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ABSTRACT. Two previous theoretical analyses of data from the GRIP, Vostok and Byrd ice cores,
presenting age–depth correlations, grain growth and dislocation-density evolution, are re-examined. It is
found that the age–depth correlations are inconsistent with the idealized flow with unchanging history
adopted, but that good correlations can be obtained by relaxing those restrictions. A modified grain-
growth relation is proposed, consistent with the distinct growth profiles of the Vostok and other two
cores, which can be solved simultaneously with the given dislocation-density evolution equation. These
are solved for all three cores with the given parameters, and the depth profiles of grain diameter and
dislocation density at the present time are determined with the new age–depth correlation and with
that shown empirically in the papers. The varying flow history influences the age–depth correlation,
and hence the depth profiles, which is important both for the interpretation of core data, and for the
determination of constitutive variables at each depth at the present time.

INTRODUCTION

Data from ice cores are a crucial element of polar ice study.
A variety of physical properties of the ice at each depth
are determined, along with its age, which is necessary for
the analysis of the evolution of different properties during
its passage from the surface to its current location in the
core. Here I focus on crystal grain diameter, temperature,
dislocation density and strain rate, which are features of
fabric evolution and the consequent changing constitutive
behaviour of the ice as it descends through the core. In
particular, I re-examine the studies of the Greenland Ice
Core Project (GRIP) and Vostok (Antarctica) cores of De
La Chapelle and others (1998) based on data presented by
Thorsteinsson and others (1997) and Lipenkov and others
(1989), respectively, and by Montagnat and Duval (2000)
who also study the Byrd (Antarctica) core based on data
presented by Gow and Williamson (1976). While these
papers discuss at length the physical processes occurring in
different zones of the core, and how these describe observed
behaviour, the present treatment is concerned primarily
with solution and modification of the proposed evolution
equations, in order to describe the features both of the Vostok
core and of the GRIP and Byrd cores, which are distinct.
Further, the assumed constant core history over past time is
relaxed, allowing a varying surface accumulation and basal
melt, and vertical strain rate varying in time, allowing the
bed to deform in isostatic equilibrium, in order to correlate
observed age and depth. The analyses of De La Chapelle
and others (1998) and Montagnat and Duval (2000) assume a
compressive vertical strain rate (implicitly with a lateral strain
rate identical in all directions to satisfy incompressibility),
which is uniform down the core, and that this strain rate,
the depth, the surface and bed conditions (and so the ice
thickness) and the temperature have remained steady through
the past time.
The schematic behaviour presented in the above papers

shows, in the GRIP and Byrd cores, a near-surface zone,
to a depth of hundreds of metres, in which there is normal
grain growth until an equilibrium grain diameter is reached,

then a zone of rotation (continuous) recrystallization with
uniform grain diameter in which polygonization counteracts
the growth, then a shallow basal zone at higher temperature
of migration (discontinuous) recrystallization in which the
grain diameter increases and the fabric weakens and isotropy
is possibly restored. In the Vostok core, unlike the others,
the temperature increases steadily with depth from the
surface, as does the grain diameter. My analysis uses only
data points taken from the growth curves presented in
these papers, not actual observation data. A critical review
of these recrystallization processes, and the theoretical
modelling, has been presented by Placidi and others (2006),
who also refer to migration recrystallization as dynamic
recrystallization. The papers and the present analysis treat
only the grain growth and dislocation-density evolution
equations prior to the onset of migration recrystallization,
but the state at this point is what triggers the migration
recrystallization, and is therefore a feature in the constitutive
modelling of subsequent migration recrystallization. Two
preliminary constitutive theories for such weakening and loss
of fabric have been proposed by Staroszczyk and Morland
(2001) and Morland (2002), but their deficiencies have been
noted by Placidi and others (2006).
Let t denote time, T denote temperature, D denote the

mean grain diameter and ζ denote the dislocation density.
During the initial normal growth, D increases from an initial
(surface) value, D0, to an equilibrium value, De, in the GRIP
and Byrd cores, governed by (Stevenson, 1967; Gow, 1969)

dD2

dt
= K (T ),

dD
dt

=
K (T )
2D

, (1)

where K (T ) is the grain-boundary migration rate, which is an
increasing function of T . The growth relation (1) is that used
by De La Chapelle and others (1998) and Montagnat and
Duval (2000). While this applies during the initial growth
in the Vostok core, it is suggested that growth continues
without reaching an equilibrium value, due to the increase
of T , and hence of K (T ), but no growth law is presented
for the rotational recrystallization stage which leads to an
equilibrium value for the GRIP and Byrd cores, but increasing
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Table 1. Core parameters

Core D0 De hc s0 Ts Ks ζ0

mm mm m ka−1 ◦C m2 ka−1 m−2

Byrd 1.575 6.3 2160 0.0788 −28 1.104× 10−5 1010

GRIP 1 4.0 3030 0.0788 −32 0.378× 10−5 1010

Vostok 1 3350 0.00725 −56 1010

Notes: D0 is initial grain diameter, De is equilibrium diameter, hc is core
length, s0 is initial strain rate, Ts is surface temperature, Ks is surface
migration rate and ζ0 is initial dislocation density.

D in the Vostok core. Jacka and Li (1994) proposed the more
general form

dD
dt

=
K
D
− PD , (2)

with the second term with positive coefficient P reducing
the growth rate. Placidi and others (2006) give the solution
for constant K and P and illustrate how D asymptotes
to an equilibrium value at a rate defined by P . Here a
more general modification is deduced which leads to the
equilibrium value of D at finite t for the GRIP and Byrd
conditions, but reproduces the continuous increase for the
Vostok conditions.
A reviewer has pointed out that a normal growth relation

is only applicable below any melt zone, so that D0 must
be interpreted as the mean diameter at the interface with
the fully frozen zone, and that location treated as the
surface. Furthermore, while D0 is a necessary initial value
for the differential equation (Equation (1) or (2)), surface
observations do not yield a clear-cut value, so the grain
diameter growth given by integrating the differential equation
(Equation (1) or (2)) from an assumed D0 is suspect even
over short times and modest depths. However, the proposed
modifications to describe the longer-time, deeper-diameter
profiles automatically correlate with better-measured mean
diameters, and are less sensitive to the choice of D0.
Furthermore, Gao and Jacka (1987) and Jacka and Li (1994)
emphasize that the equilibrium diameter is independent of
D0. The present comparison calculations adopt values of
D0 inferred from the figures of De La Chapelle and others
(1998) and Montagnat and Duval (2000), presumably the
initial values for their solutions.
The evolution of dislocation density from an initial value,

ζ0, at the surface is governed by (De La Chapelle and others,
1998; Montagnat and Duval, 2000)

dζ
dt
=

s
bvD

− α
K (T )ζ
D2

, (3)

where s is the compressive vertical strain rate, bv is the
Burgers vector and α is a parameter which is not less than
unity. The previous illustrations were mainly with α = 1,
butMontagnat and Duval (2000) illustrate dislocation-energy
evolution for the GRIP core with constant K for α = 1, 2 and
3, to conclude that α = 3 leads to a too low dislocation
density for the transition to rotation recrystallization, and α
between 2 and 3 would lead to an equilibrium dislocation
density close to the depth where grain growth reaches its
equilibrium value.
Solution of evolution equations from past ice deposit

times at the surface to the present (core observation) time

↑

↑

↓

↓

z = h0

z = f0

z = h(t)

z = f (t)

ρi

ρa

q(t)

b(t)

z

w

Fig. 1. Bed, f , and surface, h, at present time, t = 0, and at past
time, t .

requires knowledge of the history of the ice-flow variables,
not just present values, when the core is not assumed to
have been in its present state since the ice was deposited.
Retaining the assumption of vertical strain rate uniform in
depth, a more general history is allowed, as described above,
to obtain good age–depth correlations for the three cores,
by a least-squares calculation with selected data points,
showing that the non-changing-history assumption with the
given parameters is not consistent with the presented data.
The grain-growth equation is then modified to be consistent
with the distinct core observations, and comparisons made
with the original solutions and observations. Finally, the
same dislocation-energy evolution equation is solved with
the new and original grain growth to illustrate the different
behaviours.
Table 1 lists the parameters given by De La Chapelle and

others (1998) and Montagnat and Duval (2000) and inferred
from their figures, which are adopted here, together with
bv = 4.5× 10−10 m (De La Chapelle and others, 1998).
The inferred initial grain diameters, D0, for all three cores

are chosen to be one-quarter of the given De for the Byrd
and GRIP cores, which appear to be good approximations
from the figures, and allow a simplified common analysis;
it is not a necessary restriction; hc is the core length. The
temperature in the Byrd and GRIP cores remains at the
surface temperature, Ts, for a large fraction of the core length,
and the later illustrations adopt a fraction 2/3, followed
by a smooth quadratic increase to a basal temperature of
−10◦C. For the Vostok core, a quadratic increase from
the surface temperature to the same basal temperature is
adopted, with decay length adjusted to match a feature of
the profile shown by De La Chapelle and others (1998). The
grain-boundary migration rate dependence on temperature
is discussed below, in particular how it matches the surface
values, Ks, for the Byrd and GRIP cores and applies to the
temperature range of the Vostok core. The time unit ka is
chosen as a practical scale.

AGE–DEPTH CORRELATION
Figure 1 shows schematic bed (z = f (t )) and surface (z =
h(t )) positions with respect to a vertically upward coordinate,
z, with origin at the present bed position, f0 = f (0) = 0,
where t = 0 is the present time with the surface at z =
h(0) = h0. Motion in the core is assumed to be purely
vertical, with upward velocity w . The surface is subject to an
accumulation (inward ice flux per unit area) q(t ), assumed
positive, with present value q0, and the bed is subject to
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melting (outward ice flux per unit area) b(t ), of either sign,
with present value b0. The ice density is ρi = 917 kgm−3,
and the asthenosphere below is assumed to be a viscous
fluid with density ρa = 3300 kgm−3 (Greve, 2001). Isostatic
equilibrium is assumed over all past time; that is

ρi
(
h − f − h0

)
= ρa(−f ), (4)

which implies

f =
ρi
ρa

(
h0 −Δ

)
, h =

ρi
ρa
h0 +

ρa − ρi
ρa

Δ, (5)

where the ice thickness is

Δ(t ) = h(t )− f (t ), Δ0 = Δ(0) = h0. (6)

The surface and bed accumulation and melting conditions
are

z = h(t ) :
dh
dt
= ws +q, z = f (t ) :

df
dt
= wb+b, (7)

where subscripts ’s’ and ’b’ denote values on the surface and
bed, respectively. The assumption of a vertical compressive
strain rate, s(t ), uniform in z implies

s(t ) = −dw
dz
, w (z, t ) = wb(t )− s(t )

[
z − f (t )],

ws −wb = −s(t )Δ(t ), (8)

and hence from the boundary conditions, Equations (7),

dΔ
dt

+ s(t )Δ = q − b = q(t ). (9)

Define the integrating factor for the differential equation (9):

J(t ) = exp

[
−

∫ 0

t
s(τ ) dτ

]
, 1 ≥ J > 0 (t ≤ 0), (10)

then

J ′(t ) = s(t )J(t ),
∫ 0

t
s(τ )J(τ ) dτ = 1− J(t ), (11)

and the solution of Equation (9) is

J(t )Δ(t ) = Δ0 −Q (t ), Q (t ) =
∫ 0

t
J(τ )q(τ ) dτ , (12)

Q (0) = 0, Q ′(t ) = −J(t )q(t ) > 0, Q > 0 (t < 0), (13)

and f (t ) and h(t ) are then determined by the relations in
Equation (5).
Let P be the ice particle deposited at the surface, z = h

(
tp
)
,

at a time tp ≤ 0, which reaches position z(tp ) at the present
time, t = 0. Then P has a path, z = zp(t ), given by

dzp
dt

= w
[
zp(t ), t

]
= wb(t )− s(t )

[
zp(t )− f (t )

]
,

zp
(
tp
)
= h

(
tp
)
,

(
tp ≤ t ≤ 0

)
, (14)

which has the same integrating factor, J(t ), as Equation (9).
Integrating from t = tp to t = 0 gives

z
(
tp
)
= J

(
tp
)
h
(
tp
)
+

∫ 0

tp
J(τ )

[
wb (τ ) + s(τ )f (τ )

]
dτ. (15)

Now differentiating Equation (15) and eliminating h′
(
tp
)

by Equation (7), J ′
(
tp
)
by Equation (11) and the resulting

ws
(
tp
)−wb(tp) by Equation (83) gives

dz
dtp

= J
(
tp
)
q
(
tp
)

> 0. (16)

That is, z
(
tp
)
is strictly increasing, with a unique inverse,

tp(z), as physically required. Integrating the differential
equation (16) from t = tp to t = 0 now leads to a much
simpler expression than Equation (15) for z

(
tp
)
:

z
(
tp
)
= h0 −

∫ 0

tp
J(τ )q(τ ) dτ , (17)

depending only on the surface accumulation, and not on the
basal melting; again as physically required. In terms of the
depth, z , and age, t , of P in the present core,

z = h0 − z =
∫ t

0
J(−τ )q(−τ ) dτ , t = −tp. (18)

With the core assumptions of De La Chapelle and others
(1998) and Montagnat and Duval (2000), s ≡ s0, f ≡ 0,
h ≡ h0, and hence by Equation (9), q ≡ q0 ≡ s0h0, and
implicitly q ≡ q0 and b ≡ b0. Set b0 = rq0, r < 1, then
Equations (10) and (18) give the simple age–depth correlation

J(t ) = exp
(
s0t

)
,

z
h0
=

1
1− r

[
1− exp(−s0t)]. (19)

Later illustrations adopt b = 0, so r = 0, but non-zero r
simply applies a common scale factor to z at each t .
Anticipating that this correlation does not match the

empirical data presented by De La Chapelle and others
(1998) and Montagnat and Duval (2000) for the three cores,
the general relation, Equation (18), is now matched to
selected data points for the three cores by least-squares
correlation using simple positive functions, s(t ) and q(t ),
with five unknown parameters. The improved correlations
analogous to the result, Equation (19), but allowing a
different constant s0, are also determined. Let

s(t ) = s0s̃(y ), q(t ) = q0q̃(y ), y = s0t < 0, (20)

s̃(y ) = exp
(
s1y + s2y

2), q̃(y ) = exp
(
q1y + q2y

2), (21)

which ensure positive s and q. Here s0 is given, but q0 is a
free parameter along with

[
si , qi (i = 1, 2)

]
, giving five free

parameters. Now Equations (10) and (18) are expressed by

J(t ) = J̃(y ) = exp

[
−
∫ 0

y
s̃(ỹ ) dỹ

]
,

z
h0
= R

∫ 0

−y
J̃(ỹ )q̃(ỹ ) dỹ , R =

q0
s0h0

, y = s0t , (22)

so parameter q0 enters only in the multiplying factor, R,
which is treated as one of the five parameters in the least-
squares correlation to satisfy Equation (22).
The parameter h0, the current depth and thickness, enters

the isostasy relations, Equations (4–6), and the consequent
linear differential equation (9) for the thickness over past
time. It is specifically the current value of the thickness
(Equation (62)), and any change in h0 simply makes the
same additive change to Δ(t ). However, the z/h0 relation
to t in Equation (22) involves h0 only in the denominator
of the factor R, and so does not appear in the actual z–t
relation. It is therefore just a convenient normalizing factor
for the purpose of contrasting the different correlations, and
the simple choice h0 = hc, the core length, is made, so each
core has a common span 0 ≤ z/h0 ≤ 1. Note, though,
that the kinematic conditions (Equation (7)) involve actual
surface and bed positions, so this choice of h0 is applying
the basal melt, b, at the core base, and not at the actual bed.
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Fig. 2. Byrd core: age-normalized depth correlations. Squares are
given points; solid curve is given s0 solution; dot-dashed curve is
optimum s0 solution; dashed curve is correlated solution.

Hence the term q, which enters the thickness equation (9)
and correlation relation (22), now refers to the change over
the core length and not the depth. The choice, b = 0, made
for the illustrations could be just as good an approximation
at the core base as at the bed.
The selected depth–age points for the Byrd and Vostok

cores are taken from the figures of Montagnat and Duval
(2000) and De La Chapelle and others (1998), respectively,
and a selection from both for the GRIP core, marked as
squares in Figures 2–4, covering time ranges 15, 50 and
300 ka, respectively. As constructed, the general correlation
closely matches the given points for each core. The given s0
correlation, Equation (19), with r = 0 is reasonable for the
Vostok core, but not the Byrd and GRIP cores, and applying
a common z scaling at each t by changing the melting
proportionality, r , would not yield a good correlation. The
figures also show the correlation, Equation (19), with an
optimum constant strain rate, sds0, instead of s0, for each
core, where

Byrd : sd = 0.722, GRIP : sd = 0.755,

Vostok : sd = 0.856. (23)

These optimum constant strain rates are all appreciably
smaller than the given s0, and now both Byrd and Vostok
correlations are reasonable, but not the GRIP correlation.
Figures 5–7 show the variation of h, f , q and s with past
time, t , corresponding to the general correlations for the three
cores. The values of q0 determined by parameter R, with the
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Fig. 3. Same as Figure 2, but for GRIP core.
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Fig. 4. Same as Figure 2, but for Vostok core.

given s0, for the three cores are:

Byrd : q0 = 0.140ma
−1, GRIP : q0 = 0.215ma−1,

Vostok : q0 = 0.019m a
−1, (24)

which would decrease in proportion for an alternative, lower,
s0 such as those given by the optimum values (Equation (23)).
No correlations could be found for the case q ≡ q0, a
free parameter, with varying s(t ). In the case s ≡ s0
with varying q(t ), an enormous thickness in the past was
predicted for the GRIP core, increasing as r was increased,
and in the case s ≡ s0, f ≡ 0 (no bed deformation), the
surface elevation, h, in the past was even higher. The best
correlations obtained for the three cores were, therefore, the
case of varying s(t ), q(t ) and bed deformation, f (t ),
satisfying isostasy.
Note, however, that the predicted variations of q and s

for the GRIP core with the general correlation are rather
dramatic. Given more information about past variations of
various parameters, different correlation structures could
be determined. The present one is used to illustrate how
past history enters the evolution equations, and its possible
influence on predictions. These predictions hinge on the
underpinning assumptions that the vertical strain rate is, and
was during the period of application, uniform with depth,
and that the ice velocity in the core has been essentially
vertical. While these may be unsatisfactory, solution of the
evolution equations for grain growth and dislocation density
from the initial deposit time, and their display as profiles
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Fig. 5. Byrd core: bed, f , surface, h, strain rate, s, and surface
accumulation, q, as normalized variables at age t .
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Fig. 6. Same as Figure 5, but for GRIP core.

with depth at the present time, require a consistent age–
depth correlation that is not given by Equation (19). In the
later solutions, general correlation refers to the correlation
given by Equations (20–22), and previous correlation to
Equation (19) with the given s0.

TEMPERATURE AND GRAIN-BOUNDARY
MIGRATION RATE
In the Byrd and GRIP cores the temperature remains constant
to a large depth, but in the Vostok core the temperature
increases steadily with depth. Introducing a normalized
dimensionless temperature, T , by

T = T0 + [20
◦C]T , T0 = 0

◦C, (25)

which is of order unity over typical ice-sheet temperature
ranges, melting down to 60◦C below melting. The surface
temperatures for the three cores (Table 1) are then given by

Byrd : T s = −1.4, GRIP : T s = −1.6,
Vostok : T s = −2.8. (26)

The temperature profiles in z for the present time in the Byrd
and GRIP cores are modelled as constant down to a fraction
(1 − p) of the core, then by a quadratic with continuous
derivative reaching a temperature Tb = −10◦C, T b = −0.5,
at the base, with p = 1/3 adopted for illustrations. For the
Vostok core, the entire temperature profile in z is modelled
by a quadratic increasing from T = −2.8 at the surface to
T = −0.5 at the base, with the temperature gradient ratio
between bed and surface, ω, set to 4 to approximate the
figure shown in De La Chapelle and others (1998). That is,
for Byrd and GRIP,

T
(
z
)
= T s

(
0 ≤ z/h0 ≤ 1− p

)
,

T
(
z
)
= T s +

(
T b − T s

) (
z/h0 − 1 + p

)2
/p2(

1− p ≤ z/h0 ≤ 1
)
, (27)

and for Vostok, with ω = 0,

T
(
z
)
= T s +

2
(
T b − T s

)
1 + ω

[
z
h0
+

ω − 1
2

(
z
h0

)2]
. (28)

These are shown as profiles of the normalized depth, z/h0,
against the physical temperature, T , in Figure 8, and the same
functions of depth with respect to varying h(t ) in the general
age–depth correlation are adopted in the evolution equations
through past time.
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Fig. 7. Same as Figure 5, but for Vostok core.

The grain-boundary migration rate, K (T ), is an increasing
function of temperature (De La Chapelle and others, 1998),
and hence of T , though no details of its dependence
are presented. Surface temperatures for the three cores
are shown in Table 1, with dimensionless values given in
Equation (26), but Ks was given only for Byrd and GRIP,
and decreases significantly between Ts = −1.4 and Ts =
−1.6. Lacking further information, it is supposed that K does
not change dramatically from the Byrd and GRIP surface-
temperature values at lower and higher temperatures. Let
K → Kc at very low temperature, less than T s = −2.8, then
these conditions are satisfied by a function

K
(
T
)
= Kc + 0.5κ

{
1 + tanh

[
γ
(
T + 1.5

)]}
, (29)

with

Kc = 0.1× 10−5 m2 ka−1,
κ = 1.28× 10−5 m2 ka−1 and γ = 6.365, (30)

for which, to a very close approximation,

K (−2.8) = Kc, K (−0.5) = K (0) = 1.38× 10−5 m2 ka−1.
(31)

This form, chosen only to be consistent with the values given,
and not physically derived, is adopted for the new correlation
illustrations. For solutions with the previous correlation, K is
kept constant at the respective surface values given in Table 1
and Equation (311), since no variation was indicated.

GRAIN GROWTH AND DISLOCATION-DENSITY
EVOLUTION
In the Byrd and GRIP cores, while the temperature remains
constant to a large depth, the grain diameter first grows to
an equilibrium value, with growth rate depending on tem-
perature, described by Equation (1), then remains constant
for most of the core depth. In the Vostok core, both the
temperature and grain diameter increase continuously, with
no equilibrium diameter reached. The dislocation-density
evolution, described by differential equation (3), depends on
the temperature, strain rate and grain diameter. Introducing
a normalized dimensionless grain diameter, D , and dimen-
sionless dislocation density, ζ, by

D = D0D , ζ = ζ0ζ, (32)

where the initial values, D0 and ζ0, are given in Table 1, then
the equilibrium grain diameters for the Byrd and GRIP cores
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Fig. 8.Normalized-depth–physical-temperature (T ) profiles for Byrd
(solid curve), GRIP (dashed curve) and Vostok (dot-dashed curve)
cores.

are both given by De = 4, but this is not a restriction on the
analysis. Let t̃ be the time spent in the core at time t by a
particle P deposited at time tp, then

t̃ = t − tp, D = ζ = 1 at t̃ = 0. (33)

The grain-growth and dislocation-energy equations (1) and
(3) for particle P, for D and ζ, respectively, become

dD
dt̃

=
K
[
T
(
z
)]

2D20D
, (34)

dζ
dt̃
=
s0s̃

[
s0
(
t̃ + tp

)]
bv ζ0d0D

−
αK

[
T
(
z
)]

ζ

D20D
2 , (35)

in the dimensionless variables, where the depth, z, is that
of particle P at age t̃ , given by Equation (18) for general
correlation, and by Equation (19) for the previous correlation,
with t = t̃ . The initial values, D0 and ζ0, now appear in
the dimensionless evolution equations instead of the initial
conditions, but note that differential equations (34) and (35)
are equivalent to the physical rate laws, Equations (1) and
(3), which do not depend on the initial values.
First consider grain growth for the Byrd and GRIP cores

where De is reached after a finite time, at different constant
temperatures, and then remains constant. This is not realized
by the differential equation (2), and a different modification
to Equation (1) is required. An appropriate modification to
the corresponding dimensionless form, Equation (34), with a
different structure to Equation (2), is

dD
dt̃

=
K
[
T
(
z
)]

2D20D

[
1− g (D)] , (36)

such that the constitutive function, g (D ), is close to zero for
D < De, increases continuously to near unity over a small
range ofD centred onDe, then remains approximately unity.
The common temperature-dependent factor is necessary
so that the D growth can be switched off beyond De,
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Fig. 9. Byrd core: depth profiles at t = 0 of (a) normalized
grain diameter, D , and (b) dislocation density, ζ. New correlation
solutions (solid curves); solutions for grain growth, Equation (41),
with given s0 and constant K (dashed curves).

independent of the temperature. The function adopted for
illustrations is

g
(
D
)
= 0.5

{
1 + tanh

[
d
(
D −De

)]}
, d = 100; (37)

the large parameter, d , determines the rapid change range.
Differential equation (36) with function (37) is virtually
Equation (1) until De is reached, then ensures negligible
further growth. The term with factor g (D ) provides the
necessary slowing of the growth rate, consistent with
observation, but this form has no physical basis.
For the Vostok core, the grain growth is not switched off at

De, nor at larger D , and the increasing temperature does
not prevent the

[
1 − g (D )

]
factor in Equation (36) from

approaching zero beyond De. What is different for Vostok
is its much lower vertical compressive strain rate, s. For
constitutive purposes we measure strain rate by the second
principal invariant, I, of the (deviatoric) strain rate, D , given
by

I = 1
2 trD

2 = 3s2/4 (38)

in the assumed core deformation, and introducing a
magnitude I� between the values for Byrd and
GRIP cores (I = 4.66 × 10−3 ka−2) and the Vostok core
(I = 3.94 × 10−5 ka−2); the illustrations adopt I� =
10−4 ka−2. Define a constitutive function, χ(I), by

χ(I) = 1− δ

[
1− tanh

(
I − I�
I�

)]
, (39)

with the properties

χ(I) ≈ 1 (I � I�), χ(I) ≈ 1− 2 δ (I � I�), (40)

and change the growth relation (Equation (36)) to

dD
dt̃

=
K
[
T
(
z
)]

2D20D

[
1− χ(I)g

(
D
)]
, (41)

where I is defined by Equation (38), with s = s0s̃[s0(t̃ + tp)].
Now χ(I) is very close to unity for the Byrd and GRIP cores,
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Fig. 10. Same as Figure 9, but for GRIP core.

and to 1–2δ for the Vostok core, so the grain growths for Byrd
and GRIP are not changed by the χ(I) factor, but for Vostok
the growth relation becomes

Vostok :
dD
dt̃

=
K
[
T
(
z
)]

2D20D

[
1− (1− 2 δ)g

(
D
)]
, (42)

the
[
1−(1−2 δ)g (D)

]
factor is always positive. The parameter

δ = 6 × 10−4 was adopted so that D ≈ 8 at the core base,
to match figure A2 of De La Chapelle and others (1998).
Expressing the growth relation (41) back in physical vari-

ables introduces a possible dependence on the initial value,
D0, through g (D ), and in the adopted form (Equation (37)),
there is dependence on d (D−De)/D0, counter to the conclu-
sions of Gao and Jacka (1987) and Jacka and Li (1994). This
dependence can be eliminated by setting d = D0d with con-
stant d , when d is not constant, but depends onD0, and g (D )
depends explicitly on De, and not on De. Since d is simply a
large parameter introduced in Equation (37) to define a small
range of rapid change around De, its modest change with D0
would not significantly change the present results calculated
with the large constant d = 100 in Equation (37).
The dislocation-density evolution given by Equation (35)

is retained for both the new and previous correlations. Note
that in both evolution equations (35) and (41) the influence
of changing flow and profile history arises through the terms
T (z) and s̃

[
s0
(
t̃ + tp

)]
, which depend on the time each ice

particle has spent in the core.

NUMERICAL ILLUSTRATIONS
Differential equations (41) and (35) are solved simultan-
eously for a sequence of surface deposit times, tp, covering
the age–depth correlation range, to the present time, t = 0.
The grain-growth equation (41) with adopted constitutive
functions (37) and (39) is integrated over the same range to
determine the grain-diameter profiles in z at t = 0 for the
three cores, both for the new correlation and for the previous
correlation with given s0 and constant K . The function g (D ),
defined by Equation (37), requires an equilibrium value De,
and this was chosen to be 4, consistent with the values of
De and D0 for the Byrd and GRIP cores in Table 1. Finally,
the original dislocation-density evolution equation (35) was
integrated over the same range to determine the profiles
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Fig. 11. Vostok core: depth profiles at t = 0 of (a) normalized
grain diameter, D , and (b) dislocation density, ζ. New correlation
solutions (solid curves); solutions for grain growth, Equation (41),
with given s0 and constant K (dashed curves).

in z at t = 0 for the three cores, both for the new
correlation and for the previous correlation with given s0 and
constant K . Accuracy of the numerical algorithm has been
checked against equations with exact solutions of similar
shape.
The resulting grain-growth profiles for the Byrd and GRIP

cores are shown in Figures 9a and 10a. Since the age–depth
curves (Figs 2 and 3) for the general correlation and constant
s = s0 are very similar for short age times, the initial normal
grain-growth curves are also very similar, but note that
the distinct turning point close to the equilibrium diameter
arises at a shorter depth than suggested by Montagnat and
Duval (2000), even though the initial growth equation, and
parameters, are the same. The subsequent range of near-
uniformD is an observation byMontagnat and Duval (2000),
not given by a growth relation. Since temperature remains
constant for two-thirds of the core depth, the influence
of varying K (T ) in the new correlation only arises near
the final depth reached by the correlation in the GRIP
core, and not in the Byrd core. Figure 11a shows the
resulting grain-growth profiles for the Vostok core for the
new and previous correlations. The grain growths for both
show a distinct gradient change at De due to the rapid
change of g (D ), which does not occur in figure A2 of
De La Chapelle and others (1998). If the latter’s smooth
variation is correct, the prediction from Equation (34) could
be smoothed by reducing parameter d in Equation (37), but if
still unsatisfactory, then the growth relation, Equation (34), is
not sufficiently general. Even with K constant in the previous
correlation solution, but using the growth relation (41), there
is still grain growth for D > De, where g (D ) = 1 in
Equation (42), since δ > 0.
The corresponding dislocation-density profiles in z at t =

0 are shown in Figures 9b, 10b and 11b. Montagnat and
Duval (2000) assume D remains at De for the Byrd and
GRIP cores after the initial normal growth, which is the close
approximation given by Equation (41), so the dislocation-
density evolution relation, Equation (35), for the two profiles
differs only through the strain-rate dependence of the first
term. This has made a substantial change in the GRIP core
at depths close to the final correlation depth, where the new
predicted density decreases rapidly, but also in both cores
where the uniformmaximum density is much lower in figures
1 and 2 of Montagnat and Duval (2000). The De La Chapelle
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and others (1998) dislocation density in the GRIP core (their
fig. 5) has a peak ∼18 × 1010 m−2, occurring at ∼18 ka,
corresponding to ∼2000m depth, and then decreases stead-
ily. Figure 10b shows a nearly uniform dislocation-density
maximum, 19×1010 m−2, from 600 to 2100m, then a rapid
decrease. For the Vostok core, with the grain growth qualitat-
ively similar to figure A2 ofDe La Chapelle and others (1998),
it is clear that a constant K assumption makes a substantial
difference to the dislocation-density evolution, but De La
Chapelle and others (1998) do not state what variation of K
with T has been adopted. Their density has a peak ∼13 ×
1010 m−2 at 50 ka, corresponding to a depth ∼800m, then
decreases rapidly, very different to the new prediction in
Figure 11b which shows a peak, 10.8×1010 m−2, at 1800m,
then a decrease to 1.1 × 1010 m−2 at 2610m, followed by
an increase to 1.5× 1010 m−2 at 3000m.

CONCLUSIONS
Noting that the assumption of uniform vertical strain rate
with depth, together with the assumption of unchanging
core conditions over past time, are inconsistent with
observed age–depth correlations in the Byrd, GRIP and Vos-
tok cores, the unchanging core history has been relaxed to
show how close age–depth correlations can be obtained.
Solution of the evolution equations for grain diameter and
dislocation density from when each ice particle is deposited
at the surface, and interpretation in terms of depth profiles at
the present observation time with varying flow and surface/
bed history, requires a consistent depth–time correlation over
the period the ice particle has been in the core. The presen-
ted correlations may not be appropriate, as suggested by
the histories of strain rate obtained, but further information
about conditions in the past could be used to change
the correlation assumptions and resulting strain-rate and
surface/bed histories. However, the correlations provide an
illustration of the differences in predictions that can
arise. The grain-growth relation has been modified to be
consistent with idealized observed profiles, incorporating an
illustrative grain-boundary migration rate on temperature,
and, in turn, the consequent dislocation-density evolutions
are determined. While the new correlation assumptions
and grain-growth relations may not be realistic, they
demonstrate that a close age–depth correlation leads to
results that differ from previous predictions, and that inter-
pretations from core observations hinge on flow-history
assumptions.
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