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Supercritical CO2 injection and dissolution into deep brine aquifers allow its sequestration
within geological formations. After injection, CO2 gas phase is buoyancy-driven over the
denser aqueous brine, reaching an apparent gravitational stable distribution. However,
CO2 dissolution in brine propels convection since the mixture is even denser than the
underlying brine. This process still needs to be characterised comprehensively. Here, we
investigate the irreversible mixing of dissolved CO2 in brine through laboratory-scale
numerical experiments utilising the Hele-Shaw model (Letelier et al., J. Fluid Mech.,
vol. 864, 2019, pp. 746–767) and a fully miscible two-fluid system. In this scenario, mixing
the less dense fluid – mimicking CO2 gas phase – with the heavier fluid – representing
aqueous brine – catalyses cabbeling-powered convection. Our numerical simulations
recover the laboratory results in porous media by Neufeld et al. (Geophys. Res. Lett., vol.
37, issue 22, 2010, L22404) and may explain the scaling law obtained by Backhaus et al.
(Phys. Rev. Lett., vol. 106, issue 10, 2011, 104501) in Hele-Shaw cells. More remarkably,
we show that the mass flux between the two analogue fluids, characterised by the Sherwood
number Sh, obeys the universal scaling law Sh ∼ Ra ϑscalar, with Ra the Rayleigh number
and ϑscalar the mean scalar dissipation rate. This paper sheds light on the fluid dynamics
and solubility trapping in geological carbon sequestration.
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1. Introduction

Carbon dioxide (CO2) is the most pervasive greenhouse gas affecting the Earth’s climate,
and its concentration continues to rise (Arias et al. 2021). One of the widely debated
geoengineering strategies to decarbonise the atmosphere – and mitigate the impacts of
climate change – is geologic carbon sequestration (GCS) within deep brine aquifers (Metz
et al. 2005; Friedmann 2007). Over the last decade, significant progress has been made
in understanding the physics and geochemistry at stake in GCS (Altman et al. 2014;
Celia et al. 2015). It entangles: (i) buoyancy driven flows reaching the uppermost region
of deep confined aquifers (stratigraphic trapping); (ii) migration of CO2 gas phase and
weak CO2 dissolution in brines powering convection in the aqueous phase (solubility
trapping); (iii) CO2 gas phase trapped in the pore space via capillary forces (residual
trapping); and (iv) mineral precipitation and fixation of CO2 into the solid porous matrix
(geochemical trapping) (Metz et al. 2005; Huppert & Neufeld 2014). However, the complex
fluid dynamics of CO2 in saline aquifers (hydrodynamic trapping) remains challenging
and not yet characterised comprehensively. Advancing in characterising and modelling
the fluid dynamics is critical to quantify the irreversible mixing of dissolved CO2 in brine
and thus determine the efficacy and constraints of GCS in deep aquifers.

The fundamentals of CO2 dissolution in brine aquifers have been investigated through
analogue models of solutal convection in permeable media, utilising numerical and
laboratory experiments (Neufeld et al. 2010; Backhaus, Turitsyn & Ecke 2011; Hidalgo
et al. 2012; Hewitt, Neufeld & Lister 2013; Slim 2014; Amooie, Soltanian & Moortgat
2018). Such experiments have used analogue working fluids within porous media and
Hele-Shaw cells to mimic and visualise the convective dynamics associated with the
supercritical CO2 dissolution in brine (Backhaus et al. 2011; Hewitt et al. 2013; MacMinn
& Juanes 2013; Slim et al. 2013; Letelier et al. 2016; Alipour, De Paoli & Soldati
2020; De Paoli 2021; De Paoli et al. 2022). Utilised working fluids and environments
include methanol and ethylene-glycol (MEG) mixture with water in a cell filled with
sand (Neufeld et al. 2010; Guo et al. 2021), MEG doped with sodium iodide and sodium
chloride in quasi-two-dimensional (Q-2-D) and three-dimensional (3-D) porous media
(Wang et al. 2016), and an aqueous solution of propylene glycol (PPG) and deionised
water in Hele-Shaw cells (Backhaus et al. 2011; Hewitt et al. 2013).

In the literature, we find two distinctive configurations to investigate solutal convection
in porous media: the ‘canonical’ and ‘analogue’ models (Hidalgo et al. 2012). In the
canonical model, density varies linearly with concentration. In this case, dissolution
occurs at the uppermost boundary, whereas a no-flux condition is imposed at the
bottom boundary. Conversely, in the analogue model, density varies nonlinearly with
concentration. In this case, no-flux conditions are imposed at the top and bottom
boundaries. The test fluids used by Neufeld et al. (2010), Backhaus et al. (2011) and Hewitt
et al. (2013) satisfy a constitutive equation for density of the type ρ(Sw) = ρB + c1Sw +
c2S2

w, with Sw the mass fraction of the less dense fluid component (see table 1 for symbols’
definition). A nonlinear equation for ρ(Sw) enables buoyancy dynamics not supported by
linear equations of state, such as ‘cabbeling’, i.e. the formation of an aqueous mixture
that is denser than the fluid parcels that gave origin to it (e.g. Groeskamp, Abernathey
& Klocker 2016). Cabbeling, in fact, is the mechanism driving convection, downward
mass transport and enhancing irreversible mixing between the analogue working fluids.
Here, the fundamental quest is the scaling law linking the non-dimensional mass flux,
the Sherwood number Sh, the Rayleigh number of the system Ra, and the mean scalar
dissipation rate ϑscalar.
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Symbol Dimensions Definition First time used

Sh — Sherwood number § 1
Ra — Rayleigh number § 1
ϑscalar — Non-dimensional mean scalar dissipation rate § 1
ε — Anisotropy ratio § 2
ρ∗ M L−3 Density of analogue two-fluid system figure 2.1, § 2
ρA M L−3 Density of the (CO2) analogue fluid A figure 1, § 2
ρB M L−3 Density of the (brine) analogue fluid B figure 1, § 2
f ∗
ρ M L−3 Dimensional Boussinesq density component (2.1), § 2

fρ — Non-dimensional Boussinesq density component (2.3a–e), § 2
Sw % Fluid A mass fraction § 1
Δw % Concentration at which density is maximum (2.1), § 2
ρmax M L−3 Maximum density at Sw = Δw (2.2), § 2
b L Hele-Shaw cell gap § 2
H L Hele-Shaw cell height § 2
HIB L Initial height between fluid A and fluid B § 2
L L Hele-Shaw cell horizontal length § 2
K L2 Hele-Shaw cell permeability § 2
ν L2 T−1 Kinematic viscosity § 2
κ L2 T−1 Scalar diffusivity § 2
x∗, x L, − Dimensional and non-dimensional coordinates (2.3a–e), § 2
t∗, t T, − Dimensional and non-dimensional time (2.3a–e), § 2
v∗, v T, − Dimensional and non-dimensional velocity field (2.3a–e), § 2
p∗, p M L−1 T−2, − Dimensional and non-dimensional pressure field (2.3a–e), § 2

Table 1. Glossary of general symbols used in the text.

In the canonical model, Amooie et al. (2018) obtained the sub-linear relationship
Sh ∼ Ra0.931 for 2-D and 3-D numerical simulations solving the non-Boussinesq Darcy
equation with no-flux at the lateral boundaries. This result is valid in the range
1500 � Ra � 135 000. The authors remarked that the linear relation Sh ∼ Ra is attained
asymptotically (i.e. for Ra � 4 × 104). The latter has also been reported in other works
using non-Boussinesq/Boussinesq fluids and periodic lateral boundaries (Pau et al. 2010;
Slim 2014). In the case of laboratory experiments (no-flux conditions at the lateral
boundaries), the scaling shows a sub-linear trend of the type Sh ∼ Raα . In a Q-2-D porous
medium, Guo et al. (2021) obtained α = 0.95, for 400 � Ra � 8000, while in 3-D porous
media, Wang et al. (2016) found α = 0.93, for 2600 � Ra � 16 000. These laboratory
results show good agreement with numerical results for intermediate Ra. Yet power-law
exponents derived from analogue models differ significantly from those obtained from
canonical ones. In a Q-2-D porous medium, Neufeld et al. (2010) obtained Sh ∼ Ra0.84,
whereas for Hele-Shaw experiments, Backhaus et al. (2011) found Sh ∼ Ra0.76. These
results are consistent with the theoretical scaling law Sh ∼ Ra4/5 derived by Neufeld
et al. (2010), resulting from a balance between vertical advection and horizontal diffusion.
Nonetheless, we stress that the nature of the laboratory-scale environment, i.e. porous
media and Hele-Shaw, may impact the scaling law’s exponent of Ra. Indeed, we expect
that Hele-Shaw cells with larger gaps may lead to smaller exponents (De Paoli, Alipour &
Soldati 2020). Additionally, discrepancies between scaling laws Sh ∼ Raα reported in the
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literature may also arise from different boundary conditions set in numerical simulations
and laboratory experiments.

In this paper, we investigate the irreversible mixing of dissolved CO2 in brine through
laboratory-scale numerical experiments utilising a fully miscible two-fluid system. Here,
we aim to (i) reconcile apparent discrepancies between scaling laws of the type Sh ∼ Raα

employing the Hele-Shaw equations (Letelier, Mujica & Ortega 2019) applied to the
analogue model, and (ii) examine the relationship between the non-dimensional mass flux
Sh and the irreversible mixing controlled by the mean scalar dissipation rate ϑscalar. We
therefore concentrate on finding relationships of the type Sh ∼ Raα(ε), with ε a geometrical
scale of the Hele-Shaw cell, to pave the road towards a universal scaling law of the form
Sh/ϑscalar = b Ran, with b and n independent of ε. Such a scaling law may serve for
estimating the rate of homogenisation of the dissolved CO2 in brines.

The paper is organised as follows. In § 2, we introduce the Hele-Shaw model utilised to
investigate the problem of cabbeling-powered convection in Q-2-D Hele-Shaw cells as an
analogue for the problem of CO2–brine mixing in permeable media. Then in § 3, we derive
global conservation equations for the scalar field representing the CO2–brine mixture, in
order to disentangle the various fluxes involved in the irreversible mixing of the scalar
field. The modelling approach is described in § 4, whereas our numerical experiments,
benchmarks and scaling results are reported and discussed in § 5. Finally, § 6 summarises
our main findings.

2. Hele-Shaw model

We consider a Hele-Shaw domain whose cell gap is b in the y∗ coordinate, and whose
horizontal length and vertical height are L and H in the x∗ and z∗ coordinates, respectively.
Conceptually, the Hele-Shaw cell fulfils the relation b � H and provides a suitable setting
to visualise the fluid dynamics in a transparent, Q-2-D porous-like medium of permeability
K = b2/12. At the laboratory scale, the cell gaps range from 100 μm to 1 mm, while
the cell heights can be of the order of 10 cm. In our model, the cell is filled with an
incompressible, density-variable Boussinesq fluid composed of the mixture between two
miscible fluids. Both the kinematic viscosity ν and scalar diffusivity κ are assumed to be
constant. Figure 1(a) illustrates examples of the density as a function of the water mass
fraction (concentration) Sw for aqueous solutions of PPG used to model the CO2–brine
mixture in laboratory experiments. The density of the fluid mixture is modelled by the
nonlinear constitutive relationship

ρ∗(Sw) = ρB + f ∗
ρ (Sw) = ρB + (ρB − ρA)

[(
2Δw

1 − 2Δw

)
Sw −

(
1

1 − 2Δw

)
S2

w

]
, (2.1)

with f ∗
ρ = ρ∗ − ρB the Boussinesq density component, ρA and ρB reference densities

shown in figure 1(b), and Δw the concentration at which the fluid density is maximum,

ρ∗(Δw) = ρmax = ρB + Δ2
w

(
ρB − ρA

1 − 2Δw

)
. (2.2)

Figure 1(b) schematises the boundary and initial conditions of our problem. Initially, the
fluid A of uniform density ρA is placed over the fluid B of uniform density ρB. The initial
interface between fluid A and fluid B is located at height HIB < H. Tracking this interface
(and its height) is relevant since that is where molecular mixing between both fluids and
cabbeling occur.
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Figure 1. (a) Density of the aqueous solution of PPG as a function of the water mass fraction (concentration)
Sw and temperature. For a fixed temperature, density satisfies approximately the constitutive relation ρ(Sw) =
ρB + c1 Sw + c2 S2

w (Sun & Teja 2004; Hewitt et al. 2012; Khattab et al. 2017); see (2.1). The parameters c1
and c2 are constants, and ρB is the density of the fluid mimicking the brine layer. (b) Conceptual model for the
analogue fluid problem in a Hele-Shaw cell, mimicking the CO2–brine mixing. The cell gap b is much thinner
than the cell height H, so the 3-D system can be approximated as a Q-2-D geometry, with u∗ the velocity
component in the lateral (horizontal) direction (x̂), and w∗ the velocity component in the vertical direction (ẑ).
We impose no-flux (∂Sw/∂z∗ = 0) and free-slip (w∗ = 0, ∂u∗/∂z = 0) boundary conditions, at both z∗ = 0 and
z∗ = H. Initially, a layer of fluid A of density ρA, mimicking the CO2 gas phase, lays over a layer of fluid B of
density ρB > ρA that mimics an aqueous brine layer. Both fluids are fully miscible. The initial concentration
S(0)

w (z∗) and density ρ(S(0)
w ) profiles are shown in black and red, respectively. Molecular diffusion between A

and B leads to cabbeling, which catalyses the growth of finger-like instabilities and active convection in the
region B.

We consider the following non-dimensional forms of the dimensional variables
x∗, t∗, v∗, p∗, f ∗

ρ :

x = x∗

HIB
, t = t∗

HIB/uc
, v = v∗

uc
, p = p̃∗

pc
and fρ = f ∗

ρ


ρm
= 2

Sw

Δw
− S2

w

Δ2
w
,

(2.3a–e)

with 
ρm = ρmax − ρB the maximum density difference respect to the deeper fluid B,
x = x x̂ + z ẑ the non-dimensional position, velocity v = u x̂ + w ẑ the non-dimensional
velocity, uc = 
ρm gK/(ρBν) the characteristic velocity, and pc = ρBνucHIB/K the
characteristic pressure. Considering the above geometrical and fluid properties, the
non-dimensional 2-D Hele-Shaw equations (Letelier et al. 2019) are

∂ivi = 0, (2.4a)

ε2 Ra
Sc

(
6
5

∂vi

∂t
+ 54

35
vj ∂jvi

)
= −∂ip − fρ(Sw) δiz − vi

+ ε2 ∂2
j vi + 2

35
ε2 Ra (vj ∂j Sw)

dfρ
dSw

δiz, (2.4b)

∂Sw

∂t
+ vi ∂iSw = 1

Ra
∂2

i Sw + 2
35

ε2 Ra ∂j
(
(vi ∂iSw)vj

)
, (2.4c)
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with dfρ/dSw = (2/Δw)(1 − Sw/Δw) the derivative of the Boussinesq density, whereas

ε =
√

K
HIB

, Ra = ucHIB

κ
= 
ρm gKHIB

ρBνκ
and Sc = ν

κ
(2.5a–c)

are the anisotropy ratio, the Rayleigh number for Hele-Shaw cells and the Schmidt number,
respectively. The Hele-Shaw equations (2.4) are valid for ε � 1, ε2 Ra � 1 and Sc � 1,
and they result from averaging the Navier–Stokes equation in the spanwise ŷ direction.
This averaging procedure of the velocity, pressure and concentration fields in ŷ integrates
no-slip and no-flux boundary conditions at the vertical walls (Letelier et al. 2019). Free-slip
and no-flux are imposed on the top and bottom boundaries, as shown in figure 1(b).
We consider two scenarios for the lateral boundaries, no-flux and free-slip conditions
(closed system), and periodic boundary conditions. For ε → 0, the model (2.4) reduces
to the Darcy equation coupled with the advection–diffusion model (e.g. Hewitt, Neufeld
& Lister 2012). Notice that in nature, the Schmidt number of CO2–brine mixtures is
about 103, while for analogue fluids utilised in laboratory experiments, 10 � Sc � 100.
Moreover, regardless of the flow regime (Darcian or Hele-Shaw), we note that greater
Schmidt numbers will weaken the inertial effects in the momentum balance (2.4b), making
mechanical dispersion the most relevant term affecting convective dynamics beyond the
Darcian regime (Liang et al. 2018).

3. Global conservation equations

We study global quantities associated with mass transfer and mixing in the time-dependent
domain Ωc(t) sketched in figure 1(b). The (dimensional) averaged height h∗(t) defines the
upper boundary of Ωc, with h∗(t = 0) = HIB. For t > 0, the definition and computation
of h∗ are somewhat arbitrary and depend on authors’ criteria. Nevertheless, the global
conservation equations introduced in this section are independent of the chosen criteria;
our definition of h∗ and method adopted to compute it are introduced in § 3.1.

Henceforth, we express the ‘mean’ of a physical variable f (t, x) through the lateral (x̂
direction) and domain integrals as

〈f 〉(t, z) = 1
L

∫ L

0
f (t, x) dx and 〈f 〉υ(t) =

∫ h(t)

0
〈f 〉(t, z) dz, (3.1a,b)

respectively, with L = L/HIB the effective cell aspect ratio, and h(t) = h∗(t)/HIB the
non-dimensional averaged height. Likewise, we express the time average of a function f (t)
over a window of size τ as

〈f 〉τ = 1
τ

∫ t+τ

t
f (t̃) dt̃. (3.2)

3.1. Interface detection and first conservation equation
For an arbitrary 2-D ‘control volume’ Ω(t), the Reynolds transport theorem establishes
that the rate of change of a non-dimensional quantity

∫
Ω(t) f (t, x, z) dx dz is given by

d
dt

[∫
Ω(t)

f dx dz
]

=
∫

Ω(t)

∂f
∂t

dx dz +
∮

∂Ω(t)
f vini ds, (3.3)

with ∂Ω the boundary of the ‘volume’ Ω , ds the infinitesimal ‘length’ of ∂Ω , and vi
the ith component of the (non-dimensional) velocity at ∂Ω . Let us now consider f = Sw.
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Applying (3.3) over a specific volume Ωc and normalising by L , we obtain

1
L

∫
Ωc(t)

∂Sw

∂t
dx dz = 1

L

d
dt

[∫
Ωc(t)

Sw dx dz
]

− 1
L

∫ L

0
whSw

∣∣∣∣∣
z=h

dx, (3.4)

where wh corresponds to the rate of change over time of h(t). Using (3.1a,b) and assuming
that wh is a constant (Neufeld et al. 2010), (3.4) can be written compactly as〈

∂Sw

∂t

〉
υ

= d
dt

〈Sw〉υ − wh 〈Sw〉
∣∣∣∣
z=h

, (3.5)

with 〈Sw〉|z=h the horizontal average of Sw evaluated at h(t). Thus the transport equation
governing the water mass fraction over the domain Ωc is obtained by integrating (2.4c),
i.e. ∫

Ωc

∂Sw

∂t
dx dz +

∫ L

0

[
Sw − 2

35
ε2 Ra (vi ∂iSw)

]
w

∣∣∣∣
z=h

dx = 1
Ra

∫ L

0

∂Sw

∂z

∣∣∣∣
z=h

dx.

(3.6)

Using (3.5) and the mean quantities defined in (3.1a,b), (3.6) can be contracted to

Ra
d
dt

〈Sw〉υ = −Fad + Ra wh 〈Sw〉|z=h + ∂〈Sw〉
∂z

∣∣∣∣
z=h

, (3.7)

with Fad the advective–dispersive flux defined as

Fad = Ra 〈Sww〉|z=h − 2
35ε2 Ra2 〈w ∂i(Swvi)〉|z=h. (3.8)

Previous authors have chosen different criteria to define and compute h(t). Neufeld et al.
(2010) studied the laterally averaged concentration profile and used the ‘flat’ interfacial
region – which propagated upwards at a constant speed – to estimate an advective
mass flux. In contrast, Hewitt et al. (2013) defined h as the averaged interfacial height
where 〈Sw〉|z=h = Δw, i.e. the position at which the horizontally averaged density is
maximum. The ‘interface’, with height hint(t, x), is defined as the contour satisfying
Sw(x, z = hint(t, x)) = Δw. This locus is geometrically complex and not flat (see figure 2b)
(e.g. Hidalgo et al. 2015). Another alternative is to define h as the solution of the equation
Fad = 0 in (3.8). The latter implies that the mass transfer at h(t) is governed by molecular
diffusion ∂z〈Sw〉|z=h and the flux due to the rejection at constant velocity wh of the contour
drawn by h. The criterion above to determine h(t) is feasible via numerical simulations.
However, its application to laboratory experiments is challenging owing to the necessity
to resolve the velocity and scalar fields simultaneously.

Here, we define h(t) so that its computation via laboratory or numerical experiments
is straightforward. First, we note that ρ(Sw = 2Δw) = ρB corresponds to the density of
the initial bottom layer (fluid B). Let us introduce hiso(t, x) as the contour satisfying
Sw(x, hiso(t, x)) = 2Δw. This locus is substantially flatter (quasi-flat) than the case of the
‘interface’ hint(t, x) (compare figures 2b,c). The latter allows us to define the averaged
height h(t) robustly as the solution of 〈Sw〉|z=h = 2Δw. This h splits the Hele-Shaw cell
into two time-dependent rectangular domains, a convective region Ωc(t), and a stable
region Ωs(t), as in figure 1(b).

A global description of the problem requires studying the convective dynamics of the
‘free-falling’ plumes, i.e. from the state in which the downward plumes are sufficiently
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Figure 2. (a) Spatiotemporal evolution of the scalar field Sw modelling the mixing of the initial two-fluid
system in a Hele-Shaw cell mimicking the CO2–brine mixture. The plotted area highlights the transition
between the upper stable layer and the deeper convective layer. (b) Spatiotemporal evolution of the isoscalar
Sw = Δw drawn with the dimensional height (‘interface’) h∗

int(t
∗, x∗), defining the locus of the maximum

density (Hewitt et al. 2013). This locus is not flat. (c) Spatiotemporal evolution of the isoscalar Sw = 2Δw
drawn by the height h∗

iso(t
∗, x∗), found above the ‘interface’. This locus is substantially flatter in comparison to

(b), allowing us to define a robust averaged height h(t) (in its non-dimensional form).

spaced from local mergers beneath the interface until the first megaplume reaches the
bottom of the Hele-Shaw cell. This regime is known as the constant flux (Slim 2014)
or late convection (Amooie et al. 2018). The time window τ that captures the stage
of free-falling convective plumes is denoted as the integral time scale. Over this time
scale, physical quantities such as d〈Sw〉υ/dt, dh/dt and ∂〈Sw〉/∂z|z=h have a statistically
stationary behaviour (see § 5). Therefore, applying the time average defined in (3.2) and
the ‘normalised’ scalar field ϕ = Sw/2Δw, (3.7) can be written as

〈
Ra

d
dt

〈ϕ〉υ
〉
τ

= − 1
2Δw

〈Fad〉τ + Ra wh +
〈
∂〈ϕ〉

∂z

∣∣∣∣
z=h

〉
τ

. (3.9)

Equation (3.9) denotes the first conservation law utilised to characterise the mass transfer
rate between the fluid A (CO2 gas phase) and fluid B (aqueous brine layer). Within the
integral time scale, O(Fad/(2Δw)) � O(Ra wh), 〈∂〈ϕ〉/∂z|z=h〉τ , i.e. the contribution of
Fad can be ignored. The latter is shown in the Appendix, figure 10. Interestingly, each of
the remainder terms in (3.9) can be interpreted as a non-dimensional parameter. The time
average of the mean scalar rate of change is defined as the ‘global’ Sherwood number

Shϕ =
〈
Ra

d
dt

〈ϕ〉υ
〉
τ

. (3.10)

De Paoli et al. (2020) used a similar version of (3.10) to construct the scaling law
associated with the dissolution rate of potassium permanganate, KMnO4, into water in
a Hele-Shaw cell, whereas Guo et al. (2021) adopted (3.10) to estimate the dissolution rate
of MEG in pure H2O within a porous medium. On the other hand, the ‘local’ Sherwood
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number, defined as
Sh = Ra wh, (3.11)

is based on the rate at which the contour hiso(t, x) expands vertically in response to the
mass exchange. Neufeld et al. (2010) used a similar version of Sh to construct the scaling
law associated with the dissolution of MEG into H2O in a porous medium. In addition, the
term 〈∂〈ϕ〉υ/∂z|z=h〉τ in (3.9) can be interpreted as a solutal Nusselt number,

Nuϕ =
〈
∂〈ϕ〉

∂z

∣∣∣∣
z=h

〉
τ

, (3.12)

which is analogous to the Nusselt number employed to quantify the global heat transfer
rate due to thermal convection in porous media (Hewitt et al. 2012) and Hele-Shaw cells
(Letelier et al. 2019).

If the control volume Ωc is extended over the whole domain (see figure 1b), then the
conservation equation for 〈ϕ〉 simplifies to

d
dt

〈ϕ〉 = 0, with〈ϕ〉 = 1
L

∫ H

0

∫ L

0
ϕ(t, x, z) dx dz, (3.13)

where H = H/HIB. The mass budget in (3.13) shows the relevance of using a
time-dependent control volume Ωc(t) to disentangle the physics and quantify the mass
transfer between the quiescent upper layer and the deeper convective mixing layer.

3.2. Second conservation equation
We investigate the irreversible mixing in the system through the evolution of the scalar
variance ϕ2. The equation governing the rate of change of ϕ2 can be derived by multiplying
(2.4c) by Sw. Averaging the resulting equation over the domain Ωc and relocating Ra, the
evolution equation for 〈ϕ2/2〉υ is given by

Ra
d
dt

〈
1
2

ϕ2
〉
υ

= −Fvar + Ra wh

〈
1
2

ϕ2
〉


∣∣∣∣
z=h

+ ∂

∂z

〈
1
2

ϕ2
〉


∣∣∣∣
z=h

− Ra 〈Φ(ε)
scalar〉υ,

(3.14)
with Fvar the variance flux, and Φ

(ε)
scalar the scalar dissipation rate, defined as

Fvar = Ra
〈

1
2

ϕ2w
〉


∣∣∣∣
z=h

− 2
35

ε2 Ra2
〈
w ∂i

(
1
2

ϕ2vi

)〉


∣∣∣∣
z=h

, (3.15)

Φ
(ε)
scalar = 1

Ra
(∂iϕ)2 + 2

35
ε2 Ra (∂i(ϕvi))

2 . (3.16)

The physics of 〈Φ(ε)
scalar〉υ can be interpreted straightforwardly by extending the control

volume to the entire Hele-Shaw cell. Applying the domain average defined in (3.13) and
the adiabatic boundary conditions for the Hele-Shaw cell, (3.14) reduces to

Ra
d
dt

〈
1
2

ϕ2
〉

= −Ra 〈Φ(ε)
scalar〉. (3.17)

The right-hand side term in (3.17) is a negative-definite quantity that determines
the global decay rate of the scalar variance (Ulloa & Letelier 2022). As a result,
〈1

2ϕ2〉(t) is a monotonically decreasing function in time owing to irreversible mixing and
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homogenisation of the scalar ϕ (i.e. Sw) inside the fluid environment. If the rate of change
of the mean scalar variance 〈ϕ2/2〉υ is statistically constant over the integral time scale
τ , then we can characterise the quasi-steady fluxes governing the scalar variance transport
and irreversible mixing in Ωc as

Ra
〈

d
dt

〈
1
2

ϕ2
〉
υ

〉
τ

= −〈Fvar〉τ + Ra

〈
wh

〈
1
2

ϕ2
〉


∣∣∣∣
z=h

〉
τ

+
〈

∂

∂z

〈
1
2

ϕ2
〉


∣∣∣∣
z=h

〉
τ

− Ra ϑscalar, (3.18)

with ϑscalar = 〈〈Φ(ε)
scalar〉υ〉τ the mean scalar dissipation rate. Equation (3.18) corresponds

to the second conservation law of the fluid environment investigated here.

4. Method: numerical experiments

We performed numerical experiments using the spectral solver flow_solve (Winters 2012),
which has been applied successfully to resolve buoyancy-driven flows in Hele-Shaw cells
(Letelier et al. 2019; Ulloa & Letelier 2022). The dynamical variables in (2.4a)–(2.4c)
were expanded by means of trigonometric basis functions over the Hele-Shaw
computational domain, and integrated in time using a third-order Adams–Bashforth
scheme for advective/buoyant terms and the implicit fourth-order Adams–Moulton method
for diffusive scheme.

The problem of irreversible mixing between dissolved CO2 and brine does not admit a
base state solution. The initial condition for the scalar field is given by

S(0)
w (z) = 1 − HIB

H
− 2

π

N∑
n=1

1
n

sin
(

nπHIB

H

)
cos

(nπz
H

)
exp(−n2π2 t̄), t̄ � 1, (4.1)

whereas the velocity components satisfy (u, w)|t=0 = (0, 0). To fulfil the boundary
conditions defined in figure 1(b), we expanded u ∼ fu(nx, x) cos(nzπz), w ∼ fw(nx, x)
sin(nzπz), p ∼ fp(nx, x) cos(nzπz) and Sw ∼ fs(nx, x) cos(nzπz), with nx and nz the
number of grid points in x and z coordinates, respectively. The functions fβ , with
β ∈ {u, w, p, s}, depend on lateral boundary conditions. For no-flux, free-slip lateral
conditions, fu = sin(nxπx) and fw = fp = fs = cos(nxπx). On the other hand, for periodic
lateral conditions, fu = fw = fp = fs = exp(nxπx). The effective cell aspect ratio was
L = L/HIB = 2/3, while the entire domain aspect ratio was L/H = 1/2.

For no-flux, free-slip lateral conditions, the dimensional spatial resolutions in x and
z were Δ∗

x = L/(nx − 1) and Δ∗
z = H/(nz − 1), respectively, such that Δ = 
∗

x = 
∗
z .

Likewise, for periodic lateral conditions, we keep the homogeneity of the grid Δ, but
Δ∗

x = L/nx because the point x(nx) is not stored explicitly in flow_solve. The resolution
Δ was chosen to resolve the spectral Batchelor scale Δ � πΔb (Grötzbach 1983), with
Δb = (ν3/ε Sc2)1/4 the Batchelor length scale, and ε ∼ νu2

c/K the scale of the kinetic
energy dissipation rate. The time step met the Courant–Friedrichs–Lewy (CFL) condition
of the numerical scheme, CFL � 0.02, for both velocity components (Letelier et al. 2019).

The horizontal average of a function fi = f (xi) over nx grid points was based
on a cubic spline interpolation of f in a three times denser grid, with mx = 3nx
points. The interpolated function f new

j , with j = 1, . . . , mx, was integrated using the
composite Simpson’s rule. We used the same procedure for the domain average of the
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Label ε Ra Pe = ε Ra nx × nz Shϕ Sh(m)
ϕ

A1 5 × 10−4 1200 0.6 403 × 805 37.79 1.89 × 10−2

A2 5 × 10−4 3600 1.8 573 × 1145 103.84 5.12 × 10−2

A3 5 × 10−4 6000 3.0 669 × 1337 160.00 8.00 × 10−2

A4 5 × 10−4 8400 4.2 803 × 1605 205.16 10.26 × 10−2

A5 5 × 10−4 12 000 6.0 1003 × 2005 295.50 14.78 × 10−2

A6 5 × 10−4 36 000 18.0 1673 × 3345 707.41 35.37 × 10−2

B1 3 × 10−3 7200 21.6 495 × 991 143.84 4.32 × 10−1

B2 3 × 10−3 14 400 43.2 661 × 1321 212.12 6.36 × 10−1

B3 3 × 10−3 21 600 64.8 825 × 1651 262.87 7.89 × 10−1

B4 3 × 10−3 28 800 86.4 925 × 1849 317.59 9.53 × 10−1

C1 5 × 10−3 600 3.0 71 × 141 18.36 9.18 × 10−2

C2 5 × 10−3 1200 6.0 101 × 201 34.41 17.21 × 10−2

C3 5 × 10−3 3600 18.0 173 × 345 86.68 43.34 × 10−2

C4 5 × 10−3 6000 30.0 213 × 425 121.51 60.76 × 10−2

C5 5 × 10−3 8400 42.0 257 × 513 147.97 73.99 × 10−2

C6 5 × 10−3 12 000 60.0 337 × 673 172.35 86.18 × 10−2

C7 5 × 10−3 24 000 120.0 427 × 853 241.29 120.65 × 10−2

Table 2. Summary of non-dimensional experimental parameters and results. The experimental set is
conformed by three subsets, each of them characterised by single anisotropy ratio ε and a range of Rayleigh
Ra and Péclet Pe = ε Ra numbers. The Schmidt number Sc = 10 was kept constant for all our experiments.
Here, Shϕ is the Sherwood number introduced in (3.11), and Sh(m)

ϕ = ε Shϕ is the modified Sherwood number
computed from the numerical results.

z-dependent function. Numerical derivatives were computed using a spectral approach
based on sine and cosine transforms, depending on the boundary conditions.

Our numerical experiments encompassed 103 � Ra � 3 × 104, with Sc = 10, and three
values of the anisotropy ratio, ε = 5 × 10−4, ε = 3 × 10−3 and ε = 5 × 10−3. The
simulations were run in high-performance computers using up to 80 cores over four
advective time scales, defined as H2

IB/(κ Ra). This simulation time was enough to resolve
the full transition from the onset of convection to the instant that megaplumes reached
the bottom boundary of the Hele-Shaw cell. Table 2 summarises the experimental set and
numerical results for the non-dimensional mass flux parameters.

5. Results and discussion

5.1. The adiabatic analogue model in the Darcian regime
In order to have a robust benchmark, we conducted a first set of numerical experiments
adopting the laboratory scales employed by Neufeld et al. (2010), i.e. an analogue model
with no-flux boundary conditions. The cell dimensions used by Neufeld et al. (2010) were
b = 1.4 cm, L = 40 cm and H = 80 cm, and it was filled with a granular material. The
initial position of the interface was HIB = 60 cm, so the effective cell aspect ratio was
L = L/HIB = 2/3. Here, we modelled the porous medium used in Neufeld et al. (2010)
by adopting a small anisotropy ratio such that Hele-Shaw equations (and Hele-Shaw cells)
recover the Darcian regime. The latter regime is achieved for ε = 5 × 10−4. Notice that
a fully analogue anisotropy ratio for the Neufeld et al. (2010) experiments should be one
order of magnitude smaller. However, for such a tiny value of ε, numerical experiments
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Figure 3. Mass fraction Sw and scalar dissipation rate Φ
(ε)
scalar for the mixing of the initial two-fluid system

in a Hele-Shaw cell, with L = L/HIB = 2/3, L/H = 1/2, Δw = 0.3, Sc = 10, Ra = 104 and ε = 5 × 10−4.
Slides are shown for different times. The advective time scale is defined as tadv = HIB/uc.

become considerably more expensive while not providing new results. For the adopted
value of ε, and considering cell height H = 80 cm, an experimental Hele-Shaw cell must
have cell gap b = √

12 εH ≈ 1.5 mm and fulfil ε2 Ra � 1 (Letelier et al. 2019; De Paoli
et al. 2020) – i.e. the Rayleigh number should be no larger than 4 × 105.

Figure 3 shows the spatiotemporal evolution of the mass fraction Sw and the scalar
dissipation rate Φ

(ε)
scalar to illustrate the solutal convection and mixing in the two-fluid

system. The non-dimensional parameters of the numerical experiment are Δw = 0.3,
Sc = 10 and Ra = 104. Figure 3(a) encompasses a time window that captures the
emergence of instabilities in the early convection or flux growth regime (Slim 2014;
Amooie et al. 2018) and snapshots illustrating the late convection or constant flux regime,
until the first megaplume reaches the bottom boundary. After the onset of convection,
lateral diffusion leads to a continuous process of coalescence, where two or more plumes
merge, creating megaplumes that enhance downward mass transfer. Simultaneously,
figure 3(b) shows the scalar dissipation rate Φ

(ε)
scalar, highlighting that vigorous mixing

occurs at the diffusive layer and edges of convective plumes. The latter demonstrates
that horizontal diffusion is an active process in the convective region, as posited by
Neufeld et al. (2010). Additionally, figure 3 shows the slow yet pervasive interface upward
displacement caused in response to the continuous bloom of protoplumes.

Figure 4 shows time series for the mean dissipation rate of the scalar variance,
〈Φ(ε)

scalar〉υ , for ε = 5 × 10−4 and Ra = 3000, 10 000 and 30 000. During the onset of
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Figure 4. Time series of the mean scalar dissipation rate 〈Φ(ε)
scalar〉υ for ε = 5 × 10−4 and

3 × 103 � Ra � 3 × 104.

convection due to cabbeling and after the diffusive regime, 〈Φ(ε)
scalar〉υ shows a transient

behaviour characterised by a sharp and large amplitude peak, associated with the flux
growth regime. This first peak is followed by a relaxation phase associated with the
merging regime. The mergers between primary plumes continue, but the system reaches a
quasi-steady rate of decay of the scalar variance ϕ2 within the volume Ωc(t), governed by
the second conservation equation (3.14) – the late convection regime. This result allows
us to define an ad hoc integral time scale τ that characterises the period over which
〈Φ(ε)

scalar〉υ is statistically steady, until the first megaplume reaches the bottom. Note that
at the quasi-steady state, the mean dissipation rate of the scalar variance decreases as the
Rayleigh number increases, showing a functional dependence between 〈Φ(ε)

scalar〉υ and Ra.
Figure 5 shows time series of the physical quantities governing the first conservation

equation (3.9), for two numerical experiments, with ε = 5 × 10−4, and Ra = 104 and
Ra = 3 × 104, respectively. Each panel highlights the integral time scale τ . The evolution
in time of the averaged height h(t) is shown in figures 5(a,d). The results illustrate
that h(t) grows linearly, implying that the convective region B expands vertically at a
constant rate. The latter is remarkable since it indicates that global quantities and boundary
fluxes, such as d〈ϕ〉υ/dt and (∂〈ϕ〉/∂z)|z=h, reach statistically steady states over τ , shown
in figures 5(b,e) and 5(c, f ), respectively. Hence we can rigorously link the controlling
parameters ε and Ra with the global Sherwood number Shϕ .

Figure 6(a) maps the relationship between Shϕ and Ra, integrating numerical
simulations and laboratory experimental data reported by Neufeld et al. (2010) plus
our numerical results. We computed the mass transfer rate as (3.10), the global
Sherwood number. For ε = 5 × 10−4 and the intermediate Ra range, 103 � Ra � 3 ×
104, the numerical results lead to the scaling law Shϕ = b̃ Rañ, valid for the Darcian
regime, with b̃ = 0.12 ± 0.02 and ñ = 0.83 ± 0.01. The latter is equivalent to the
results by Neufeld et al. (2010). Remarkably, figure 6(b) shows that the ratio of the
Sherwood number and mean scalar dissipation rate, ϑscalar, scales as Shϕ/ϑscalar = b Ran,
with b = 5.4 ± 0.4 and n = 0.99 ± 0.01. This result is analogous to the scaling law
Nu = Ra ϑscalar, with Nu the Nusselt number, which governs irreversible thermal
mixing and heat transfer in Rayleigh–Bénard–Darcy convection (Letelier et al. 2019;
Ulloa & Letelier 2022). Therefore, results in figure 6(b) indicate that ϑscalar depends
on Ra in the range of intermediate Ra, and for adiabatic analogue models in the
Darcian regime, Shϕ ∼ Ra ϑscalar. Experimental results reported by Neufeld et al. (2010)
support the existence of a persistent sub-linear relation Shϕ ∼ Raα up to Ra � 105.
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Figure 5. Time series of two numerical experiments, for ε = 5 × 10−4, Ra = 104 and Ra = 3 × 104.
(a,d) Height h characterising the isoscalar surface Sw = 2Δw as a function of time. Here, h has a fairly constant
rate of change in time, dh/dt = wint. (b,e) Rate of change in time of mean scalar 〈ϕ〉υ . (c, f ) Time series of the
vertical gradient of the laterally averaged scalar 〈ϕ〉 at z = h.
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Figure 6. Scaling laws for the mass transfer rate across the average height h(t) between the miscible fluids
mimicking the CO2–brine mixture. (a) Plots of Shϕ versus Ra in the Darcian regime, i.e. ε2 Ra � 0.1 (where
HS stands for Hele-Shaw). Black triangles and black squares were obtained from numerical and laboratory
experiments, respectively, reported by Neufeld et al. (2010). For ε = 5 × 10−4, our numerical experiments
shown in cyan circles lead to a scaling law Shϕ ∼ Ra0.83±0.01 valid for Ra � 105. (b) The main panel shows
Shϕ/ϑscalar versus Ra for the numerical experiments. Results lead to the scaling law Shϕ/ϑscalar ∼ Ra0.99±0.01.
Inset shows the global Sherwood number Shϕ versus the local Sherwood number Sh, obtaining the relationship
Sh ∼ Shϕ .

For Ra � 105 (high-Ra), experimental data seem to fit the linear relation Shϕ ∼
Ra. Regarding the solutal Nusselt number Nuϕ , we obtain the sub-linear relations
Nuϕ ∼ Ra0.78 and Nuϕ/ϑscalar ∼ Ra0.94 in the range of intermediate Ra. Regardless of
the metric used to estimate the mass flux (Shϕ or Nuϕ), ϑscalar ∼ Ra−0.16.

It is relevant to mention that experiments in 3-D porous environments lead to mass
fluxes about 25 % higher than those estimated for 2-D porous media, but the scaling
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tendency is quite similar. This increase in the mass flux for 3-D over 2-D laboratory
results is consistent with the numerical simulations by Amooie et al. (2018) and
with the increase in heat transfer of about 18 % obtained for 3-D over 2-D thermal
convection by Pirozzoli et al. (2021), both numerical studies being grounded on Darcy
models.

In the context of CO2 dissolution trapping into deep aquifers, our findings show that the
mass transfer of CO2 gas phase into aqueous brine should be proportional to the decay rate
of dissolved CO2 variance in the aqueous phase. This suggests that the irreversible mixing
rate occurring in the convective region Ωc is an essential process governing the CO2
geologic sequestration. Indeed, the non-dimensional, time-averaged mass flux F scales
as Shϕ/Ra ∼ ϑscalar.

5.2. Revisiting the scaling laws for mass transfer in porous media
Amooie et al. (2018) suggest that lateral boundaries do not significantly affect the scaling
laws between the Sherwood number and Rayleigh number as long as the full development
of megaplumes is free from the extent of the horizontal domain. However, experimental
realisations inherently have limited cell aspect ratios, regardless of whether they employ
porous media or Hele-Shaw cells in the Darcian regime. This experimental constraint leads
to sub-linear relationships Shϕ ∼ Raα , i.e. 0 � α < 1, as shown in § 5.1. Here, we examine
how the finite extent of the horizontal domain could modify the value of the exponent α.
To mimic large cell aspect ratios, we utilise the Hele-Shaw equations in the Darcian regime
applied for the analogue model with periodic lateral boundary conditions.

Adopting the same parameters for the Hele-Shaw cell described in § 5.1, figure 7
illustrates the relationship between Shϕ and Ra obtained from our numerical simulations
with periodic lateral boundaries. The results show a sub-linear scaling law Shϕ = b̃ Rañ,
with b̃ = 0.07 ± 0.02 and ñ = 0.88 ± 0.03, valid for the intermediate range 103 � Ra �
3 × 104, which differs from Shϕ ∼ Ra0.83±0.01 obtained for closed boundaries. Moreover,
the inset in figure 7 shows that Shϕ/ϑscalar = b Ran, with b = 5.4 ± 0.5 and n = 0.99 ±
0.01 . Therefore, the relation Sh ∼ Ra ϑscalar is also attained for periodic boundary
conditions. These results suggest a redistribution of mass within the (periodic or large)
convective domain Ωc(t) that enhances the global mass transfer. Here, the remarkable
result is the ‘universality’ of the scaling law Shϕ ∼ Ra ϑscalar, regardless of the lateral
boundary condition employed in the analogue model. Therefore, for intermediate Ra,
the relations Shϕ ∼ Raα and ϑscalar ∼ Raα−1 are sensitive to (i) the adopted model
(canonical or analogue), (ii) the lateral boundary conditions, and (iii) the range of Ra
considered.

The approximate relation Shϕ ∼ Ra0.9 obtained in this section, valid for the range
103 � Ra � 3 × 104, agrees with the scaling law Sh ∼ Ra0.9 suggested by Amooie
et al. (2018) for the constant-composition condition applied in the canonical model.
Interestingly, our result also agrees with the scaling Nu ∼ Ra0.9 obtained numerically for
‘wall to wall’ heat transfer in porous media (Hewitt et al. 2012) and Hele-Shaw domains
in the Darcian regime (Letelier et al. 2019). For high Ra values (Ra � 4 × 104) and
periodic lateral boundaries, we remark that both problems, heat and mass transport, seem
to satisfy, asymptotically, the linear scaling laws Nu ∼ Ra and Shϕ ∼ Ra, respectively.
A consequence of the above is that ϑscalar is insensitive to Ra, recovering the findings
reported by Hidalgo et al. (2012) for the analogue model with periodic lateral boundaries.
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Figure 7. Numerical results for the analogue problem with periodic boundary conditions (Hidalgo et al. 2012).
The main plot illustrates Shϕ versus Ra, showing that the global Sherwood number and Rayleigh number satisfy
the scaling law Shϕ ∼ Ra0.88±0.03. Inset illustrates Shϕ/ϑscalar versus the Rayleigh number Ra, obtaining the
relationship Shϕ/ϑscalar ∼ Ra0.99±0.01.

5.3. The adiabatic Hele-Shaw model predictions
Figure 8(a) maps the relationship between Ra and Shϕ , including an additional set of
numerical experiments for ε = 5 × 10−3, to explore the system’s response beyond the
Darcian regime. For ε = 5 × 10−3, we observe that for Ra � 4000, the dataset follows
the power law given by the Darcian regime, Shϕ ∼ Ra0.83±0.01. However, for ε2 Ra � 0.1,
3-D effects start to influence the global mixing rate, diminishing the mass transfer across
the interface in a fashion similar to that observed in Rayleigh–Bénard–Darcy convection
(Letelier et al. 2019). Such a dependence between the convective flow dimensionality and
the power-law exponent may explain the experimental scaling law Sh ∼ Ra0.76 obtained
by Backhaus et al. (2011) in Hele-Shaw cells. Their exponent, 0.76, strongly suggests the
transition from Darcian to Hele-Shaw regime.

One might want to integrate the Hele-Shaw model results with laboratory experiments.
However, linking recent Hele-Shaw experiments with our numerical results is challenging
because experimental data are grouped in terms of cell gap b rather than ε. We overcome
this issue by utilising an alternative pair of non-dimensional parameters: the Péclet
number, defined as

Pe = ε Ra = uc
√

K
κ

, (5.1)

and the modified Sherwood number, defined as

Sh(m)
ϕ =

〈
Pe

d〈ϕ〉υ
dt

〉
τ

. (5.2)

Figure 8(b) merges our numerical experiments and the recent laboratory studies in
Hele-Shaw cells by De Paoli et al. (2020) (canonical model) and Ecke & Backhaus (2016)
(analogue model). In both laboratory studies, the mass flux exhibits an almost constant
magnitude for a fixed cell gap. Each square and triangle in figure 8(b) represents the
mean value of five experiments with the same b, respectively. For numerical experiments
with ε = 5 × 10−3, a bifurcation from Darcian to Hele-Shaw regime is observed for
Rayleigh numbers larger than 4000. In the Hele-Shaw regime, inertial effects become more
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Figure 8. Scaling laws for the mass transfer rate across the average height h(t) between the miscible fluids
for Darcian, Hele-Shaw (HS), and 3-D regimes. Each regime is ε2 Ra-dependent. For ε = 5 × 10−3 (yellow
circles), the Darcian regime is upper bounded by Ra ≈ 4 × 103, whereas the HS regime is associated with
4 × 103 � Ra � 4 × 104. (a) Plots of Shϕ versus Ra. Black triangles and black squares were obtained
from numerical and laboratory experiments, respectively, reported by Neufeld et al. (2010). Our numerical
experiments in the HS regime (yellow circles) show a scaling law Shϕ ∼ Ra0.47±0.01. (b) Modified Sherwood
number Sh(m)

ϕ versus Péclet number Pe = ε Ra, for laboratory experiments in Hele-Shaw cells (Ecke &
Backhaus 2016; De Paoli et al. 2020) and our numerical experiments. De Paoli et al. (2020) utilised the
canonical model in their experimental configuration, while Ecke & Backhaus (2016) used the analogue model.
The values of the exponent α for each dataset show its dependence on the (canonical or analogue) model used
and the effects of the cell gap on mass transfer.

vigorous, leading to a scaling law with a lower exponent, Sh(m)
ϕ ∼ Pe0.47±0.01. Physically,

this means that widening the cell aperture results in a global enhancement of the scalar
homogenisation and the reduction of scalar gradients due to the volume expansion across
the cell gap. We stress the behaviour of points D and E from the dataset of De Paoli et al.
(2020), which depart from the power-law prediction valid for the Darcian regime in the
canonical model. The latter is due to the full 3-D effects supported by Hele-Shaw cells
with wide apertures and high Ra (Letelier et al. 2019; De Paoli et al. 2020).

In summary, laboratory and numerical experiments prove that the power law between
Shϕ and Ra is ε-dependent. Nonetheless, we show that the functional relationship between
the ratio Shϕ/ϑscalar and the Rayleigh number collapses all the numerical experiments,
revealing the existence of a universal scaling law – independent of ε and directly
proportional to Ra. Figure 9 crystallises the relationship Shϕ/ϑscalar ∼ Ra. This result
is significant since it links three fundamental quantities: the Sherwood number Sh, the
Rayleigh number Ra, and the mean scalar dissipation rate ϑscalar.

5.4. Implications for CO2-brine mixing at the field scale
Deep brine aquifers are the most promising geologic reservoirs to store CO2 underground
permanently due to their large storage capacity (Rathnaweera & Ranjith 2020).
However, the low solubility of injected supercritical CO2 into brines, about 3–5 %
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Figure 9. Scaling law for Shϕ/ϑscalar with Ra for three set of numerical experiments with Sc = 10 and
different ε. All experiments collapse to the curve Shϕ/ϑscalar ∼ Ra0.99±0.01.

(Mohammadian et al. 2015), is a significant drawback that makes CO2 sequestration
inefficient on short time scales, limiting its feasibility. Furthermore, due to its low
solubility and positive buoyancy relative to the surrounding natural porous fluids, the
(significant) part of CO2 gas phase, not dissolved in brine, might potentially leak through
fractures in the caprock and reach the atmosphere to become a source.

To increase the mixing and dissolution, studies have shown that adding high-mass,
ultra-small size nanoparticles (NPs) into the injected CO2 can (i) accelerate the onset
time of convection, (ii) enhance the mixing of dissolved CO2 with the underlying brine,
and (iii) reduce the risk of leakage (e.g. Javadpour & Nicot 2011). Doping CO2 with
NPs allows increasing the density contrast between the CO2–NPs–brine mixture and the
underlying brine. The latter strengthens convection, increasing the velocity scale uc of
megaplumes, and consequently amplifying Ra and Shϕ . Typically, in idealised reservoirs,
Ra ∼ 104 (Neufeld et al. 2010). Let us consider a large lateral spread of mobile CO2 gas
phase within a reservoir. In this scenario, we can estimate changes in the Sherwood number
utilising the sub-linear scaling Shϕ ∼ Ra0.9 (proposed in § 5.2) as a first approximation.
The latter implies that ϑscalar depends on Ra.

A relevant open question is as follows. (i) How much can the density contrast be
increased to enhance the mass transfer between the CO2-rich brine and the underlying
brine? Here, the mean scalar dissipation rate begins to play a fundamental role. For the
canonical model, Amooie et al. (2018) demonstrate the linear scaling law Shϕ ∼ Ra, valid
for Ra � 4 × 104. In this linear regime, ϑscalar is invariant to Ra. For the CO2–brine
mixture at the field scale, ϑscalar may have a ‘saturation condition’, regardless of the
increase of Shϕ due to the addition of high-mass NPs. In other words, this condition
supports the existence of a ‘constant mixing rate phase’ in which the dissolved CO2
homogenises in the bulk of the deep aquifer at a constant rate via irreversible mixing. An
estimation of the ‘transition’ Ra, RaT , that would lead to the ‘constant mixing rate phase’
must be investigated. Reaching this phase is intriguing since increasing Ra above RaT
powers an increment in the available energy that strengthens convection (kinetic energy)
and enhances mass flux yet at a constant ϑscalar. The latter leads to addition fundamental
questions. (ii) How is the energy excess in the two-fluid system expended? (iii) Does

962 A8-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

24
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.246


Scaling CO2–brine mixing in permeable media via analogue models

the kinetic energy dissipation rate also saturate above RaT? These questions warrant
further research on the production and dissipation processes associated with CO2-rich
brine convection.

6. Concluding remarks

Geologic carbon sequestration in brine aquifers is a geoengineering method proposed
to decarbonise the Earth’s atmosphere, mitigating climate change and its impacts. The
latter is a response to the call of Sustainable Development Goal 13: Climate Action,
defined in the 2030 Agenda by the United Nations. Yet strategies to improve the efficiency
of underground CO2 sequestration remain debated, requiring a deeper understanding
of long-term capture processes. In particular, the influence of the mean (CO2) scalar
dissipation rate in the dissolution dynamics within terrestrial reservoirs has been given
little attention. Here, we investigated the fluid dynamics and irreversible mixing for a
two-fluid system in permeable media, mimicking processes catalysing the CO2 dissolution
trapping in deep brine aquifers. For the above, we utilised the Hele-Shaw equations
(Letelier et al. 2019) and analogue, laboratory-inspired models with a nonlinear equation
of state for density.

The fluid dynamics and mixing of the two-fluid system is powered by a cabbeling
process that fosters a continuous growth of protoplumes from the diffusive boundary
layer. These protoplumes become convective plumes, which in turn form megaplumes
due to coalescence. Irreversible mixing occurs due to diapycnal mass flux, i.e. a flux in the
direction normal to the local isopycnal surface. This irreversible flux is proportional to the
rate at which the scalar spatial variance decays in time, Φ

(ε)
scalar.

The convective region beneath the ‘interface’ contributes significantly to the irreversible
global mixing. In the convective region, our numerical results show that mixing occurs
intensively at the edges of the megaplumes and mostly across the lateral x̂ direction, as
proposed by Neufeld et al. (2010). Consistently with the Q-2-D porous medium laboratory
experiments performed by Neufeld et al. (2010), our numerical experiments in the Darcian
regime (ε2 Ra � 1) show a sub-linear scaling Shϕ ∼ Raα , with α = 0.83 ± 0.01.

From our results, we see that Hele-Shaw experiments must account carefully for the
dynamic regimes controlled by the Péclet number and the anisotropy ratio. Employing the
Hele-Shaw model (Letelier et al. 2019), we were able to achieve the Darcian regime for
ε Pe � 0.1. The latter allows modelling and studying the CO2 sequestration in porous
media (Neufeld et al. 2010; Guo et al. 2021). To reconcile laboratory experiments in
porous media and Hele-Shaw cells, we illustrated results in the Hele-Shaw regime (Letelier
et al. 2019; De Paoli et al. 2020), in which inertial effects become measurable and the
Darcian regime breaks down. We expect Hele-Shaw experiments that do not comply with
the Darcian regime to lead to scaling laws with exponents lower than α ≈ 0.83. This
reduction in the power-law exponent is associated with an enhancement of the scalar
field homogenisation, as shown via laboratory experiments by De Paoli et al. (2020) and
more recently by Noto, Ulloa & Letelier (2022, 2023). Therefore, weak inertial effects in
the Hele-Shaw regime might explain the sub-linear power law Sh ∼ Ra0.76 reported by
Backhaus et al. (2011).

Finally, it is remarkable that buoyancy-driven convective flows in vertical Hele-Shaw
geometries under quasi-steady state admit a universal law given by Fϕ = bϕ Ra ϑscalar,
with Fϕ the scalar transport related to ϕ – i.e. heat (Nu) or mass transfer (Shϕ) – and
ϑscalar, the mean dissipation rate of ϕ. The parameter bϕ takes the value bϕ = 1 for heat
transfer, but for mass transfer in analogue models, bϕ ∼ 5.4 when Δw = 0.3. Exploring the
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Figure 10. Time series of various non-dimensional fluxes involved in time evolution of the mean scalar field
〈Sw〉υ for three Rayleigh numbers, 103 � Ra � 104. The solid line denotes the rate of change in time of the
mean scalar field in the domain Ωc; the dashed line denotes the advective flux at the upper mobile boundary at
z = h(t); the red solid line denotes the diffusive flux; and the dotted line denotes the advection–dispersion flux
at the mobile boundary z = h(t).

implications of this universal law at field scale warrants further research to investigate
mechanisms capable of enhancing CO2 dissolution and storage in deep brine aquifers.
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Appendix. Time series of the first conservation law (3.7)

Figure 10 illustrates time series of the fluxes governing the evolution of the mean scalar
field Sw representing the dissolved CO2 in brine within the time-varying volume Ωc(t).
This volume characterises the region where cabbeling-powered convection takes place.
Figure 10 summarises results for three Rayleigh numbers, Ra = 103 in figure 10(a),
Ra = 5 × 103 in figure 10(b), and Ra = 104 in figure 10(c). The rate of change in time
of 〈Sw〉υ is shown in the black solid line. The blue dashed line denotes the advective flux
Ra wh〈Sw〉|z=h. The red solid line is diffusive flux at the upper mobile boundary z = h(t)
of Ωc(t), i.e. ∂〈Sw〉/∂z|z=h. The dotted line represents the advective–dispersive flux at
z = h(t), i.e. Fad. The numerical experiments show that Fad has a minor contribution
in the overall evolution of 〈Sw〉υ . In contrast, the most prominent flux is the advection
at the mobile upper boundary. Indeed, Ra wh〈Sw〉|z=h modulates the time series of
Ra d〈Sw〉υ/dt. This dominance is especially evident at high Ra (figure 10c), whereas at
low Ra, advection and diffusive fluxes have similar contributions.
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