• The R-function space setoid Mapr A B of maps from A to B is defined as the

record

Mapr A B = 〈 elp = mapr A B,

eqp = λf, g : mapr A B. ∀x, y : elp A.

(x =A y)→ f x =B g y,

per = . . .〉
Note that we need not have f =Mapr A B

f for A,B : Setp and f : mapr A B:

in other words, Mapr A B may be a partial setoid. Also, note that transitivity of

equality for Mapr A B uses that

∀x, x′ : elp A. (x =A x
′)→ x =A x

which is provable from the symmetry and transitivity of =A.

• The fourth alternative, which appears in Hofmann (1994), takes as inputs defined

elements of A and does not require inhabitants of the carrier type of the function

setoid to preserve equality.
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Definition 8

Let A and B be two partial setoids.

• The type maps A B of S-morphisms of partial setoids from A to B is defined

as the type

maps A B = Πa : elp A. x =A x→ elp B

• The S-function space setoid Maps A B of maps from A to B is defined as the

record

Maps A B = 〈 elp = maps A B,

eqp = λf, g : maps A B. ∀x, y : elp A.

∀φ : x =A x. ∀ψ : y =A y.

(x =A y)→ f x φ =B g y ψ,

per = . . .〉

2.3 Total functional relations as morphisms?

All previous definitions introduce morphisms of setoids as (structures with under-

lying) type-theoretical functions. In contrast, set theory views morphisms of sets as

graphs. One may therefore wonder about this departure from mainstream math-

ematics. Two points need to be emphasized:

• first, our type theory is expressive enough to formalize the notion of total

functional relation and thus one needs not depart, at least in principle, from

mainstream mathematics;

• secondly, our type theory does make a difference between the two approaches:

every function has an associated total functional relation but the converse

needs not be true.

In section 4 we provide some choice axioms under which the two approaches coincide,

and briefly discuss the validity of our results/claims in other type-theoretical settings,

but for the time being, let us focus on the relative benefits of the two approaches:

• Using type-theoretical functions as the underlying concept for morphisms of

setoids is very much in line with the philosophy of type theory because it

provides a computational meaning to functions. In effect, most formalizations

of mathematics in type theory follow the first approach.

• Using total functional relations as the underlying concept for morphisms of

setoids avoids some of the difficulties with choice principles, see Section 4.

On the other hand, total functional relations do not have a computational

meaning, which is a weakness from a type-theoretical perspective, and their use

complicates the presentation of formal proofs, because it becomes impossible

to write f a for the result of applying the function f to a.

While we are strongly in favour of using type-theoretical functions as the the

underlying concept for morphisms of setoids, we would like to conclude this section

by observing that it is possible to use a monadic style to manipulate total functional
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relations. Concretely, our suggestion is to use the ι-monad1, which assigns to every

setoid A : Sett the setoid ι A defined as the predicates over A that are satisfied by

exactly one element. Formally, we need to introduce the setoid Ω of propositions,

defined as

〈elt = Prop, eqt = λP , Q : Prop. P ↔ Q, er = . . .〉
the quantifier ∃! x ∈ A. P x, where A is a total setoid, defined as

∃x : elt A. (P x) ∧ (∀y : elt A. P y → x =A y)

the type of predicates over A that are satisfied by exactly one element

ι A = 〈up : mapt A Ω, pp : ∃! x ∈ A. apt up x〉
and finally the setoid ι A itself

〈elt = ι A, eqt = λP , Q : ι A. P · up =Mapt A Ω Q · up, er = . . .〉
It is easy to turn ι into a monad. For example, the unit ηι of the monad is defined

as

λA : Sett. 〈 apt = λx : elt A. 〈 up = 〈apt = λy : elt A. x =A y, extt = . . .〉,
pp = . . .〉,

extt = . . .〉
To our knowledge, this approach has not been pursued before, and we have no

practical experience with it; yet we feel that it is likely to be less cumbersome than

manipulating total functional relations directly.

We conclude this section by observing that it is possible to treat total relations

likewise, i.e. by defining an ε-monad which maps every setoid A to the setoid ε A of

non-empty predicates over A. Concretely he type of non-empty predicates over A is

defined as

ε A = 〈np : mapt A Ω, ne : ∃x : elt A. apt np x〉
and the setoid ε A is defined as

〈elt = ε A, eqt = λP , Q : ε A.P · np =Mapt A Ω Q · np, er = . . .〉
Again, it is a simple matter to turn ε into a monad.

3 Categories of setoids

The purpose of this section is to associate to every notion of setoid its corresponding

category, and show that all categories defined in the previous section form a model

of the simply typed λ-calculus. However, it turns out that the function space setoid

for PSet does not correspond to the exponent that turns PSet into a cartesian closed

category. Further, we compare the five categories of setoids; it turns out that there

are essentially two categories of setoids: TSet, which is equivalent to QSet and SSet,

and RSet, which is equivalent to PSet.

1 A monad in a category C is a triple 〈M, η, µ〉 where M:C → C is a functor, η: idC → M and
µ:M ◦M →M are natural transformations such that µ ◦ µM = µ ◦Mµ and µ ◦ ηM = µ ◦Mη = idM .
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3.1 The category of total setoids

In this subsection, we define the category of total setoids and show that it forms a

cartesian closed category. Following previous work on the formalization of category

theory in type theory (Aczel, 1993; Huet & Säıbi, 2000; Säıbi, 1998), a T -category

(or simply a category) consists of

• a type obj of objects (in Type1);

• a polymorphic setoid of morphisms hom : obj→ obj→ Sett;

• a polymorphic composition operator

• : ΠA,B, C : obj. bmapt (hom A B) (hom B C) (hom A C),

where bmapt X Y Z is defined as mapt X (Mapt Y Z);

• a polymorphic identity id : ΠA : obj. elt (hom A A);

• a proof that composition is associative and identity acts as a unit.

Note that objects of a category are required to form a type, but the morphisms

between two objects are required to form a setoid because we need to identify equal

morphisms: Leibniz equality, which is the default equality relation in type theory, is

too rigid for this purpose.

Definition 9

The type Catt of T-categories is defined as the record type

〈obj : Type1,

hom : obj→ obj→ Sett,

• : ΠA,B, C : obj. bmapt (hom A B) (hom B C) (hom A C),

id : ΠA : obj. hom A A,

catlaw : φcat〉
where φcat is

(∀A,B, C, D : obj. ∀f : hom A B. ∀g : hom B C. ∀h : hom C D.

f • (g • h) =(hom A D) (f • g) • h)
∧ (∀A,B : obj. ∀f : hom A B.

(id A) • f =(hom A B) f ∧ f • (id B) =(hom A B) f)

using hom Y Z as a shorthand for elt (hom Y Z) and x • y as a shorthand for

apt (• x) y. In the sequel, we use objC , homC and homC as shorthand for C · obj,

C · hom and elt (homC Y Z) respectively.

Total setoids can be made into a category that plays in Catt the role that Set

plays in standard category theory.

Definition 10

The category TSet of total setoids takes as objects elements of Sett and as homset

between A and B the setoid Mapt A B.
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Functors are defined in a similar way; informally, a functor from C : Catt to

C ′ : Catt consists of

• a function fobj : objC → objC ′;

• a polymorphic map of setoids

fmor : Πo, o′ : objC. mapt (homC o o
′) (homC ′ (fobj o) (fobj o′));

• a proof that fobj preserves identities and composition.

Definition 11

The parametric type Funct of T -functors is defined as

λC, C ′ : Catt. 〈 fobj : objC → objC ′ ,

fmor : Πo, o′ : objC. mapt (homC o o
′) (homC ′ (fobj o) (fobj o′)),

flaw : . . .〉
The parametric type BFunct of T -bifunctors is defined as

λC, C ′, C ′′ : Catt. 〈 bfobj : objC → objC ′ → objC ′′ ,

bfmor : Πo, o′ : objC. Πu, u′ : objC ′ .

bmapt (homC o o
′) (homC ′ u u

′)
(homC ′′ (bfobj o u) (bfobj o′ u′)),

bflaw : . . .〉
We now proceed towards the definition of cartesian closedness and define the

notions of terminal object, products and exponents. Recall that o is a terminal

object if for every object o′ there exists a unique morphism from o′ to o.

Definition 12

The parametric type TObjt of terminal objects is defined as:

λC : Catt. 〈 tobj : objC,

tarr : Πo : objC. homC o tobj,

tlaw : ∀o : objC. ∀f : homC o tobj. f = (homC o tobj) tarr o〉
As appears from the above definition, terminal objects are understood constructively.

This constructive reading of categorical notions is in line, for example, with Huet &

Säıbi (2000) and Säıbi (1998), and is more appropriate for the issues tackled here.

Definition 13

The parametric (record) type Prodt is defined as

λC : Catt. 〈 prodo : objC → objC → objC,

proda : Πo, o′, o′′ : objC. bmapt (homC o o
′) (homC o o

′′)
(homC o (prodo o′ o′′)),

prodl : Πo, o′ : objC. homC (prodo o o′) o,
prodr : Πo, o′ : objC. homC (prodo o o′) o′,

prodlaw : · · ·〉
Given a category C with a product structure prod : Prodt C, we use the notation

o× o′ for prod · prodo o o′. We also use the notation f × f′ : homC o1 × o′1 o2 × o′2
to denote the product morphism of f : homC o1 o2 and f′ : homC o′1 o′2.
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We can now define a Cartesian Closed Category (CCC) as a structure consisting

of:

• a category C;

• a terminal object •;
• a bifunctor for products × : C× C → C;

• a bifunctor for exponents ⇒: Cop ×C → C;

• an evaluation map evalo,o′ : hom ((o ⇒ o′) × o) o′ for every pair of objects o

and o′;
• an abstraction map absto,o′ ,o′′ : mapt (hom (o × o′) o′′) (hom o (o′ ⇒ o′′)) for

every three objects o, o′, and o′′;
• a proof that for every f : hom (o × o′) o′′, apt absto,o′ ,o′′ f is the unique

morphism that gives back f when composed with evalo′ ,o′′ .

Definition 14

The type of cartesian closed categories CCCt is the record type

〈cccat : Catt,

terminal : TObjt cccat,

ccprod : Prodt cccat,

ccexp : cccat · obj→ cccat · obj→ cccat · obj,

cceval : Πo, o′ : cccat · obj.cccat · hom ((o⇒ o′)× o) o′,
ccabst : Πo, o′, o′′ : cccat · obj.

mapt (cccat · hom (o× o′) o′′) (ccat · hom o (o′ ⇒ o′′)),
cceq : ∀o, o′, o′′ : cccat · obj.∀f : cccat · hom (o× o′) o′′.

((apt ccabsto,o′ ,o′′ f)× (cccat · id o′)) • ccevalo′ ,o′′

=(cccat·hom (o×o′) o′′) f,
ccunique : ∀o, o′, o′′ : cccat · obj.

∀f : cccat · hom (o× o′) o′′.∀g : cccat · hom o (o′ ⇒ o′′).
(g × (cccat · id o′)) • ccevalo′ ,o′′ =(cccat·hom (o×o′) o′′) f
→ g =(cccat·hom o (o′⇒o′′)) apt ccabsto,o′ ,o′′ f〉

where we use the notations o×o′ for (cccprod·prodo o o′) and o⇒ o′ for (ccexp o o′)
and we write the object parameters as indexes, for example we write ccevalo′ ,o′′ for

(cceval o′ o′′).

Note that this is a constructive definition of cartesian closed category: a cartesian

closed category is a category with extra structure. So what does it mean for a category

of setoids to be a cartesian closed category? The following definition provides two

possible answers to the question.

Definition 15

• A category C : Catt is a cartesian closed category if there is a C : CCCt such

that C · cccat = C .

• A pair (C,E) with C : Catt, E : C · obj → C · obj → C · obj is a canonical

cartesian closed category if there is a C : CCCt such that C · cccat = C and

C · ccexp = E.
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We use the terminology “canonical cartesian closed category” to specify that

exponents are given canonically by an exponent function, and not just required to

exist. Clearly C is a cartesian closed category iff (C,E) is a canonical cartesian closed

category for some exponent function E.

Lemma 16

(TSet, λA, B : Sett. Mapt A B) is a canonical cartesian closed category.

3.2 The categories of partial setoids

We now turn to categories of partial setoids. Their definition is similar to that

of TSet, but rely on a different formalism. Indeed, we have seen in the previous

subsection that setoids and morphisms of setoids must come before and be the

base of category theory. Consequently, we will have different notions of category

according to the notion of setoid and setoid morphism we assume. More precisely,

we will have four versions of category theory that we call P-category theory, Q-

category theory, R-category theory and S-category theory; and inside each of these

settings we can define the categories PSet, QSet, RSet and SSet, respectively. These

categories will play a similar role as the one played by the category Set in standard

category theory.

Definition 17

Let X range over P, Q, R and S. The type Catx of X-categories is defined as the

record type

〈obj : Type1,

hom : obj→ obj→ Setx,

• : ΠA,B, C : obj. bmapx (hom A B) (hom B C) (hom A C),

id : ΠA : obj. elx (hom A A),

catlaw : φcat〉
where φcat is suitably defined.

Other notions, and in particular the notion of cartesian closed category can be

adapted likewise.

Definition 18

• The P-category PSet takes as objects elements of Setp and as homset between

A and B the setoid Mapp A B.

• The Q-category Qset takes as objects elements of Setp and as homset between

A and B the setoid Mapq A B.

• The R-category RSet takes as objects elements of Setp and as homset between

A and B the setoid Mapr A B.

• The S-category SSet takes as objects elements of Setp and as homset between

A and B the setoid Maps A B.

In the following lemma, we are interested in determining whether the categories

PSet, QSet, RSet and SSet with their associated function space setoid, as defined in

the previous section, form canonical cartesian closed categories.
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Lemma 19

The following pairs are canonical cartesian closed categories:

• (PSet, λA, B : Setp. Mapr A B)

• (QSet, λA, B : Setp. Mapq A B)

• (RSet, λA, B : Setp. Mapr A B)

• (SSet, λA, B : Setp. Maps A B)

It is interesting to note that (PSet, λA, B : Setp. Mapp A B) is not a canonical

cartesian closed category. This can be established by exploiting anomalies related to

“empty” partial setoids.

Definition 20

For any type T , the empty partial setoid ∅ T over T is defined by

∅ T = 〈 elp = T ,

eqp = λx, y : T . ⊥,
per = 〈 symp = λx, y : T . λ p : ⊥. p,

transp = λx, y : T . λ p, q : ⊥. p〉〉
Now let A = ∅ Unit and let 1p = 〈elp = Unit, eqp = λx, y : Unit. >, per = · · ·〉.

The type mapp A (Mapp 1p A) is empty: indeed, let f : mapp A (Mapp 1p A). Then

((f · app ∗) · extp ∗ ∗ !) : ⊥, where ∗ is the only inhabitant of Unit and ! is the only

proof of >; this is impossible by consistency of the system. On the other hand, if

there was a cartesian closed category of the form

〈cccat = PSet, ccexp = λA, B : Setp. Mapp A B, . . .〉
then the type mapp A (Mapp 1p A) would be inhabited, a contradiction. On the basis

of this observation, it does not seem adequate to formalize mathematics in type

theory using partial setoids and the function space setoid Mapp.

3.3 Equivalence between categories

The purpose of this paragraph is to establish whether the categories defined in the

previous section are equivalent2. The basic conclusion, summarized in Table 1, is

that there are, up to equivalences, two cartesian closed categories of setoids: TSet,

equivalent to QSet and SSet, and RSet, equivalent to PSet. The ∗ in the comparison

of RSet and PSet means that the isomorphism does not preserve function setoids.

Before proceeding any further, we would like to clarify what we mean by comparing

categories. Formally, the standard notion of equivalence can only be used to compare

categories that live in the same formalism. In particular, a standard definition of

equivalence would not be appropriate to compare categories that do not belong

2 An equivalence between two categories C and D is a tuple 〈F,G, η, ε〉 where

• F is a functor from C to D;
• G is a functor from D to C;
• η is a natural isomorphism from idC to G ◦ F;
• ε is a natural isomorphism from F ◦ G to idD.
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Table 1. Comparisons between categories (EQ = equivalence; NOEQ = not

equivalence; ISO = isomorphism)

TSet PSet QSet RSet SSet

TSet NOEQ EQ NOEQ EQ

PSet NOEQ NOEQ ISO* NOEQ

QSet EQ NOEQ NOEQ ISO

RSet NOEQ ISO* NOEQ NOEQ

SSet EQ NOEQ ISO NOEQ

to the same framework, e.g. TSet which is a T -category and RSet which is an

R-category. One remedy to this problem is to define transformations that map

categories in one formalism to categories in another formalism. Going back to

TSet and RSet, one can for example transform TSet into an R-category TSetr and

compare it to RSet. Here we prefer to remain at an informal level of discussion,

since our main purpose is to stress that not all existing alternatives are equivalent.

3.3.1 Comparing TSet and RSet

We begin by showing that TSet and RSet are not equivalent.

Theorem 21

The categories TSet and RSet are not equivalent.

Proof

Call an object o a weak initial (respectively, initial ) object if for every object o′
there is at most one (respectively, exactly one) morphism from o to o’. Equivalence

of categories preserves weak initial and initial objects, hence the following two

observations are sufficient to conclude that TSet and RSet are not equivalent:

• In RSet, there is a weak initial object that is not initial.

• In TSet, every weak initial object is initial.

For the first observation, take ∅ Unit. Since this partial setoid does not have any

defined element, all functions from it to any other setoid are equal, so it is an weak

initial object. On the other hand, there is no morphism from ∅ Unit to ∅ Empty,

because the underlying type function should have type Unit → Empty and there is

no such function.

For the second observation, let o be a weakly initial object in TSet. We prove that

its carrier type must be the empty type. It is immediate to prove that if the carrier

type of a total setoid is empty then the setoid is initial. From the fact that o is weakly

initial it follows that the two constant functions ctrue, cfalse : mapt o (‡Bool), where

Bool is the type with two elements true and false, must be equal. It immediately

follows that the carrier of o is empty. q
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Nevertheless, there are two obvious functors TR : TSet → RSet and RT :

RSet → TSet. The functor TR is defined in the obvious way: its object part

forgets the reflexivity of equality, and its arrow part forgets the extensionality of the

morphism. As for RT, it is defined below.

Definition 22

The functor RT : RSet→ TSet is defined as follows:

• Object part: if A is a partial setoid, then Total A is its corresponding total

setoid:

Total A = 〈 elt = domain (Partial A)

= 〈cont : elt A, def : cont =A cont〉,
eqt = · · ·
er = · · ·〉

• Arrow part: if g is a defined morphism of partial setoids from A to B, i.e.

g : mapr A B and φ : g =Mapr A B
g then RT g is defined as the record

RT g = 〈 apt = λx : domain A. 〈 cont = g x · cont,

def = φ x · cont x · cont x · def〉
extt = λx, y : domain A.φ x · cont y · cont〉

One can show that the obvious functors between TSet and RSet cannot give an

equivalence, e.g. we can prove that RT is not full as in Lemma 31.

3.3.2 Comparing TSet and QSet

There are two obvious functors TQ : TSet → QSet and QT : QSet → TSet. They

form an equivalence pair.

Definition 23

The functor TQ : TSet→ QSet is defined as follows:

• Object part: if A is a total setoid, thenTQ A = Partial A is its corresponding

partial setoid (just forget the proof of reflexivity):

Partial A = 〈 elp = elt (Total A) = domain B,

eqp = · · ·
per = · · ·〉
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• Arrow part: let A and B be total setoids and f : mapt A B. Then TQ f :

mapq (TQ A) (TQ B) is defined by the components

(TQ f) · apq : Πa : elp (TQ A). a =(TQ A) a→ elp (TQ B)

: Πa : elt A.a =A a→ elt B

(TQ f) · apq = λa : elt A. λ φ : a =A a. apt f a

(TQ f) · extq : ∀x, y : elp (TQ A).

∀φ : x =(TQ A) x.∀ψ : y =(TQ A) y. x =(TQ A) y

→ (apq (TQ f) x φ) =(TQ B) (apq (TQ f) y ψ)

: ∀x, y : elt A.∀φ : x =A x.∀ψ : y =A y x =A y

→ (apt f x) =B (apt f y)

(TQ f) · extq = λx, y : elp (TQ A). λφ : x =A x. λψ : y =A y.

f · extt x y

The functor QT : QSet→ TSet is defined as follows:

• Object part: if A is a partial setoid, then QT A = Total A is its corresponding

total setoid.

• Arrow part: let A and B be partial setoids and f : mapq A B. Then QT f :

mapt (QT A) (QT B) is defined by the components

(QT f) · apt : elt (QT A)→ elt (QT B)

: domain A→ domain B

(QT f) · apt = λx : domain A.〈 cont = apq f x · cont x · def ,

def = f · extq x · cont x · cont

x · def x · def x · def〉

(QT f) · extt : ∀x, y : elt (QT A).(x =(QT A) y)

→ apt (TQ f) x =(TQ B) apt (TQ f) y

: ∀x, y : domain A.x · cont =A y · cont→
(apq f x · cont x · def) =B (apq f y · cont y · def)

(QT f) · extt = λx, y : domain A.f · extq x · cont y · cont x · def y · def

To show, that these functors form an equivalence we look at their two compositions

and show that they are naturally isomorphic to the identity functor in the respective

categories.

Theorem 24

The categories TSet and QSet are equivalent.

Proof

We shall define 〈TQ,QT, η, ε〉 is an equivalence between the categories.

Let A : TSet, then we have

QT (TQ A) : TSet

= Total (Partial A)
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Let B : QSet, then we have

TQ (QT B) : QSet

= Partial (Total B)

The unit of the equivalence is then defined, for every A : TSet as the morphism

ηA : mapt A (QT (TQ A))

ηA = 〈 apt : elt A→ elt (QT (TQ A))

: elt A→ 〈cont : elt A, def : cont =A cont〉
= λx : elt A.〈cont = x, def : A · er · reflt x〉,

extt = · · ·〉
η is a natural isomorphism between the identity functor ITSet and the functor

QT ◦TQ.

The counit of the equivalence is defined, for every B : QSet as the morphism

εB : mapq (TQ (QT B)) B

εB = 〈 apq : Πx : elp (TQ (QT B)).x =(TQ (QT B)) x→p elp B

: Πx : domain B.x =(TQ (QT B)) x→p elp B

= λx : domain B.λφ : x =(TQ (QT B)) x.x · cont,

extq = · · ·〉
ε is a natural isomorphism between the functor TQ ◦ QT and the identity functor

IQSet. q

3.3.3 Comparing TSet and SSet

The categories TSet and SSet are equivalent. The shortest way to show this fact

is to prove that SSet is equivalent to QSet, and then we obtain the equivalence

to TSet by Theorem 24. There are two obvious functors QS : QSet → SSet and

SQ : SSet→ QSet. They are simply the identity on objects. On morphisms, QS just

forgets the proof component extq , while SQ on the defined elements of Maps A B,

that is the functions f : maps A B for which there is a proof ξ : f =Maps A B
f, is

SQ f ξ = 〈apq = f, extq = ξ〉
QS and QS are inverse of each other, so

Theorem 25

The categories SSet and QSet are isomorphic. The categories SSet and TSet are

equivalent.

3.3.4 Comparing PSet and RSet

We proved in Lemma 19 that PSet cannot be completed to a cartesian closed

category having Mapp A B as exponent object. Therefore there are no equivalences

between PSet and any of the other four categories that preserves the setoid of

functions. However, there is an equivalence between PSet and RSet that does not

preserve the setoid of functions.
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Definition 26

The functor PR : PSet→ RSet is defined as follows:

• Object part: the identity.

• Arrow part: if f is a morphism of partial setoids from A to B in PSet, i.e.

f : mapp A B, then PR f is simply f · app.

The functor RP : RSet→ PSet is defined as follows:

• Object part: the identity.

• Arrow part: if f is a morphism of partial setoids from A to B in PSet, i.e.

f : mapr A B such that f =Mapr A B
f, then RP f is the record

RP f = 〈app = f, extp = ξ〉
where ξ is a proof that f is a defined element of Mapr A B, i.e. ξ :

(f =Mapr A B
f) = ∀x, y : elp A. (x =A y)→ (app f x) =B (app f y).

It is trivial to verify that PR and RP with the identity natural transformations

form an equivalence, actually even an isomorphism, between PSet and RSet.

Theorem 27

The categories PSet and RSet are isomorphic.

3.3.5 Comparing TSet and PSet

That TSet and PSet are not equivalent follows from the equivalence of PSet to RSet,

Theorem 27, and the fact that TSet is not equivalent to RSet, Theorem 21. There

are, however, two obvious functors TP : TSet→ PSet and PT : PSet→ TSet. As

expected, neither TP nor PT yields an equivalence of categories.

The functor TP : TSet → PSet is defined in the obvious way: its object part

turns a total setoid into a partial setoid simply by forgetting about the reflexivity of

equality, whereas its arrow part is the “identity”.

Definition 28

The functor TP : TSet→ PSet is defined as follows:

• Object part: if A is a total setoid, then

TP A = Partial A = 〈 elp = A · elt,

eqp = A · eqt,

per = . . .〉
is its corresponding partial setoid.

• Arrow part: the arrow part of TP is the “identity”.

TP cannot induce any equivalence between TSet and PSet, as shown by the

following lemma.

Lemma 29

There exists a partial setoid A : Setp that is not isomorphic to the image of any

total setoid under TP.
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Proof

We exhibit a partial setoid A : Setp such that for every B : Sett, it must be that

either Mapp A (TP B) or Mapp (TP B) A is empty. Indeed, assume ` t : T and

let A = ∅ T . Now assume B : Sett. We claim that in the empty context:

• Mapp (TP B) A is not empty iff B is empty. Indeed, if b : elt B and

f : mapp (TP B) A then f · extp b b (B · er · reflt b) : ⊥, which is impossible

by consistency of the system.

• Mapp A (TP B) is not empty iff B is not empty.

The result follows. q

The functor PT mapping partial setoids to total setoids takes as object part the

function mapping a partial setoid to its domain setoid, and as function part the

corresponding transformation described below.

Definition 30

The functor PT : PSet→ TSet is defined as follows:

• Object part: if A is a partial setoid, then

PT A = Total A =

〈 elt = domain A,

eqt = λx, y : domain A. x · cont =A y · cont,

er = 〈 reflt = λx : domain A. x · def ,

symt = λx, y : domain A. A · per · symp x · cont y · cont,

transt = λx, y, z : domain A.

A · per · transp x · cont y · cont z · cont〉〉
is its corresponding total setoid—Domain A differs from Total A by the name

of its fields.

• Arrow part: if g is a morphism of partial setoids from A to B, i.e. g : mapp A B

then PT g is defined as the record

PT g = 〈 apt = λx : domain A.

〈 cont = app g x · cont,

def = g · extp x · cont x · cont x · def〉,
extt = λx, y : domain A. g · extp x · cont y · cont〉

PT cannot induce any equivalence between TSet and PSet, as shown by the

following lemma.

Lemma 31

The functor PT is not full, i.e. there exist two partial setoids A and B such that

mapp A B is empty but mapt (PT A) (PT B) is not.

Proof

Assume ` t : T and let A = ∅ T and B = ∅ (domain A). We claim that in the empty

context:

• there is no g : mapp A B. If there were such a g, then (app g t) · def : ⊥. This

is impossible by consistency of the system;
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• there is a g : mapt (Total A) (Total B). Indeed, consider

g = 〈 apt = λx : domain A. 〈cont = x, def = x · def〉,
extt = λx, y : domain A. λp : ⊥. p〉

The expression g is indeed of type mapt (Total A) (Total B) since we have

elt (Total A) =β domain A

elt (Total B) =β domain (domain A)

(x =(Total A) y) =β ⊥
(apt x =(Total B) apt y) =β ⊥

q

3.4 Discussion

We have seen that there are up to equivalence two possible choices for a category of

setoids, namely TSet and RSet. In the coming sections, we compare these approaches

from the point of view of formalizing mathematics.

One could also compare these categories from other perspectives, e.g. one could

check which of the categories TSet and RSet do form a model of dependent type

theory. This issue has been investigated in depth by Hofmann (Hofmann, 1995b).

It turns out that the category RSet does form a model of dependent type theory,

whereas there are some difficulties with TSet. In particular, it is problematic to

define a family of setoids depending on a setoid. One could also check which of

the categories TSet and RSet do form a model of intuitionistic set theory, i.e. a

topos (Lambek & Scott, 1986). It turns out that none of the categories forms a

topos because of the distinction between total functional relations and functions. In

Section 4, we study choice principles which turn these categories into toposes.

4 Choice principles

To pursue the analysis of setoids as a type-theoretic formalization of the notion

of set, we study their behaviour in relation to two choice principles: the axiom of

choice and the axiom of description, also called axiom of unique choice.

Before proceeding any further, we dispose of a possible criticism regarding the

relevance of this enquiry: one may argue that the use of axioms, and in particular

choice axioms, inside the theory of setoids is methodologically unjustified. In fact,

setoids where devised to develop mathematics in type theory without external

assumptions; if we are to assume axioms, we may as well assume all the axioms of

set theory and dispense with setoids. While we agree that one should try to develop

mathematics using only the constructions available in type theory, we still defend the

importance of knowing the relation of the notion of setoid with choice principles,

because this relation tells us much about the nature of setoids. Besides, as we will

show, some seemingly natural choice principles are inconsistent in RSet. While one

may not be interested in adding choice axioms, the fact that some choice principles

are provably false is undesirable.
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We consider the full axiom of choice and the axiom of descriptions, or unique

choice – the former leads to classical logic, whereas the second is constructively

valid. The axiom of descriptions is consistent in TSet, while in RSet there are two

versions of it, the stronger one is inconsistent and the weaker one is too weak in

that some very natural functions cannot be defined in it. Our conclusion is that TSet

behaves better than RSet with respect to choice principles.

4.1 The axiom of choice for types

The axiom of choice for types expresses that every total relation from U to V yields

a type-theoretic function of type U → V .

Definition 32

Let U and V be two types. The type tr U V of total relations from U to V is

defined as the record type

tr U V = 〈 rel : U → V → Prop,

total : ∀x : U.∃y : V . rel x y〉
The axiom of choice for types is given by the context ΓACT

ACTmake : ΠU,V : Type. (tr U V )→ U → V ,

ACTcheck : ∀U,V : Type. ∀R : tr U V. ∀x : U. R · rel x (ACTmake U V R x)

The following result is well-known (Coquand, 1990; Werner, 1997).

Proposition 33

ΓACT is consistent, but not inhabited in the Calculus of Inductive Constructions.

4.2 The axiom of choice for total setoids

The axiom of choice for total setoids states that every total relation between total

setoids induces a map of total setoids. A relation from A to B, where A and B are

total setoids, consists of a type-theoretical relation R : (elt A)→ (elt B)→ Prop and

a proof that R is compatible.

Definition 34

Let A and B be two total setoids. The type Relt A B of relations from A to B is

defined as the record type

relt A B = 〈 relt : elt A→ elt B → Prop,

compatt : ∀x, x′ : elt A. ∀y, y′ : elt B.

x =A x
′ → y =B y

′ → relt x y → relt x
′ y′〉

An alternative definition of binary relations can be given as setoid functions with

result in Ω, with Ω defined as in section 2.3. A total relation from A to B is a relation

R such that for every a : elt A, there exists b : elt B satisfying R · relt a b.
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Definition 35

Let A and B be two total setoids. The type trelt A B of total relations from A to

B is defined as the record type

trelt A B = 〈 trelt : relt A B,

totalt : ∀x : elt A. ∃y : elt B. trelt · relt x y〉
The axiom of choice for total setoids is given by the context ΓAC

ACmake : ΠA,B : Sett. (trelt A B)→ (mapt A B),

ACcheck : ∀A,B : Sett. ∀R : trelt A B. ∀x : elt A.

R · trelt · relt x (apt (ACmake A B R) x)

The following result is well-known.

Lemma 36

The context ΓAC:

1. is consistent;

2. is not instantiable in the context ΓACT;

3. entails that TSet is a topos3 with Ω as subobject classifier;

4. entails excluded middle, i.e. ∀A : Prop. A ∨ ¬A;

5. entails proof-irrelevance, i.e. ∀A : Prop.∀x, y : A. x
.

= y.

Proof sketch

The first statement is derivable from the fact that the axiom of choice for setoids

holds in the proof-irrelevance model – see also Hofmann (1995b); the second

statement is derivable from the fourth and the non-provability of classical logic in

the context ΓACT. The third item states that TSet is a topos with Ω as subobject

classifier and is proved by a simple calculation. The fourth item states the provability

of classical logic from the axiom of choice for setoids and follows from Diaconescu’s

construction, e.g. see Lacas & Werner (1999) and Lambek & Scott (1986). The

last item establishes that proof-irrelevance, i.e. the property that all proofs of

a proposition are equal (the property was first considered by de Bruijn in the

Automath project (Nederpelt et al., 1994)), is derivable from the axiom of choice for

setoids and can be established from Barbanera & Berardi (1996). q

We conclude this section by mentioning principles that are equivalent to the

axiom of choice for setoids. It is well-known that the axiom of choice is equivalent

to stating that every surjective function has a right-inverse. It is routine to define a

context equivalent to ΓAC that constructs for every surjective function f from A to

B a function g from B to A and a proof that g is right-inverse to A. One can also

give a formulation of the axiom of choice that makes use of the ε-monad defined

in subsection 2.3; in this form the axiom states that we can exhibit an element of

every non-empty predicate. The interested reader is referred to Capretta (2002).

3 Informally, a topos T is a cartesian closed category with a subobject classifier, i.e. with an object that
acts as a set of truth values, e.g. see Lambek & Scott (1986) for a precise definition.
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4.3 The axiom of descriptions for total setoids

As seen above, the axiom of choice for setoids is extremely powerful. A weaker form

of choice principle, acceptable intuitionistically, is the axiom of descriptions, a.k.a.

the axiom of unique choice, which states that every total functional relation induces

a map.

4.3.1 The axiom and its consistency

A total functional relation from A to B, where A and B are total setoids, consists of

a relation R on A and B and proofs that R is total and functional.

Definition 37

Let A and B be two total setoids. The type tfrelt A B of total functional relations

from A to B is defined as the record type

tfrelt A B = 〈 tfrelt : Relt A B,

ttotalt : ∀x : elt A. ∃y : elt B. tfrelt · relt x y,

funt : ∀x : elt A. ∀y, y′ : elt B.

(tfrelt · relt x y)→ (tfrelt · relt x y
′)→ y =B y

′〉
The axiom of descriptions for total setoids is given by the context ΓAD

ADmake : ΠA,B : Sett. (tfrelt A B)→ (mapt A B),

ADcheck : ∀A,B : Sett. ∀R : tfrelt A B. ∀x : elt A.

R · tfrelt · relt x (apt (ADmake A B R) x)

The following result is well known.

Lemma 38

The context ΓAD:

1. is instantiable in the context ΓACT;

2. is consistent;

3. entails that TSet is a topos;

4. does not entail classical logic nor proof-irrelevance.

Proof sketch

The first item is proved by easy logical manipulations. The second item follows

immediately from the consistency of ΓACT. The third item is proved by simple

calculations. The last item follows from the fact that classical logic and proof-

irrelevance are not derivable from ΓACT. q

As with the axiom of choice, we can express the axiom of descriptions by stating

that every bijection (i.e. injective and surjective function) has an inverse, but also in

terms of the ι-monad. Again, the interested reader is referred to Capretta (2002).

4.4 Choice principles for partial setoids

In this section, we focus on the axiom of descriptions for partial setoids. In fact,

there are two possible formulations of the axiom, depending on the notion of total
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relation one adopts. It turns out that one formulation is inconsistent, and that the

other is too weak. More precisely, we show that some very natural functions that

can be defined on a total setoid with the axiom of descriptions cannot be defined in

the corresponding partial setoid, even in presence of (the second formulation of) the

axiom of descriptions. This observation leads us to the position that total setoids

are better suited for the development of mathematics in type theory than partial

setoids. Notice that in the following we will not use exponents for partial setoids, so

our results hold both for PSet and RSet.

As suggested above, we first need to decide about the notion of total relation. A

total relation from a partial setoid A to a partial setoid B can be defined in two

different ways:

• (definedness-irrelevant) as a relation R such that for every a : elp A there exists

b : elp B such that R a b;

• (definedness-relevant) as a relation R such that for every a : elp A such that a

is defined, i.e. a =A a, there exists b : elp B such that R a b and b =B b.

Each definition yields its variant of the axiom of descriptions.

4.4.1 Axiom of descriptions, definedness-relevant version

In this section, we define the definedness-relevant version of the axiom of descriptions

and show it is inconsistent.

Definition 39

Let A and B be two partial setoids.

1. The type Relp A B of relations from A to B is defined as the record type

relp A B = 〈 relp : elp A→ elp B → Prop,

compatp : ∀x, x′ : elp A. ∀y, y′ : elp B.

x =A x
′ → y =B y

′ → relp x y → relp x
′ y′〉

2. The type tfrelp A B of total functional relations from A to B is defined as

the record type

tfrelp A B = 〈 tfrelp : Relp A B,

ttotalp : ∀x : elp A. (x =A x)

→ ∃y : elp B. (tfrelp · relp x y ∧ y =B y),

funp : ∀x : elp A. ∀y, y′ : elp B.

(tfrelp · relp x y)→ (tfrelp · relp x y
′)

→ x =A x→ y =B y
′〉

The axiom of descriptions for partial setoids is given by the context ΓAD

ADmake : ΠA,B : Setp. (tfrelp A B)→ (mapp A B),

ADcheck : ∀A,B : Setp. ∀R : tfrelp A B. ∀x : elp A.

R · tfrelp · relp x (app (ADmake A B R) x)
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Lemma 40

The context ΓAD is inconsistent.

Proof

For every type A and partial setoid B, one can prove that the empty relation

r : relp (∅ A) B yields a total functional relation r′ : tfrelp (∅ A) B and by the

axiom of descriptions, a map f : mapp (∅ A) B. Now take A to be inhabited. It

follows that every elp B is inhabited, so every type B is inhabited. q

4.4.2 Axiom of descriptions, definedness-irrelevant version

In this section, we adopt the definedness-irrelevant definition of total functional

relations.

Definition 41

Let A and B be two partial setoids. The type tfrelp A B of total functional relations

from A to B is defined as the record type

tfrelp A B = 〈 tfrelp : Relp A B,

ttotalp : ∀x : elp A. ∃y : elp B. tfrelp · relp x y,

funp : ∀x : elp A. ∀y, y′ : elp B.

(tfrelp · relp x y)→ (tfrelp · relp x y
′)

→ x =A x→ y =B y
′〉

Then the context ΓAD is defined exactly as in the previous paragraph.

Lemma 42

The context ΓAD is instantiable in the context ΓACT, and hence consistent. Further,

in context ΓAD, RSet does form a topos.

However, we show that some very natural functions that can be defined on a

total setoid with the axiom of descriptions cannot be defined in the corresponding

partial setoid with the axiom of descriptions. We will construct a counterexample,

i.e. a function that is definable on a total setoid but not on the corresponding partial

setoid.

The counterexample is given by a length function that computes the length of

eventually null sequences of natural numbers (we use N to denote the type of natural

numbers). We use the extensional equality on sequences: If σ1, σ2 : N → N, then

(σ1 =ext σ2) = (∀i : N.σ1 i = σ2 i). The total version of the setoid is

ZSeqt = 〈 elt = 〈seq : N→ N, evz : ∃m : N.∀i : N. i > m→ seq i = 0〉,
eqt = λσ1, σ2 : elt.σ1 · seq =ext σ2 · seq,

ert = · · ·〉
In the context ΓAD we can define a function lengtht : mapt ZSeqt Nt that gives

the length of the part of a sequence that is nonzero (we use Nt to denote ‡N, i.e.

the setoid derived from N by taking Leibniz equality as book equality).

In contrast, we claim that there cannot be a version of this function if we use

partial setoids. First, we let Np = 〈elp = N, eqp = λx, y : N. x
.

= y, per = . . .〉 be the
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partial setoid of natural numbers and we define the partial counterpart of ZSeqt as

ZSeqp = 〈 elp = N→ N,

eqp = λσ1, σ2 : N→ N.∃m : N.∀i : N.

(i 6 m→ (σ1 i) = (σ2 i)) ∧ (i > m→ (σ1 i) = 0 ∧ (σ2 i) = 0),

per = · · ·〉
Of course we could define ZSeqp from ZSeqt by simply forgetting the proof of

reflexivity, but what we want to stress here is that the idea of using the book

equality to restrict the domain, which is the main advantage of partial setoids, does

not always work as desired.

Now we claim that there cannot be a version of the length function for ZSeqp in

context ΓAD.

Proposition 43

The existence of the function lengthp : (mapp ZSeqp Np) is not derivable in

context ΓAD.

The remaining of the paragraph is devoted to a proof of the proposition. We

proceed by defining a context ΓCP such that ΓAD,ΓCP is consistent and in which

one can prove the length function does not exist. The context ΓCP, which captures

the continuity principle4, is defined as

CPmake : ((N→ N)→ N)→ (N→ N)→ N

CPcheck : ∀F : (N→ N)→ N. ∀α, β : N→ N.

(∀i : N. (i 6 CPmake F α)→ β i = α i)→ F β = F α

Lemma 44

The context ΓAD,ΓCP is consistent.

Proof

The context is valid in the realizability model. q

Further, we show that in the context ΓCP it is contradictory to assume the

existence of the length function.

Proposition 45

ΓCP ` ¬∃lengthp : (mapp ZSeqp Np). ∀σ : (ZSeqp · elp).σ =ZSeqp
σ →

σ (lengthp · appp σ) 6= 0 ∧
∀i : N.i > (lengthp · appp σ)→ σ i = 0

4 The continuity principle is a well-known principle in intuitionistic mathematics. In constructive re-
cursion theory, it follows from the Kreisel–Lacombe–Shoenfield theorem (see Troelstra & van Dalen
(1988) and Chapter 16 of Beeson (1985)). In type theory, the continuity principle is stated as follows:
For every operator F : (N→ N)→ N and for every sequence α : N→ N, there exists a natural number
m such that, for every other sequence β : N → N that is equal to α for indexes up to m, that is,
(β i) = (α i) for i 6 m, we have that F(β) = F(α). Notice that the Continuity Principle is not provable
in type theory, but it is a meta-result that holds for the operators definable in type theory. For our
purpose, however, it is sufficient to know that the continuity principle is valid in the realizability model,
in which the axiom of descriptions is also valid.
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Proof

If there were a function lengthp : mapp ZSeqp Np, then lengthp ·app : (N→ N)→ N

would be an extension of length to all sequences. We can apply the Continuity

Principle to the operator lengthp · app and the constantly zero sequence 0̄. Hence,

there must exist a natural number m such that, for all β : N → N satisfying

(∀i : N. (i 6 m) → β i = 0̄ i = 0), we have (app lengthp β = app lengthp 0̄ = 0).

Now consider the sequence γ defined by

γ i =


0 if i 6 m
1 if i = m+ 1

0 if i > m+ 1.

The sequence γ coincides with 0̄ on the first m elements, and thus, for the consequence

of the continuity principle app lengthp γ = 0. On the other hand, γ becomes

eventually zero only after the element m+1, so we should have app lengthp γ = m+1.

We reached a contradiction, so our assumption that lengthp could be constructed

is confuted. q

Notice that the crux of the counterexample is that, in the total setoid ZSeqt, the

carrier type already contains information on when the sequence becomes eventually

zero. We can use this information to define lengtht. This information is not present

in the domain of the partial setoid ZSeqp, making it impossible to define the function

lengthp.

5 Mathematical constructions with setoids

In this section, we study the type-theoretical analogous of two basic set-theoretical

constructions, namely subsets and quotients, using setoids as an implementation

of the intuitive idea of sets. In particular, we will show that the partial setoid

methodology runs into practical difficulties when dealing with subsetoids. More

specifically, we will see that the canonical definition of subsetoid in RSet is too

weak, in the sense that if we use this definition, some natural functions on subsetoids

cannot be defined, while they are definable in the corresponding total subsetoid.

5.1 Subsetoids

Total setoids, as embodied by TSet, and partial setoids, as embodied in RSet,

are based on two distinct ways of restricting the domain of a structure, that is,

of defining subsetoids. In the first case, restriction is achieved by modifying the

underlying carrier of the setoid, while in the second case, restriction is achieved by

modifying the setoid’s underlying equality relation. However, we will show that total

setoids are unavoidable, in the sense that, even if we use partial setoids, we will be

forced to restrict the carrier type of a setoid to obtain certain subsetoids.

We begin by reviewing the definition of subsetoids in the context of total setoids.

Intuitively a subsetoid is that part of a setoid whose elements satisfy a predicate.

Predicates on setoids are defined as type-theoretic predicates on the carrier sets that

are invariant for the setoid equality.
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Definition 46

Let A be a total setoid. Setoid predicates over A are the elements of the record type

predt A = 〈 pf t : elt A→ Prop,

invt : ∀x, y : elt A. (x =A y)→ (pf t x→ pf t y)〉
Note that an equivalent definition would be predt A = mapt A Ω. In TSet the

subsetoid of a setoid A defined by a predicate P : predt A is obtained by first

restricting the carrier type, and then constructing the setoid over this carrier by

projecting the equality of A on the first component.

Definition 47

Let A : Sett and P : predt A. The carrier of the subsetoid selected by P from A is

subCarrier A P = 〈subel : elt A, insub : P · pf t subel〉
and the subsetoid is

subSetoidt A P = 〈 elt = subCarrier A P ,

eqt = λx, y : elt.(subel x) =A (subel y),

er = · · ·〉
Sometimes (if the axiom of descriptions is not supposed to be true) it is necessary

to use a constructively stronger notion of predicate and subsetoid: the carrier of

the predicate has type elt A → Type so that its proofs can be used to construct

elements of types. The rest of the definition is in this case the same, except for the

substitution of Type for Prop. For the examples given below we assume either that

this constructive definition is used or that the axiom of description (equivalently,

the axiom of choice for types) is assumed.

On the other hand, when using partial setoids, we do not change the underlying

type, but we modify the equality. Predicates over partial setoids are defined in the

same way as predicates over total setoids.

Definition 48

Let A be a partial setoid. Setoid predicates over A are the elements of the record

type

predp A = 〈 pfp : elp A→ Prop,

invp : ∀x, y : elp A. (x =A y)→ (pfp x→ pfp y)〉
The propositional function pfp must be defined on the whole carrier type elp A,

even on elements x for which x =A x is not true.

Definition 49

If A is a partial setoid and P : predp A, then we define the subsetoid of A selected

by P as

subSetoidp A P = 〈elp = elp A, eqp = λx, y : elp A.(P · pfp x) ∧ x =A y, per = · · ·〉
In the definition of eqp we do not require (P · pfp y) because it is derivable from

(P · pfp x), x =A y, and P · invp.

https://doi.org/10.1017/S0956796802004501 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004501


Setoids in type theory 289

This definition has the nice property that an element of the carrier of the subsetoid

is automatically an element of the carrier of the setoid. However, a serious drawback

of this approach consists in the fact that a function defined on a subsetoid of A

must be a type-theoretic function defined on the entire carrier type of A. In some

cases, this cannot be done and the use of subSetoidt A P is unavoidable. A first

example of the above is given by the length function in the example of eventually

null sequences that we developed in Subsection 4.4. Indeed, one can define the setoid

of sequences as Mapr Np Np, define the predicate of being eventually zero and then

form the subsetoid of eventually zero sequences. Using the results of the previous

section, this gives us a first example of a function that cannot be defined using

subsetoids à la partial setoid.

Below we develop a second example based on the real numbers. Here the idea is

to define a setoid of real numbers and then restrict the setoid to smaller systems,

say, the rationals or the natural numbers, for example. Of course, one would hope

that the number systems defined in this fashion enjoy the same properties and have

the same definable functions as their more standard counterparts. It turns out that

this is not possible in the framework of partial setoids.

It is well known that in a constructive setting there are several possible im-

plementations of real numbers (e.g. see Chirimar & Howe (1992), Ciaffaglione &

Gianantonio (2000), Geuvers et al. (2001), Harrison (1998) and Jones (1993) for

some works on the formalization of reals in type theory). Here we choose to define

the setoid of real numbers R using Cauchy sequences. The total setoid is defined as

Rt = 〈 elt = 〈seq : N→ Q, con : Cauchy seq〉,
eqt = λr1, r2 : elt. r1 · seq =conv r2 · seq,

er = · · ·〉
where Q is the type of rational numbers, Cauchy is the the property of being a

Cauchy sequence of rationals:

Cauchy s = ∀i : N. ∃k : N. ∀j1, j2 : N. j1 > k → j2 > k → |(s j1)− (s j2)| < 1/i

and =conv is the equality on sequences of rational numbers that holds whenever two

sequences are co-convergent:

(s1 =conv s2) = ∀i : N. ∃k : N. ∀j : N. j > k → |(s1 j)− (s2 j)| < 1/i

The corresponding partial setoid is

Rp = 〈 elp = N→ Q,

eqp = λr1, r2 : elt. (Cauchy r1) ∧ (Cauchy r2) ∧ (r1 · seq =conv r2 · seq),

er = · · ·〉
As emphasized above, it is convenient to consider smaller number systems, like the

natural or rational numbers, as subsetoids of the real numbers—an alternative would

be to consider implicit coercions, see e.g. (Säıbi, 1997) but this falls beyond the scope

of this paper. We have a type Q of rational numbers, that is not a subsetoid of R.

We are going to define the subset of real numbers corresponding to the rationals.

https://doi.org/10.1017/S0956796802004501 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004501


290 Gilles Barthe at al.

To this end we use the relation ; between N→ Q and Q, such that s; q holds if

s converges to q:

s; q = ∀i : N. ∃k : N. ∀j : N. i > k → |(s j)− q| < 1/i

We define the predicate isRationalt : predt Rt by (isRationalt · pf t r) = ∃q :

Q. s · seq ; q. The predicate isRationalp : predp Rp is defined correspondingly.

Now we want to define the subsetoid of the reals whose elements are the real

numbers that satisfy isRationalt. This is Qt = (subSetoidt Rt isRationalt) in TSet

and Qp = (subSetoidp Rp isRationalp) in RSet. The problem now arises if we want

to define a function on these subsetoids that depends strongly upon the satisfaction

of the condition. For example, consider the function Num that gives the numerator

of the reduced fraction representing a rational number.

In the framework of partial setoids, defining Num on Qp requires that we define

it on the whole type N → Q, without any information on convergence. This is

impossible because we cannot constructively compute whether a sequence converges

to a rational value and, in such case, to which one. Further, it is also impossible to

define Num with the axiom of descriptions. On the other hand, if we work in the

framework of total setoids and use the axiom of descriptions for total setoids, we

can easily define such a function for Qt since we can extract from one of its elements

r the proof insub r containing the rational value of r.

5.2 Quotients

Both when working with total and partial setoids, quotients can be realized by just

substituting the setoid equality with a stronger equivalence relation—below we refer

to the latter as the quotienting relation. In either case the quotienting relation must

preserve the setoid equality: if two elements are equal according to the book equality,

they must be equivalent w.r.t. the quotienting relation. However, when working with

partial setoids, a problem arises: the quotienting relation may hold for elements

that are not equal to themselves according to the setoid equality, i.e. that are not in

the domain of the setoid. In this case, taking the equivalence relation as the book

equality of the quotient would add elements to the domain, which is incorrect. A

solution, proposed by Hofmann (1995a), is to take as book equality in the quotient

setoid the restriction of the equivalence relation on the original setoid to the domain

of the setoid. We briefly develop this point below.

Recall that an equivalence relation R over a setoid A is an element of relt A A

that satisfies reflexivity, symmetry, and transitivity. Now assume that A is a total

setoid and that R is such an equivalence relation with φR to witness that R is indeed

an equivalence relation. For the sake of readability, we write x ≡R y as a shorthand

for R · relt x y. In TSet the quotient setoid A/R is defined as

〈elt = elt A, eqt = λx, y : elt A. x ≡R y, er = φR〉
But in the same situation in RSet, i.e. with A is a partial setoid, R a partial equivalence

relation with φR to witness that R is indeed an partial equivalence relation – and
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using x ≡R y as a shorthand for R · relp x y it would be wrong to define (A/R) as

〈elp = elp A, eqp = λx, y : elp A. x ≡R y, per = φR〉
because it may happen that x ≡R x holds when x =A x does not hold, so we are

introducing new elements in the setoid. Instead, we must define first R′ : relp A A as

〈relp = λx, y : elp A.x =A x ∧ y =A y ∧ x ≡R y, compatp = · · ·〉
and then define (A/R) as

〈elp = elp A, eqp = λx, y : elp A. x ≡R′ y, per = . . .〉

6 Conclusion

Type-theoretical frameworks are used as a foundation for mathematics in several

ongoing efforts to develop large libraries of formalized mathematics with proof-

assistants such as Agda, Coq and Lego. It is therefore natural to study the relation-

ship between type theory and the standard foundational framework for mathematics,

i.e. set theory. Recently, several authors (Aczel, 1999; Werner, 1997) have undertaken

a systematic comparison between set theory and intensional type theory (see also

Aczel (1978, 1982, 1986) for earlier work).

This paper studies a related issue, namely the use of set-theoretic notions in type

theory. More precisely, we focused on the use of setoids in the formalization of

mathematics. We analyzed the different approaches to setoids that can be found in

the literature, compared them, and drew some conclusions in regard to their appro-

priateness. Specifically, we showed that existing approaches can be classified into

two equivalence classes: the first equivalence class contains total setoids, TSet, and

some equivalent versions of partial setoids, QSet and SSet. The second equivalence

class contains an essentially different way of using partial setoids, RSet, and PSet;

for the latter, we have shown that a previously used approach to function space is

inadequate and needs to be redefined as in RSet.

In addition, we compared the two classes under the aspect of suitability for

the formalization of mathematics. In particular, we showed that the partial setoid

methodology runs into practical difficulties when dealing with subsetoids.
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modélisation et la démonstration, Application á la théorie des Catégories. PhD thesis, Uni-
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In: Proceedings of LICS’88, pp. 384–391. IEEE Press.

The Coq Development Team (2002) The Coq Proof Assistant User’s Guide. Version 7.2.

Troelstra, A. S. and van Dalen, D. (1988) Constructivism in Mathematics. North-Holland.
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