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In this paper, we study the linear stability of a two-dimensional shear flow of an air layer
overriding a water layer of finite depth. The air layer is considered to be of an infinite
extent with an exponential velocity profile. Three different background conditions are
considered in the finite-depth water layer: a quiescent background, a linear velocity profile
and a quadratic velocity profile. It is known that the cases of the quiescent water layer and
the linear velocity profile allow for analytical treatment. We further provide an analytical
solution for the case of the quadratic velocity field: we specifically consider a flow-reversal
profile, although the result could be generalized to other quadratic profiles as well. The role
of water layer depth on the growth rate of the Miles and rippling instabilities is studied in
each of the three cases. Using asymptotic analysis, with the air–water density ratio being a
small parameter, we obtain an analytical expression for the growth rate of the Miles mode
and discuss the condition for the existence of a long-wave cutoff for these profiles. We
provide analytical expressions for the stability boundary in the parameter space of inverse
squared Froude number and wavenumber. In scenarios where a long-wave cutoff does not
exist, we have carried out a long-wave asymptotic study to obtain the growth rate behaviour
in that regime.

Key words: shear-flow instability, wind-wave interactions, critical layers

1. Introduction

The generation of surface waves by wind blowing over the ocean is an important problem
in geophysical flows. Kelvin initiated the study by formulating it as an inviscid linear
stability problem with normal mode perturbations to get the growth rate of the surface
waves (Thompson 1871). With a uniform velocity profile in the air and an infinitely deep,
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Figure 1. The contour plot of the imaginary part of the complex phase speed, ci (in m s−1), plotted on
a free-stream velocity in the air (U∞)-wavenumber (k) plane for (a) Kelvin’s calculations and (b) Miles’
‘quasi-laminar theory’ with an exponential velocity profile in the air. Here, values of ci < 10−10 m s−1

are neglected.

quiescent ocean, his approach predicted a minimum critical wind speed of 6.6 m s−1 for
the waves to form in an ocean–atmosphere setting, which he noted was much higher
than the observations. Following the review of Ursell (1956), two mechanisms of surface
wave generation were proposed independently. Miles (1957), following Thompson (1871),
treated this as an inviscid linear stability problem and considered a quasi-laminar shear
flow in the air layer. While Phillips (1957), following Eckart (1953), considered turbulent
flow and showed that resonance between the pressure fluctuations in the air layer and the
surface waves could lead to linear growth in the wavelets. Readers are referred to Phillips
(1966) for further details on Phillips’ mechanism. In this study, we are concerned with
Miles’ mechanism of surface wave generation.

The initial problem considered by Miles (1957) is the linear stability of a quasi-laminar
wind, sustained by turbulence (which is neglected otherwise in the formulation; hence
‘quasi-laminar’), blowing over an infinitely deep, quiescent ocean. The instability is due to
a resonant interaction between gravity–capillary waves in the water layer and the imposed
base-state shear flow, at some location z = zc, in the air layer. At this location (known as
the ‘critical layer’), the base-state flow velocity matches with the gravity–capillary wave
speed (U(zc) = c(k)). This approach predicts a growth rate of the instability proportional
to the negative of the curvature of the velocity profile at the critical layer (−U′′(zc)),
and hence only those velocity profiles in the air that are convex at the critical layer are
unstable. However, for short waves, the critical layer could lie in the viscous sublayer
where U′′(zc) ≈ 0 and thus, the instability mechanism due to energy transfer through the
inviscid Reynolds stress is not possible. Instead, the viscous Reynolds stress dominates for
short waves as was first studied by Miles (1962) and subsequently studied in numerous
other works (Valenzuela 1976; Kawai 1979; van Gastel, Janssen & Komen 1985; Miesen
& Boersma 1995). The calculations following Miles (1957) predict a minimum critical
free-stream velocity of O(1)m s−1 in the air (figure 1b), an improved prediction compared
with Kelvin’s (figure 1a). A physical explanation describing the energy transfer from the
critical layer to the wave is provided in Lighthill (1962). The growth rates calculated
from various field measurements, experiments and numerical studies, although not exactly
matching with Miles’ theory, reinforced Miles’ mechanism of energy transfer at the critical
layer. A description of these works is given in Janssen (2004).

Miles later extended his initial study (Miles 1957) with the inclusion of viscosity,
boundary layers and the effect of turbulent Reynolds stresses in the air in separate works
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Wind-generated waves on a water layer of finite depth

(refer to Paquier (2016) for a detailed description). In Miles (1959) and subsequently in
Cohen & Hanratty (1965), viscosity is incorporated perturbatively to account for boundary
layers at the interface and at the bottom surface. In their experiments, Cohen & Hanratty
(1965) observed waves with wavelengths of the same order as the water layer depth and
explained that larger or smaller wavelength waves decay due to viscous dissipation at the
bottom wall and the interface, respectively. In the same vein, Craik (1966) also considered
a finite-depth water layer to study instabilities over a range of Reynolds numbers (Re),
using both experiments and theory. In the experiments, they noticed a fundamental change
in the instability mechanism with a decrease in the water layer depth. At large Re (i.e. water
layer depths of the same order as Cohen & Hanratty 1965), the normal stress component
in phase with the wave slope and the tangential stress component in phase with the
wave elevation are the reasons for instability. This mechanism, for an inviscid scenario, is
Jeffery’s sheltering hypothesis (Jeffreys 1925) and is also described for a viscous scenario
in Cohen & Hanratty (1965). It has to be noted here that, in the inviscid Miles instability,
the aerodynamic pressure corresponding to the wavenumber of the maximum growth rate
will be in phase with the wave slope following Jeffreys (1925) although it need not be the
case for other wavenumbers. This is shown in the recent work of Bonfils et al. (2022) using
an asymptotic approach for the strong-wind limit. For small Re (for very thin films), Craik
(1966) observed that the normal stress component in phase with the wave elevation and the
tangential stress component in phase with the wave slope are responsible for the instability.
This clearly highlights the role of water layer depth in determining the mechanism of the
viscous instabilities.

Additionally, the role of water layer depth in modifying the ‘inviscid’ Miles instability
should also be studied to understand wave generation near shores, in shallow waters and
in laboratory experiments. Motivated by the field experiments of Young & Verhagen
(1996a,b), there has been a recent interest in studying the role of water layer depth on
Miles’ instability. Theoretical works such as Montalvo et al. (2013a,b) and Latifi et al.
(2017) provided expressions for the growth rate to extend Miles’ theory to finite-depth
water layer scenarios. Considering a logarithmic velocity profile in the air and quiescent
water, they show that the growth rate is independent of water layer depth only up to a
certain non-dimensional phase velocity (‘wave age’). At larger phase velocities, the growth
rate in the finite-depth case is smaller than the deep-water case. Furthermore, the critical
phase velocity after which the instability ceases to exist is proportional to the water layer
depth. This shows the non-trivial influence of water layer depth on the Miles instability.
To validate these studies, laboratory experiments have been conducted by Branger et al.
(2022), showing a good match with the predictions of Montalvo et al. (2013a). However, at
small phase speeds, measured growth rates are higher than their theoretical counterparts.
They suggest that Miles’ mechanism might not be the only instability in the finite-depth
scenario. Further, they argue that the increase in momentum flux at the surface, as depth
is decreased, would result in a drift current being set up in the water layer. Numerous
works have incorporated water layer velocity profiles in the study of Miles’ mechanism.
Recently, Kharif & Abid (2020) and Abid & Kharif (2021) considered a constant vorticity
in the water layer to derive expressions for the growth rate of the Miles instability similar
to Montalvo et al. (2013a). The water layer velocity profile will only act to modify the
Miles instability and will not result in any additional instability because it is a constant
shear flow.

It has to be noted that the water layer velocity profile set up by the wind need not be
a constant shear flow profile, as considered by Cohen & Hanratty (1965), Craik (1966)
and Abid & Kharif (2021), and can be unstable irrespective of the velocity profile in
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the air layer. In the laboratory experiments, it could range from linear to quadratic (or
flow-reversal) velocity profiles (Smith & Davis 1982; Paquier, Moisy & Rabaud 2015,
2016), because of the no-flux condition at the end walls. In the theoretical studies
considering the oceanic scenarios, it is often modelled as piecewise-linear (Caponi et al.
1992), linear–logarithmic (Valenzuela 1976) and exponential profiles (Morland, Saffman
& Yuen 1991; Young & Wolfe 2014). Regarding the stability of these flows, Yih (1972)
claimed an extension of Rayleigh’s inflection point theorem and argued that an inflection
point is necessary for any free surface shear flow to be unstable. However, Morland
et al. (1991), considering different non-inflectional velocity profiles, showed that free
surface flows without an inflection point can also be unstable. Later, Shrira (1993) showed
analytically that the existence of this instability requires a critical layer, and the growth rate
depends on the curvature of the background velocity profile similar to Miles’ instability.
Through the years, numerous works have studied this inviscid instability of the free
surface shear flows (also known as ‘rippling instability’ because of short wavelengths)
with piecewise and/or smooth velocity profiles (a list of the works is given in Young
& Wolfe 2014). A growing interest is to consider the combined shear flow in both air
and water layers to address the relative importance of different instabilities. Caponi et al.
(1992), using a piecewise linear profile in the water and air, argued that the shear flow
in water lessens Miles’ mechanism of instability. Young & Wolfe (2014), considering a
double-exponential profile in the air and water layers, showed that the rippling mode of
instability, once activated, will be the fastest growing mode. Additionally, numerous other
studies also considered the combined problem to study viscous instabilities (Valenzuela
1976; Smith & Davis 1982; Miesen & Boersma 1995; Abid et al. 2022). To the best of our
knowledge, there have been no theoretical studies investigating both the Miles and rippling
instabilities while considering the experimentally observed flow-reversal (or quadratic)
velocity profile in the water layer. Furthermore, even for the cases of quiescent/linear
velocity profiles in the water layer with an exponential profile in the air layer, there
have been no studies exploring in detail the stability regions, the growth rate in different
wavenumber limits and the effect of water layer depth and surface velocity.

Do the water layer’s depth and background velocity profile qualitatively alter the
stability of the coupled air–water problem? To answer this, in the present study, we focus
on the role of finite water layer depth and background shear on the growth rate of Miles and
the rippling mode of instabilities. In § 2, we formulate the inviscid linear stability problem
for two-phase flows. Starting with the linearized momentum and continuity equations,
we obtain the Rayleigh equation and corresponding kinematic and dynamic boundary
conditions, assuming a normal mode form of the perturbations. In § 3 free surface shear
flows in the absence of the air layer are considered. We focus on a linear velocity profile
in § 3.1, to illustrate the modification of gravity–capillary waves due to the background
shear, and a flow-reversal profile observed in experiments (Paquier et al. 2015, 2016) in
§ 3.2 to study the rippling instability. In § 4, we consider the two-phase problem and
discuss the effect of a finite water layer depth on the Miles mode. Miles’ asymptotic
calculation is discussed, with the air-to-water density ratio being the small parameter. We
assume an exponential profile in the air since it facilitates analytical treatment and yields
results qualitatively in agreement with those from more realistic velocity profiles in the air
(Morland et al. 1991; Young & Wolfe 2014). In §§ 4.1, 4.1.4 and 4.3, quiescent water layer,
linear velocity profile and flow-reversal profile in the water, respectively, are considered.
With Miles’ asymptotic calculation, the condition for the existence of a long-wave cutoff
and stability boundary are discussed for these profiles. Analytical expressions are provided
for the stability boundary, and the unstable region is described in detail. The variation
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Wind-generated waves on a water layer of finite depth
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Figure 2. Schematic of the air–water system. The air, with density ρa, extends to z = ∞ and the water, with
density ρw, is bounded at the bottom by a rigid wall at z = −h. Here, z = 0 and z = η(x, t) are the unperturbed
and the perturbed air–water interfaces, respectively. The system is under the action of gravity g pointing in the
vertically downward direction. Here U(z) is the horizontal base-state velocity profile.

of Miles mode growth rates as a function of wavenumber is shown for different surface
velocities and water layer depths. In § 5, we compare the growth rates obtained in the
current study for the parameters of the experiments of Paquier et al. (2015) for a particular
case and conclude by summarizing the results. For the comparison with the experiments,
we also include viscous effects in our calculations and perform an energy budget analysis
to comment on the potential destabilizing mechanisms between the inviscid and viscous
scenarios.

2. Inviscid linear stability theory

We consider the air–water system as a two-dimensional, inviscid, immiscible,
incompressible, two-phase system extending infinitely in the horizontal direction and
bounded by a rigid wall at the bottom (figure 2). The air–water interface (z = η(x, t))
has a surface tension T and a sharp density jump across it. We assume a horizontal
base-state velocity profile (U(z)) in both the phases, varying only as a function of the
vertical coordinate (z). In this study we consider velocity profiles which are continuous
at the air–water interface (U(0+) = U(0−) = Us, where Us is the base-state interface
velocity). The base-state shear flows in both phases are treated as parallel flow. A more
realistic description will require performing the non-parallel stability of the spatially
evolving boundary layer profiles (e.g. the analysis of Lock (1951) for laminar boundary
layer between two streams). We study the stability of small amplitude perturbations on the
base-state shear flow U(z). The set of linearized equations governing the perturbations for
an inviscid fluid are given by

∂u
∂x

+ ∂w
∂z

= 0, (2.1)

ρ

(
∂u
∂t

+ U
∂u
∂x

+ w
dU
dz

)
= −∂p

∂x
, (2.2)

ρ

(
∂w
∂t

+ U
∂w
∂x

)
= −∂p

∂z
, (2.3)

where u(x, z, t), w(x, z, t), and p(x, z, t) are perturbations in the x-component of the
velocity, the z-component of the velocity and the pressure field, respectively.
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Assuming air–water as an immiscible system allows us to consider the interface as a
material line. Then the linearized kinematic boundary condition is given by

w(0) = dη
dt

= ∂η

∂t
+ Us

∂η

∂x
. (2.4)

The dynamic boundary condition is obtained by balancing the discontinuity in the normal
stress across the interface by surface tension (ignoring the Marangoni effect)[[

p
]]

z=η = T
∂2η

∂x2 , (2.5)

where [[ ]] represents the jump in the enclosed expression across a specified location. The
no-penetration boundary condition at z = −h is given as

w(−h) = 0. (2.6)

Perturbations far away from the interface should go to zero, i.e.

w(z → ∞) = 0. (2.7)

The homogeneity of the system in the horizontal direction and time allows us to
use a normal mode form of these perturbations: f (z)eik(x−ct), where k is the horizontal
wavenumber and c(k) is the complex phase speed. Defining a disturbance streamfunction,
ψ(x, z, t) = φ(z)eik(x−ct) (such that u = ∂ψ/∂z and w = −(∂ψ/∂x)), the disturbance
fields can be written as⎧⎪⎨⎪⎩

u
w
p
η

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
û(z)
ŵ(z)
p̂(z)
η̂

⎫⎪⎬⎪⎭ eik(x−ct) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ′

−ikφ
ρ
[
φU′ − (U − c)φ′]

− φ (0)
Us − c

⎫⎪⎪⎪⎬⎪⎪⎪⎭ eik(x−ct). (2.8)

Substituting equation (2.8) in the governing equations (2.1)–(2.3) and simplifying, we
obtain the Rayleigh equation

(U − c)
(

d2

dz2 − k2
)
φ − U′′φ = 0. (2.9)

Following (Young & Wolfe 2014), we use (2.8) to write the dynamic boundary condition
(2.5) as

[ε Ξa (c, k)+ (1 − ε)Ξw (c, k)] (c − Us)
2 + S (c − Us)− (1 − 2ε)g − γ k2 = 0, (2.10)

where

ε = ρa

ρa + ρw
, γ = T

ρa + ρw
, (2.11a,b)

Ξa (c, k) = −φ
′ (0+)
φ (0)

, Ξw (c, k) = φ′ (0−)
φ (0)

, (2.12a,b)

and
S = (1 − ε) U′(0−)− εU′(0+). (2.13)

Equations (2.6) and (2.7) become
φ (−h) = 0, (2.14)
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Wind-generated waves on a water layer of finite depth

and
φ (z → ∞) = 0, (2.15)

respectively. The Rayleigh equation (2.9) can be solved along with the boundary
conditions ((2.10), (2.14) and (2.15)) to obtain the eigenvalue c(k) = cr(k)+ i ci(k) and
the corresponding eigenfunction φ(z). For a given k, ci > 0 suggests that the base state is
linearly unstable under the disturbance; on the other hand, it is linearly stable if ci < 0 is
negative. For ci = 0 the system is neutrally stable to the disturbances.

3. Free surface shear flows

A wind blowing over the water surface is known to induce a mean flow in the water
layer. These wind-induced mean flows in the water modify the gravity–capillary waves.
This in turn affects the critical layer location and therefore the Miles mode growth
rate. To illustrate the modification of gravity–capillary wave behaviour due to a mean
flow, we consider a linear velocity profile in the water layer in § 3.1. Furthermore, these
wind-induced mean flows can also be unstable by themselves even if the air is neglected
(Morland et al. 1991; Young & Wolfe 2014). Therefore, we consider such an unstable
velocity profile: a flow-reversal profile observed in the experiments (see Paquier et al. 2015,
2016), in § 3.2. In both of these cases, we neglect the air layer for simplicity. The dispersion
relation corresponding to the free surface flows can be obtained by putting ε = 0 in (2.10),
with φ(c, k; z) obtained by solving the Rayleigh equation (2.9) satisfying (2.14). In the
following subsections, an overbar is used to represent non-dimensional variables. We
use the surface velocity (Us) and water layer depth (h) as velocity and length scales for
non-dimensionalization, respectively. Relevant non-dimensional numbers are

Frs = Us√
gh

and Bo = gh2

γ
, (3.1a,b)

where Frs is the Froude number, and Bo is the Bond number. For notational convenience,
we choose Fs to represent inverse squared Froude number, i.e.

Fs = Fr−2
s = gh

U2
s
. (3.2)

Small (large) values of Fs indicate that the shallow-water gravity wave speed is less (more)
than surface velocity of the background shear flow. A similar notation is used in Miles
(1960) and Young & Wolfe (2014) as well. Unless otherwise mentioned, for all the figures
in the next section, Bo = 1.361 × 105 (corresponding to the air–water scenario of a 1 m
deep water layer).

3.1. Linear velocity profile
We consider the following velocity profile:

Ū(−1 < z̄ < 0) = (1 + z̄) . (3.3)

Solving the Rayleigh equation (2.9) in the water, we get

φ̄(c̄, k̄;−1 < z̄ < 0) = sinh k̄(z̄ + 1)
sinh k̄

, (3.4)

Ξ̄w(c̄, k̄) = k̄ coth k̄ and S̄ = 1. (3.5)
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The dispersion relation is a quadratic in c̄(k̄) and the solution to the dispersion relation is

c̄(k̄) = 1 + 1
2

⎡⎣−
(

tanh k̄
k̄

)
±
{(

tanh k̄
k̄

)2

+ 4Fs(1 + Bo−1k̄2)
tanh k̄

k̄

}1/2
⎤⎦ . (3.6)

Taylor (1931) studied the inviscid stability of fluid layers of different densities sheared by a
background flow with a constant shear rate. In the three-layer set-up, the interaction of the
gravity waves at the two interfaces aided by a background shear can lead to an instability
known as the Taylor–Caulfield instability (Caulfield et al. 1995). Feldman (1957)
considered the problem for the two-layered set-up, considering a jump in background shear
rate across the interface consistent with the continuity of base-state shear stress. However,
Feldman (1957) considered perturbations to the flow which do not perturb the interface,
a severe restriction which influences the stability predictions. Miles (1960) considered the
correct interface conditions for a linear flow bounded by a free surface, neglecting the
dynamic effect of the gas. In the inviscid limit, the dispersion relation obtained by Miles
is identical to the (3.6). The two solutions of (3.6) represent modified gravity–capillary
waves for the linear velocity profile. Both modes are neutrally stable for all the values of k̄,
with one being a prograde mode and the other being a retrograde mode. The prograde and
retrograde classification checks whether the mode’s counterpart in the quiescent water
layer moves to the right or to the left. The variation of the phase speeds of both the
modes with wavenumber is as presented in figure 3(a). It can be seen from (3.6) that
the phase speed of the prograde mode is always more than unity (i.e. the surface velocity
in dimensional terms). Interestingly, for certain Fs, the retrograde mode develops a critical
layer over a range of wavenumbers (Miles 1960). That is, the phase speed of the retrograde
mode matches with the background flow velocity over a range of wavenumbers. For a
given Fs, the starting and ending values of this range in k̄ can be calculated using (3.6)
by substituting c̄ = 0. The resulting expression, relating the wavenumber, inverse squared
Froude number and Bond number, can be written as

Fs = k̄ − tanh k̄
(1 + Bo−1k̄2) tanh k̄

. (3.7)

Equation (3.7) can be found in the work of Miles (1960). Considering a linear velocity
profile in the liquid layer with a free surface, Miles (1960) did a viscous linear stability
study in the limit of large Reynolds numbers. Miles derives an expression for the critical
surface tension above which the retrograde mode ceases to have a critical layer. Below
this critical surface tension, they show that, for finite wavenumbers and phase speeds, the
retrograde mode with the critical layer will have a growth rate in the limit of Re → ∞.
Miles also derives this extension of ‘Heisenberg’s criterion’ (Lin 1946) by deriving an
explicit expression for the growth rate by assuming |c̄| � 1 and |c̄i| � c̄r (where c̄ =
c̄r + ic̄i is the complex phase speed). Further, Miles derives an expression for the neutral
stability curve by considering the phase speed to be real in the dispersion relation; and
also finds the critical Reynolds number required for the onset of the instability. It has to
be noted here that the presence of both: a free surface and liquid viscosity is the reason
for this viscous instability. In the next section (3.2), we will show that profile curvature
can also destabilize the sheared surface gravity waves with a critical layer (U′′), hinting at
possible analogous destabilization due to viscosity and curvature for modes with critical
layer. Similar to Shrira (1993), a future study can be carried out where the background
vorticity gradient (−U′′) is included perturbatively. One can then explore the competing
destabilizing effects of the liquid viscosity and profile curvature.
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Figure 3. For the case of linear velocity profile in the water layer with a free surface: (a) the non-dimensional
phase speed (c̄) of prograde (continuous curves) and retrograde (dash curves) modes plotted as a function of
non-dimensional wavenumber (k̄) (refer (3.6)) for different inverse squared Froude numbers (Fs). The red,
blue and black curves correspond to Fs = 0.1, 10 and 100, respectively. (b) The wavenumber (k̄), at which the
retrograde mode dispersion curve crosses c̄ = 0, plotted as a function of Fs.

A version of (3.7) for the case of no surface tension (Bo−1 = 0) is given by Benney
& Chow (1986). Due to the absence of surface tension, the range of retrograde mode
wavenumbers with critical layer is not bounded. That is, the retrograde mode dispersion
curve, after crossing the c̄ = 0 line, will asymptotically approach c̄ = 1 line as k̄ → ∞.
If Bo−1 /= 0, the retrograde mode dispersion curve will attain a maximum and cross the
c̄ = 0 line again at large k. This suggests that the region in the (Fs, k̄) plane that contains
the critical layer is enclosed by the curve (3.7) as shown in figure 3(b). For linear shear, the
retrograde mode with the critical layer is exceptional; the eigenfunction is non-singular at
the critical layer (3.4). The regular nature of the eigenfunction stems from the base-state
vorticity gradient (−Ū′′) being zero everywhere in the domain, eliminating the logarithmic
branch cut in the Tollmien solutions (Drazin & Reid 1981). An identical behaviour is
observed for the retrograde Kelvin modes of a Rankine vortex (a solid body rotating core
surrounded by an irrotational exterior) (Roy & Subramanian 2014). The retrograde Kelvin
modes, too, have a critical layer in the irrotational exterior – a region of zero base-state
vorticity gradient.

The behaviour of the dispersion curves can be better understood in the long-wave
and short-wave limits as follows. In the long-wave limit (k̄ → 0), the expression given
in (3.6) can be simplified as c̄ = (1 ± √

1 + 4Fs)/2. If Fs � 1/4, the phase speeds of
the prograde and retrograde modes will be the maximum and minimum background
flow velocities, respectively. As Fs increases, the magnitude of phase speed increases
for both the prograde and retrograde modes, attaining a value of

√Fs for Fs � 1/4.
This is consistent with the phase speed of shallow-water surface waves. In the short-wave
limit (k̄ → ∞), the phase speed depends on the value of Bond number. If Bo−1 = 0, the
expression (3.6) can be simplified to c̄ = 1, i.e. the phase speed of both prograde and
retrograde modes approach unity for small wavelengths, and the range of wavenumbers
over which the retrograde mode has a critical layer will extend to infinity. If Bo−1 /= 0,
the phase speeds of prograde and retrograde modes tend to +∞ and −∞, respectively.
It must be noted here that the variation, as mentioned above, of the phase speed of the
prograde mode with the wavenumber is similar to the case with no shear. But the presence
of a critical layer for the retrograde mode for a range of wavenumbers occurs only in the
presence of shear. This is particularly relevant for the oceanic air–water scenario where
the Bond number is typically large.
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3.2. The flow-reversal profile

3.2.1. Solution from the full dispersion relation
Paquier et al. (2015, 2016) in their channel flow experiments observed a flow-reversal
profile given by

Ū(−1 < z̄ < 0) = (1 + 4z̄ + 3z̄2). (3.8)

One can obtain this velocity profile by solving for the flow in a two-dimensional channel
with end walls and with shear stress acting at the free surface. Smith & Davis (1982)
considered a range of velocity profiles varying from linear to quadratic (including
flow-reversal profile also) and showed that except for a narrow band of velocity profiles,
all the other profiles (particularly, the flow-reversal profile) are susceptible to a viscous
long-wave instability. However, Paquier et al. (2015) argues that the flow-reversal velocity
profile in the water layer is stable, at least for the cases of high viscosity. In this subsection,
we show the presence of an inviscid ‘rippling’ instability of this velocity profile. This
occurs due to a critical layer in the water phase similar to Miles instability of the air phase.
Following Russell (1994), we simplify the Rayleigh equation to arrive at the spheroidal
wave equation using a change of variables. The final form of the non-dimensionalized
spheroidal wave equation is

d
dζ

[
(1 − ζ 2)

dΦ
dζ

]
+
(

2 − α2(1 − ζ 2)− 1
1 − ζ 2

)
Φ = 0, (3.9)

where

Φ = φ̄√
Ū − c̄

, α = k̄b
3
, ζ = 1

b
(3z̄ + 2) and b = √

1 + 3c̄. (3.10a–d)

The solution of the oblate angular spheroidal wave equation (3.9), using the same notation
as Flammer (1957), is given by

Φ(ζ) = a1S(1)1n (−iα2, ζ )+ a2S(2)1n (−iα2, ζ ). (3.11)

Here, S(1)1n and S(2)1n are oblate spheroidal wave functions of first and second kind,
respectively, and a1, a2 are integration constants. The spheroidal eigenvalue is 2 and the
value of n can be found from the spheroidal eigenvalue, the coefficient of −1/(1 − ζ 2) in
(3.9) i.e. 1 and α2. Therefore, we can write

φ̄(z) =
√

Ū − c̄[a1S(1)1n (−iα2, (3z̄ + 2)/b)+ a2S(2)1n (−iα2, (3z̄ + 2)/b)]. (3.12)

An alternative solution to (3.9) can be written in terms of confluent Heun functions
and is provided in Appendix A. To the best of our knowledge, this is the first instance
in literature where spheroidal wave functions are used in the context of the stability
of a shear flow. Substituting (3.12) in the boundary conditions will give the full
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Wind-generated waves on a water layer of finite depth
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Figure 4. (a) The non-dimensional phase speed (c̄r) of prograde and retrograde modes (for the flow-reversal
profile) plotted against Fs (defined in (3.1a,b)). (b) The non-dimensional phase speed (c̄r) of the stable prograde
mode (for the flow-reversal profile) plotted against the non-dimensional wavenumber (k̄) at different Fs.

dispersion relation

Ξ̄w(c̄, k̄)(c̄ − 1)2 + 4(c̄ − 1)− Fs(1 + Bo−1k̄2) = 0, (3.13)

where

Ξ̄w(c̄, k̄) = S′(1)
1n (−iα2, 2/b)S(2)1n (−iα2,−1/b)− S′(2)

1n (−iα2, 2/b)S(1)1n (−iα2,−1/b)

S(1)1n (−iα2, 2/b)S(2)1n (−iα2,−1/b)− S(2)1n (−iα2, 2/b)S(1)1n (−iα2,−1/b)
.

(3.14)

For given values of Fs, Bo and k̄, solving (3.13) will provide the complex eigenvalues c̄
and (3.12) provides the eigenfunctions. Initially, we consider the variation of the phase
speed (c̄r) of both prograde and retrograde modes with Fs at k̄ = 0. Both the modes
are stable in this parameter regime and the plot of c̄r vs Fs is as shown in figure 4(a).
The phase speed of the prograde and retrograde modes start at the maximum and
minimum flow velocities, respectively, at Fs = 0. With an increase in Fs, they travel
faster but in the opposite direction to each other similar to the case of linear velocity
profile.

Figure 4(b) shows the non-dimensional phase speed of the prograde mode (stable in the
complete parameter regime) plotted as a function of the wavenumber (k̄) at different Fs.
In the limit of Fs → 0, the phase speed of the prograde mode coincides with the surface
velocity (Us). At small but finite Fs (= 0.1 in figure 4a), even though the prograde mode
phase speed is different from Us, the variation of its phase speed with wavenumber is
not significant. A further increase in Fs shows that waves with smaller wavelengths travel
slower than waves with larger wavelengths. The phase speed and the growth rate of the
retrograde mode are plotted as a function of the wavenumber (k̄) in figure 5 for different
Fs. The retrograde mode is stable in the long-wave limit k̄ → 0 for Fs > 0. Its phase
speed deviates from the minimum flow velocity (Ūmin = −1/3) in the long-wave limit,
coinciding with Ūmin only for Fs = 0 (see figure 5a). In contrast to the prograde mode,
with an increase in the wavenumber, the phase speed of the retrograde mode increases and
crosses Ūmin at a particular k̄ (for Fs > 0). In other words, for Fs > 0, the retrograde mode
is stable for c̄r ≤ −1/3 and unstable for c̄r > −1/3. The instability occurs because of the
presence of a critical layer and a non-zero background velocity curvature if c̄ > −1/3 as
described by Shrira (1993). In other words, there is a cutoff wavenumber (for Fs > 0)
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Figure 5. (a) The non-dimensional phase speed (c̄r), and (b) the non-dimensional growth rate (k̄c̄i), of the
unstable retrograde mode, plotted as a function of the non-dimensional wavenumber (k̄) for different Fs. The
four different curves correspond to: Fs = 0 (black), 0.1 (blue), 0.5 (red) and 1 (green), respectively. The insets
in both (a) and (b) show the comparison between the asymptotic approximation for Fs = 0 (dashed grey line)
from (3.26) and analytical results. The vertical axis of the inset in figure (a) is changed to c̄r + 1/3 for better
comparison.

below which the growth rate of the retrograde mode is zero (see figure 5b). This cutoff
wavenumber shifts to higher values with increasing Fs; simultaneously, the mode becomes
less unstable. Similarly, the wavenumber corresponding to the maximum growth rate of
the instability increases with increasing Fs.

The existence of a long-wave cutoff divides the parameter space into stable and unstable
regions. Since the phase speed of the retrograde mode should at least be equal Ūmin for the
existence of a critical layer, we substitute c̄ = Ūmin = −1/3 in Rayleigh equation (2.9) to
get the following solution:

φ̄(z) =

⎧⎪⎪⎨⎪⎪⎩
2

3z̄ + 2

[
sinh k̄(z̄ + 2/3)− k̄(z̄ + 2/3) cosh k̄(z̄ + 2/3)

sinh (2k̄/3)− 2k̄ cosh (2k̄/3)/3

]
, for

−2
3

≤ z̄ ≤ 0,

0, for − 1 ≤ z̄ <
−2
3
,

(3.15)

and

Ξ̄w = −3
2

+ 2k̄2

2k̄ coth (2k̄/3)− 3
. (3.16)

The above-simplified form of the eigenfunction appeared due to chosen base state, a
quadratic velocity profile. Alternatively, for a more general velocity profile, we can
construct a Frobenius’ solution for c̄ = Ūmin. It is worth highlighting that the Frobenius’
solution at the critical layer, c̄ = Ūmin, contains an algebraic singularity in contrast to
the logarithmic singularity of the Tollmien inviscid solutions (Drazin & Reid 1981) at
other locations. A similar algebraic singularity can also be observed for a ‘sech2(z)’ (a
Bickley jet) velocity profile, at z = 0 (i.e. at the critical layer c̄ = Ūmax) (Swaters 1999).
Further, the corresponding mode forms a part of the stability boundary too (Maslowe
1991). The similarity between both scenarios is that the critical layer is at an extremum in
the velocity profile; thus, Tollmien inviscid solutions, derived by assuming Ū′(z̄) /= 0, are
not applicable in this scenario. However, a Frobenius solution can be derived analogously
to Tollmien solutions at the local extremum with Frobenius exponents 2 and −1. The two
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Wind-generated waves on a water layer of finite depth

corresponding linearly independent solutions are

φ̄1(z̄) = A1(z̄ − z̄cr)
2
(

1 + Ū′′′
cr(z̄)

3Ū′′
cr(z̄)

(z̄ − z̄cr)+ O(z̄ − z̄cr)
2
)
,

φ̄2(z̄) = A2(z̄ − z̄cr)
−1
(

1 − 2Ū′′′
cr(z̄)

3Ū′′
cr(z̄)

(z̄ − z̄cr)+ O(z̄ − z̄cr)
2
)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.17)

where, A1 and A2 are constants of integration and z̄cr is the location of the critical layer.
φ2(z̄) of expressions (3.17) contains a simple pole, i.e. an algebraic singularity if the
mode were to be a neutral one. Further analysis can be done to find a uniformly valid
solution by considering a small perturbation (δ) to the phase speed (c̄ = Ūmax/min + δ) and
constructing solutions in the inner (|z̄ − z̄cr| <

√
δ) and outer (|z̄ − z̄cr| >

√
δ) regions,

similar to Swaters (1999).
For our current problem, we proceed with the analytical solution available. Substituting

(3.16) and c̄ = −1/3 in the dispersion relation (3.13), we obtain a relation between Fs and
k̄ for any particular Bo−1 i.e. the stability boundary

Fs = − 8
(1 + k̄2Bo−1)

+ 32k̄2

(18k̄ coth (2k̄/3)− 27)(1 + k̄2Bo−1)
. (3.18)

Equation (3.18) indicates that the stability boundary curve starts at the origin (in the (Fs, k̄)
plane) and behaves as ∼ 32k̄2/135 for k̄ � 1. It must be noted here that expression 3.18 is
derived by substituting c̄ = c̄r = Ūmin and c̄i = 0 in the Rayleigh equation. However, this
does not imply that c̄i /= 0 if c̄r > Ūmin. In other words, the presence of a critical layer and
a non-zero background velocity curvature are necessary for instability but not sufficient
conditions. Figure 6 shows the stability boundary curve (3.18) for a range of k̄ and Fs over
which the growth rates are calculated. The contour, in figure 6, shows the non-dimensional
growth rates calculated from the complete dispersion relation. The curve drawn with (3.18)
closely traces the stability boundary in the parameter space considered. However, for
large k̄ and Fs, it is expected that the growth rates will reduce to minimal values and
the stability boundary might deviate from the curve given by (3.18). A discussion on the
short-wave cutoff and the stability boundary is out of the scope of the current work and
is not considered here. Finally, the contour of c̄i also shows that the most unstable mode
exists at small Fs and moderate k̄.

3.2.2. Long-wave asymptotic calculations
The absence of a cutoff wavenumber for Fs = 0 can be further understood by a long-wave
asymptotic analysis as follows. The leading-order behaviour, of the dispersion relation, in
the long-wave limit (k̄ → 0) can be studied using Burns’ integral condition (see Burns
1953) [∫ 0

−1

1
(Ū(z̄)− c̄)2

dz̄

]
− 1

Fs
= 0. (3.19)

Substituting (3.8) in (3.19) we get the following long-wave dispersion relation for the
flow-reversal profile:[

3i
b

(
tan−1

(
1
b2

)
+ tan−1

(
2
b2

))
− 9(2 − b2)

(4 − b2)(1 − b2)

]
− 2b2

Fs
= 0, (3.20)
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Figure 6. The contour plot of c̄i on a grid of the non-dimensional wavenumber k̄ as the vertical axis and Fs as
the horizontal axis. The solid, black curve (the stability boundary obtained in (3.18)) demarcates the stable and
unstable region in the parameter space.

where b = √
1 + 3c̄. Solving the expression (3.20) results in two stable (a prograde and

a retrograde) modes. The variation of their phase speed as a function of Fs is the same
as shown in figure 4(a). The behaviour of the growth rate as a function of wavenumber
for long waves can also be studied asymptotically. For this, we write an equivalent of the
Rayleigh equation (2.9) for the pressure perturbation p̄(z̄) as (see Benney & Chow 1986)(

p̄′

(Ū − c̄)2

)′
− k̄2 p̄

(Ū − c̄)2
= 0, (3.21)

with the boundary conditions

k̄2(1 − c̄)2p̄(0)− Fs(1 + Bo−1k̄2)p̄′(0) = 0 and p̄′(−1) = 0. (3.22)

We focus on the case of Fs = 0 and assume Bo−1 = 0, for simplicity, as an approximation
to the air–water scenario. In the limit of k̄ → 0, the phase speed is close to c̄ = −1/3.
Therefore, the leading-order equation for the pressure perturbation can be obtained by
substituting c̄ = −1/3 and k̄ = 0 in (3.21). And, to the leading order, the first boundary
condition in (3.22) reduces to a Dirichlet condition on the pressure perturbation. Finally,
we can write the expression for the pressure perturbation as

p̄(z̄) =

⎧⎪⎪⎨⎪⎪⎩
1 −

(
3z̄
2

+ 1
)5

, for 0 > z̄ >
−2
3
,

1, for
−2
3
> z̄ > −1.

(3.23)

Now, integrating (3.21) over the domain and applying the boundary conditions (3.22) we
get

p̄′(0)
(1 − c̄)2

= k̄2
∫ 0

−1

p̄
(Ū − c̄)2

dz̄. (3.24)

Assuming p̄ to be close to that in (3.23) and c̄ = −1/3 + c̄1, such that |c̄1| � 1, we obtain

−135
32

∼ k̄2
∫ ∞

−∞

{
3 (z̄ + 2/3)2 − c̄1

}−2
dz̄ = k̄2 π

2
√

3
(−c̄1)

−3/2 , (3.25)
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at the leading order. Thus we get

c̄1 ∼
(

16π

135
√

3

)2/3

eiπ/3k̄4/3. (3.26)

This asymptotic result is in good agreement with the analytical result in the limit of small
k (see the insets of figure 5a,b).

Thus we have demonstrated, using both asymptotic analysis and the complete analytical
solution, that a quadratic velocity profile with a free surface is susceptible to instabilities.
The mathematical underpinning of the instability is identical to Miles’ mechanism – the
presence of a mean vorticity gradient at the critical layer of a surface wave (the backward
moving wave in contrast to the forward moving wave for the Miles instability). One can
also argue for the physical mechanism of the instability in a manner identical to that
proposed by Lighthill (1962) for Miles instability – the mean ‘vortex force’ extracting
energy from the background flow and transferring it to the surface wave. We will now
proceed to the coupled air–water scenario – wherein both the cograde and retrograde
surface waves can get destabilized (rippling and Miles instability) and also possibly coexist
in some parameter space.

4. Two-phase finite-depth problem: the Miles mode

We will now use the linear stability problem formulated in § 2 to consider the Miles
mode of instability arising due to the resonant interaction between the base-state velocity
profile in the air and the gravity–capillary waves in the water. In this section, we
change the length and velocity scales previously used for non-dimensionalization from
h and Us (corresponding to the water layer) to ha and U∞ (corresponding to the air
layer), respectively, to ensure consistency with the previous literature. Here, ha is the
characteristic length scale of the background velocity profile in the air layer, and U∞ is
the free-stream velocity. An over-tilde indicates non-dimensional variables (recall that an
over-bar is used in the previous section). Relevant non-dimensional numbers are

Fa = gha

U2∞
, Boa = gh2

a

γ
, Ũs = Us

U∞
and h̃ = h

ha
, (4.1a–d)

where Fa and Boa are the modified inverse squared Froude number and Bond number,
respectively, with the new velocity and length scales. In the following section, the Bond
number Boa = 1.361 × 105, corresponding to the air–water scenario with a characteristic
length scale in the air layer (ha) of 1 m. The discussion in this section is along the lines of
§ 7 in Young & Wolfe (2014), modified for a finite-depth water domain. We first note that ε
defined in (2.11a,b) is a small parameter for the air–water system. The dispersion relation
(2.10) can then be rewritten in the following form:

D̃0(c̃, k̃)+ ε D̃1(c̃, k̃) = 0, (4.2)

where

D̃0(c̃, k̃) = Ξ̃w(c̃, k̃)(c̃ − Ũs)
2 + S̃0 (c̃ − Ũs)− Fa(1 + Bo−1

a k2), (4.3)

D̃1(c̃, k̃) = [Ξ̃a(c̃, k̃)− Ξ̃w(c̃, k̃)](c̃ − Ũs)
2 + S̃1 (c̃ − Ũs)+ 2Fa, (4.4)

with
S̃0 = Ũ′(0−) and S̃1 = −[Ũ′(0−)+ Ũ′(0+)]. (4.5a,b)
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We assume a regular perturbation expansion for c̃(k̃, ε) with ε as the small parameter:

c̃(k̃, ε) = c̃0(k̃)+ εc̃1(k̃)+ · · · . (4.6)

Expanding D̃0(c̃, k̃) and D̃1(c̃, k̃) about (c̃0, k̃) and substituting in (4.2) we get

D̃0(c̃0, k̃)+ ε[c̃1∂cD̃0(c̃0, k̃)+ D̃1(c̃0, k̃)] + O(ε2) = 0. (4.7)

At O(ε0), we obtain the dispersion relation of gravity–capillary waves modified by a
background flow in the water with a free surface at the top

D̃0(c̃0, k̃) = 0. (4.8)

The resonance of the prograde mode from (4.8) with the base-state velocity profile in the
air, at a critical layer (z̃ = z̃c > 0) where Ũ(z̃c) = c̃0(k̃), forms the basis of Miles’ mode. At
O(ε), we obtain the correction to the prograde modes’ phase speed due to the background
shear flow in the air layer as

c̃1 = − D̃1(c̃0, k̃)

∂c̃D̃0(c̃0, k̃)
, (4.9)

where ∂c̃ indicates a partial differentiation with c̃. The growth rate of the instability, then,
can be written by

ω̃i(k̃) = −ε k̃
Im(D̃1(c̃0, k̃))

∂c̃D̃0(c̃0, k̃)
. (4.10)

From (4.4) it is clear that the only components contributing to Im(D̃1(c̃0, k̃)) are
Im(Ξ̃a(c̃0, k̃)) and Im(Ξ̃w(c̃0, k̃)). Multiplying the Rayleigh equation (2.9) by the complex
conjugate of the eigenfunction, φ̃∗(z̃), and then integrating it over the domain, in air and
water separately, we find

Ξ̃a(c̃, k̃) = 1∣∣∣φ̃s

∣∣∣2
∫ ∞

0

∣∣∣φ̃′(z̃)
∣∣∣2 +

(
k̃2 + Ũ′′(z̃)

Ũ(z̃)− c̃(k̃)

) ∣∣∣φ̃(z̃)∣∣∣2 dz̃, (4.11)

Ξ̃w(c̃, k̃) = 1∣∣∣φ̃s

∣∣∣2
∫ 0

−h̃

∣∣∣φ̃′(z̃)
∣∣∣2 +

(
k̃2 + Ũ′′(z̃)

Ũ(z̃)− c̃(k̃)

) ∣∣∣φ̃(z̃)∣∣∣2 dz̃, (4.12)

where φ̃s = φ̃(0). The imaginary parts of (4.11) and (4.12) are given by

Im(Ξ̃a(c̃, k̃)) = c̃i∣∣∣φ̃s

∣∣∣2
∫ ∞

0

Ũ′′(z)∣∣∣Ũ(z)− c̃(k)
∣∣∣2
∣∣∣φ̃(z̃)∣∣∣2 dz̃, (4.13)

and

Im(Ξ̃w(c̃, k̃)) = c̃i∣∣∣φ̃s

∣∣∣2
∫ 0

−h̃

Ũ′′(z̃)∣∣∣Ũ(z̃)− c̃(k̃)
∣∣∣2
∣∣∣φ̃(z̃)∣∣∣2 dz̃. (4.14)

The growth rate, ω̃i(k̃), is proportional to the small parameter ε; thus, we take the limit
c̃i → 0 in (4.13) and (4.14). Since the critical layer is assumed to be in the air (z̃c > 0),
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Wind-generated waves on a water layer of finite depth

(4.14) does not have any singularity in the water domain and goes to zero in the limit of
c̃i → 0. However, (4.13) reduces to

Im(Ξ̃a(c̃, k̃)) = π
Ũ′′

c∣∣∣Ũ′
c

∣∣∣
∣∣∣φ̃c

∣∣∣2∣∣∣φ̃s

∣∣∣2 , (4.15)

where Ũ′
c = Ũ′(zc), Ũ′′

c = Ũ′′(zc) and φ̃c = φ̃(zc). Substituting these results in (4.10) we
obtain (Miles 1962)

ω̃i(k̃) = −ε k̃ π

(
(c̃0 − Ũs)

2

∂c̃D̃0(c̃0, k̃)

)
Ũ′′

c∣∣∣Ũ′
c

∣∣∣
∣∣∣φ̃c

∣∣∣2∣∣∣φ̃s

∣∣∣2 . (4.16)

Equation (4.16) makes it evident that the growth rate of the instability is proportional to the
negative of the curvature of the velocity profile at the critical layer and only those profiles
which are convex at the location of the critical layer (i.e. Ũ′′

c < 0) are unstable. It must be
noted here that (4.16) is the same Miles (1957) had for an infinite-depth water layer. This
is because the contribution from the water layer to the Miles mode growth rate, given by
(4.14), is only through the dispersion relation (D̃0(c̃0, k̃)) of the gravity–capillary waves
modified by shear flow in the water layer.

For further calculations in this section, we consider an exponential background velocity
profile in the air (Young & Wolfe 2014) given by

Ũ(z̃ > 0) = 1 − (1 − Ũs)e−z̃, (4.17)

where Ũs is the base-state velocity at the air–water interface. Then, the solution to the
Rayleigh equation (2.9), for the air layer, can be written in terms of the hypergeometric
function F (see Young & Wolfe 2014) as

φ̃(c̃, k̃; z̃ > 0) = e−k̃z̃ F(αa, βa, 1 + 2k̃; ξe−z̃)

F(αa, βa, 1 + k̃; ξ) , (4.18)

where

αa = k̃ −
√

1 + k̃2, βa = k̃ +
√

1 + k̃2, ξ =
(

1 − Ũs

1 − c̃

)
. (4.19a–c)

Substituting (4.18) in (4.11), we obtain

Ξ̃a(c̃, k̃) = k̃ − ξ

(1 + 2k̃)

F(αa + 1, βa + 1, 2 + 2k̃; ξ)
F(αa, βa, 1 + 2k̃; ξ) . (4.20)

From the velocity profile (4.17) and the solution form (4.18), we write

ξ0 = 1 − Ũs

1 − c̃0(k)
= ez̃c,

Ũ′′
c

|Ũ′
c|

= −1, (4.21a,b)

φ̃c(c̃0, k̃) = ξ−k̃
0

F(αa, βa, 1 + 2k̃; 1)

F(αa, βa, 1 + 2k̃; ξ0)
. (4.22)
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Substituting (4.21a,b) and (4.22) in the growth rate expression (4.16) from Miles’
asymptotic calculation, we can write

ω̃i(k̃) = ε k̃ π

(
(c̃0 − Ũs)

2

∂c̃D̃0(c̃0, k̃)

)
ξ−2k̃

0

∣∣∣∣∣ F(αa, βa, 1 + 2k̃; 1)

F(αa, βa, 1 + 2k̃; ξ0)

∣∣∣∣∣
2

, (4.23)

by considering that φ̃s = 1, c̃0 < 1 and Ũs < 1. Using Burns’ long-wave condition (3.19),
we can further simplify the expression (4.16) for the long-wave limit. In the limit of k̃ → 0,
(4.22) reduces to

lim
k̃→0

φ̃c(c̃0(k̃), k̃) = k̃

(
1 − c̃0(k̃ = 0)

Ũs − c̃0(k̃ = 0)

)
, (4.24)

and, the leading-order expression for D̃0, denoted by D̃0(c̃0(0), 0), is given by the left-hand
side term of (3.19); while c̃0(k̃ = 0) can be obtained from (3.19) for a particular Fs.
Substituting (4.21a,b) and (4.24) in (4.16), we obtain

ω̃i(k̃ � 1) ∼ ε k̃3 π

(
(1 − c̃0(k̃ = 0))2

∂c̃D̃0(c̃0(k̃ = 0), 0)

)
, (4.25)

as the leading-order long-wave behaviour of the growth rate of Miles mode for an
exponential profile in the air. Expression (4.25) indicates that irrespective of the velocity
profile in the water layer, the growth rate varies as ∼ k̃3 in the long-wave limit. Because
this is the long-wave limit, the Miles mode growth rate is lower when compared with the
rippling mode growth rate (∼ k̄7/3) given in (3.26).

In the following subsections, we study the effect of the velocity profile in the water layer
on Miles mode at finite k̃. With the exponential profile in the air, we consider a quiescent
water layer, a linear velocity profile and the flow-reversal profile in the water. These profiles
allow for an analytical solution to the problem.

4.1. Quiescent water layer
Following Miles (1957) we first assume a quiescent water layer albeit of a finite depth. The
solution of the Rayleigh equation (2.9), satisfying the boundary condition (2.14) is given
by

φ̃(c̃, k̃;−h̃ < z̃ < 0) = sinh k̃ (z̃ + h̃)

sinh k̃ h̃
, (4.26)

with
Ξ̃w(c̃, k̃) = k̃ coth k̃h̃, S̃ = −ε. (4.27)

Here, we consider Ũs = 0 at the interface for the continuity of velocity profiles.

4.1.1. Solution from the full dispersion relation (2.10)
Substituting the expressions (4.20) and (4.27), we can solve the dispersion relation (2.10)
numerically to obtain the complex phase speed of the Miles mode. In figure 7(a,b), we
plot the real and imaginary parts of the complex phase speed, at different values of water
layer depths (h̃), as a function of the wavenumber (k̃). In figure 7(a), the real part of the
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Figure 7. For the case of exponential velocity profile in the air and a quiescent water layer: (a) the
non-dimensional phase speed (c̃r/c̃gc), where c̃gc(k̃) is as defined in (4.28), and (b) the non-dimensional
growth rate (k̃c̃i) are plotted as a function of the non-dimensional wavenumber (k̃) for various values of
non-dimensional depth (h̃). The parameters used in this plot are: Us = 0 m s−1, ha = 1 m and U∞ = 8 m s−1.

complex phase speed (c̃r(k̃)) is divided by the deep-water gravity–capillary wave speed
(c̃gc(k̃)), given by

c̃gc(k̃) =
√
Fs

k̃
((1 − 2ε)+ Bo−1k̃2). (4.28)

This is because the location of the critical layer is defined by the magnitude of the phase
speed. The variation of this phase speed, when compared with the deep-water case, can
be used as an indication of the growth rate change between finite-depth and deep-water
cases. From figure 7(a), assuming a constant ha(= 1 m), it can be seen that long waves
in finite-depth water layers travel slower than gravity–capillary waves in deep water. This
indicates that the location of the critical layer in a finite-depth scenario is closer to the
interface than in the deep-water case. It has to be recalled here that the growth rate
of Miles’ instability is proportional to the magnitude of curvature at the critical layer
(see (4.16)). For the exponential velocity profile considered, we see that the curvature is
maximum at the interface and decays with height. Therefore, we can conclude that the
growth rate of long waves in finite-depth scenario will be more than the growth rate in
the deep-water case (see figure 7b). However growth rates for different finite-depth water
layer cases can vary non-trivially as is shown in figure 7(b). In addition, we see that with
an increase in the wavenumber or the water layer depth, both the phase speeds (c̃r and c̃gc)
coincide after a threshold wavelength. This threshold wavelength too is seen to increase
with the water layer depth.

The growth rate for different k̃ has a more interesting behaviour when varying h̃ (see
figure 7b). At small k̃, smaller-depth water layer cases (small h̃ values) are more unstable
as shown, whereas, for intermediate k̃ this behaviour changes non-trivially (for example,
h̃ = 0.1 has the lowest growth rate). At large k̃, however, all the depths considered
have relatively the same growth rate. Furthermore, there exists a long-wave cutoff for
larger-depth water layers (for example h̃ = 10 and ∞ in figure 7b) but not for smaller-depth
water layers (see h̃ = 0.1 and 1 in figure 7b). In other words, the water layer depth
has an effect of sustaining the Miles instability to longer wavelengths. In summary, for
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smaller-depth water layers, long waves can be generated on the water surface through
Miles instability, whereas a long-wave cutoff exists for larger-depth water layers.

4.1.2. Solution using Miles’ asymptotic calculation
The behaviour of the growth rate can be obtained by writing the Miles asymptotic
expression (4.23) for the quiescent water layer as follows. The O(ε0) expression from the
dispersion relation (D̃0) and the corresponding phase speed of the gravity–capillary waves
(c̃0), can be obtained by substituting the results from (4.27) in (4.3) and (4.8) to get

D̃0(c̃, k̃) = k̃ coth kh c̃2 − Fa(1 + Bo−1
a k̃2), and c̃0(k̃) =

√
Fa

k̃
(1 + Bo−1

a k̃2) tanh k̃h̃,

(4.29a,b)
respectively. From the expressions (4.29a,b) and (4.21a,b), we can write

∂c̃D̃0(c̃0, k̃) = 2k̃c̃0 coth k̃h̃ and ξ0 = (1 − c̃0)
−1 . (4.30a,b)

By substituting the first expression of (4.30a,b) in (4.23), we obtain

σ = 1
ε
ω̃i(k̃) = π

2
c̃0 ξ

−2k̃
0 tanh k̃h̃

∣∣∣∣∣ F(αa, βa, 1 + 2k̃; 1)

F(αa, βa, 1 + 2k̃; ξ0)

∣∣∣∣∣
2

, (4.31)

where c̃0(k̃) is given by (4.29a,b). We have verified these results from the asymptotic
analysis with the results obtained in § 4.1.1 and they are in agreement with each other,
validating the Miles asymptotic solution. An advantage of the asymptotic analysis is that
we now have an analytical expression for the growth rate of the instability (4.31).

4.1.3. Stability boundary
From (4.31), we find that a long-wave cutoff exists when (1 − c̃0) = 0, i.e. for

Fa

k̃
(1 + Bo−1

a k̃2) tanh k̃h̃ = 1. (4.32)

In other words, if c̃0 > 1, the gravity–capillary wave phase speed (c0) will be greater than
the maximum background flow velocity in the air (U∞). This implies that the unstable
Miles mode becomes a stable prograde mode for the air–water system and (4.31) for the
growth rate, which assumes that c0 ≤ U∞, is no longer applicable. For a particular Boa,
the curve given by (4.32) forms a part of the stability boundary that demarcates stable and
unstable regions in the k̃h̃ and Fah̃ plane (as can be seen by the black curve in figure 8). In
the limit of k̃h̃ → 0, (4.32) can be rewritten as Fah̃ = 1 + (1 − 3Bo−1

a h̃−2)k̃2h̃2/3 i.e. for
k̃h̃ = 0 the stability boundary starts at Fah̃ = 1, irrespective of Boa, and the region given
by Fah̃ < 1 is unstable. For the air–water system, Bo−1

a is a small number. Therefore to
the leading order in Bo−1

a , (4.32) can be rewritten as

tanh k̃h̃

k̃h̃
= 1

Fah̃
. (4.33)

For long waves, (4.33) implies that Fah̃ ∼ k̃2h̃2. That is, the long-wave stability boundary
behaves in the same way as Bo−1

a → 0. For short waves, however, (4.32) exhibits a
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Figure 8. Stability boundary curves for the exponential velocity profile in the air and a linear velocity profile in
water, obtained by solving (4.43). Here, the non-dimensional wavenumber k̃h̃ is plotted against Fah̃ (as defined
in (4.1a–d)). The black curve (Ũ = 0) corresponds to the case of exponential velocity profile in the air and a
quiescent water layer (see (4.32)). The dashed lines are for h̃ = 1 and the continuous lines are for h̃ = 0.1.

singular behaviour for vanishing Bo−1
a . Assuming Bo−1

a /= 0, (4.32) shows that Fah̃ → 0
as k̃h̃ → ∞. Because the curve provided by (4.32) traces the loci of the points where
c̃0 = 1, the region enclosed by this curve and the line Fah̃ = 0 provide an upper limit
of the unstable region. Furthermore, this implies that the stability boundary is concave
(leftwards) and will have a maximum Fah̃. In figure 8, both dashed and continuous black
curves show the long-wave stability boundary (4.32) for two different h̃ (= 0.1 and 1,
respectively) at a Bond number corresponding to the air–water parameters. Here, the
concavity is not apparent because only a limited range of wavenumbers are shown. But
it is clearly observable for the case of linear velocity profile in the water layer, which we
will describe in the next subsection.

In summary, an infinite-depth problem (h̃ → ∞) with a quiescent water always has
a long-wave cutoff without any constraint on the value of Fa; on the other hand,
for a finite-depth problem, existence of a long-wave cutoff depends on the parameters
(Fa,Bo−1

a ) considered. Physically, in dimensional terms, it can be explained using the
gravity–capillary wave speed (c0(k)) in the limit k → 0. For an infinite-depth problem,
c0(k) = √

g/k + γ k. It is unbounded as k → 0. On the other hand, for a finite-depth
problem with a quiescent water, c0(k) = √

(g/k + γ k) tanh(kh). For k → 0, the limit is
finite and is equal to

√
gh. For the infinite-depth problem, below a particular k, c0(k) will

be higher than U∞. In such a case, no critical layer would exist below that wavenumber,
resulting in a long-wave cutoff. But for the finite-depth, since the c0(k) is bounded by

√
gh,

a cutoff would exist only if
√

gh > U∞ i.e. 1 < Fah̃.

4.1.4. Long-wave behaviour of growth rate (σ )
For the case of Fah̃ < 1, in the limit of k̃ � 1, the leading-order expression for the growth
rate can be obtained by an expansion of (4.31) for low-k̃, and is given by

σ = π

2
k̃

3

√
h̃
Fa

(
1 −

√
Fah̃

)2

. (4.34)
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Expression (4.34) can also be derived from Burns’ long-wave expression (4.25). The
growth rate varies as ∼ k̃3 for small k̃, as is shown in the expression (4.25). For a given Fa
and k̃, σ has a local maximum at h̃max = 1/(9Fa). In other words, there exists a h̃ (= h̃max)
at which long waves are more unstable than for other h̃. Finally, for the parameters shown in
figure 7(b) (i.e. Fa = 0.15), we see from (4.34) that the long-wave growth rate for h̃ = 0.1
is smaller than for h̃ = 1, which we expect will be true for smaller values of k̃ than what is
presented in figure 7(b), because of the slope of the curves.

4.2. Linear velocity profile in the water layer
Recently, Kharif & Abid (2020) and Abid & Kharif (2021) considered a linear velocity
profile in the water layer and a logarithmic velocity profile in the air layer in their study of
the role of water layer vorticity and finite-depth on the Miles instability. For a particular
wave age, they showed that the wave growth rate is inversely (directly) proportional to
the water layer vorticity (depth) and provided expressions for the same. Additionally,
here we derive the expressions for the long-wave behaviour of the growth rate, for the
stability boundary and discuss different limits of the same. We follow § 4.1 and consider
an exponential velocity profile in the air layer. The expressions for φ̃ and Ξ̃a are as given in
the (4.18) and (4.20), respectively. In the water layer, we consider a linear velocity profile
studied in § 3.1:

Ũ(−h̃ < z̃ < 0) = Ũs

(
1 + z̃

h̃

)
. (4.35)

The expressions for φ̃ and Ξ̃w are the same as in (4.26) and (4.27), respectively. However,
the expression for S̃ changes to

S̃ = Ũs

h̃
− ε

(
Ũs

h̃
+ (1 − Ũs)

)
. (4.36)

The existence of a velocity profile, in the water layer, includes another parameter (surface
velocity, Ũs) in the list of parameters (k̃, h̃, Fa, Bo−1

a ) that affect Miles instability. It has to
be noted here that the limit of Ũs → 0 can be treated as the quiescent water layer problem.

4.2.1. Solution using the full dispersion relation
Using (4.36) and the expression for Ξ̃w in (4.26), the full dispersion relation (2.10) is solved
for different Ũs at h̃ = 0.1, as shown in figure 9, and for different h̃ at Ũs = 3c̃min, as shown
in figure 10, respectively. The quantity c̃min, referred to above and used in figures 9 and 10,
is the minimum value of c̃gc(k̃) and is given by c̃min = [4 (1 − 2ε)F2

a Bo−1
a ]1/4.

Figure 9(a) shows that long waves travel slower than the gravity–capillary wave speed
(c̃gc) irrespective of the surface velocity (Ũs) and have relatively the same phase speeds at
various surface velocities. This corresponds to higher Miles mode growth rates. However,
short waves travel faster than c̃gc (except for Ũs = 0, which coincides with the quiescent
water layer result) indicating a reversal in the growth rate behaviour. Further, it can also be
observed from figure 9(a) that the phase speeds of short waves increase proportional to the
surface velocity, Ũs. Figure 9(b) shows the variation of growth rate with the wavenumber
at different values of Ũs. For small k̃ (in the parameter regime shown), increasing the
Ũs makes the flow more unstable (for example, at k̃ = 10−1, Ũs = 3c̃min has the largest
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Figure 9. For the exponential profile in the air and the linear velocity profile in the water: (a) the
non-dimensional phase speed (c̃r/c̃gc), and (b) the growth rate (k̃c̃i) plotted as a function of non-dimensional
wavenumber (k̃) at different surface velocities (Ũs). The inset in (b) shows the variation of the growth rate over
a larger range of k̃. The parameters used in this plot are: h = 0.1 m, ha = 1 m and U∞ = 8 m s−1.
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Figure 10. For the exponential profile in the air and the linear velocity profile in the water: (a) the
non-dimensional phase speed (c̃r/c̃gc), and (b) the non-dimensional growth rate (k̃c̃i) plotted as a function
of non-dimensional wavenumber (k̃) at different non-dimensional depth’s (h̃). The parameters used in the plot
are: Ũs = 3c̃min, ha = 1 m and U∞ = 8 m s−1.

growth rate); on the other hand, for an intermediate k̃, the growth rate order is reversed.
In the short-wave limit, k̃ � 1, the growth rate is relatively the same for different surface
speeds (refer to the inset in figure 9). Figure 9 does not show any long-wave cutoff, because
of the h̃ chosen.

Figure 10(a) shows that, similar to the case of the quiescent water layer, long waves, for
a given Ũs (= 3c̃min), have slower phase speeds in the smaller-depth water layers than in
the larger-depth water layers (compare h̃ = 0.1 and h̃ = 10 in figure 10a). At large k̃, the
phase speeds (c̃r) of different h̃ are relatively the same, although higher than c̃gc. It has to be
noted here that the case of h̃ = ∞ is avoided here because the linear background velocity
profile results in either unphysically large surface velocities or negligible shear rates in an
unbounded domain. The variation of the growth rate as a function of the wavenumber is
as shown in figure 10(b) and is similar to the quiescent water layer case in figure 7(b). The
relative order of growth rates for various water layer depths is again different for small and
intermediate values of k̃. For instance, h̃ = 0.1 has the highest growth rate among the water

967 A12-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

48
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.483


Y. Kadam, R. Patibandla and A. Roy

layer depths considered at k̃ = 10−1; on the other hand, it is least unstable for k̃ = 1. The
growth rates are again almost the same for all the cases for large values of k̃. The long-wave
cutoff exists for larger-depth water layers (for example, h̃ = 10) and the maximum growth
rate occurs at moderate wavenumbers irrespective of the water layer depth.

4.2.2. Solution using Miles’ asymptotic calculation
The O(ε0) expression from the dispersion D̃0(c̃, k̃) can be written, by substituting both Ξ̃w
from the (4.26) and S from expression (4.36) in (4.3), as

D̃0(c̃, k̃) = k̃ coth k̃h̃(c̃ − Ũs)
2 + Ũs

h̃
(c̃ − Ũs)− Fa(1 + Bo−1

a k̃2). (4.37)

The phase speed at O(ε0) is the same as the phase speed of the modified prograde
gravity–capillary wave given in (3.6) but with air layer non-dimensionalization. Therefore

∂c̃D̃0(c̃0, k̃) = 2k̃(c̃0 − Ũs) coth k̃h̃ + Ũs

h̃
. (4.38)

The non-dimensional growth rate is given by

σ(h̃, Ũs,Fra,Boa, k̃) =
πv0

2ξ−2k̃
0

∣∣∣∣∣ F(αa, βa, 1 + 2k̃; 1)

F(αa, βa, 1 + 2k̃; ξ0)

∣∣∣∣∣
2

⎡⎣( Ũs

k̃h̃

)2

+ 4
Fa

k̃
(1 + Bo−1

a k̃2) coth k̃h̃

⎤⎦1/2 , (4.39)

where

ξ0 =
(

1 − v0

1 − Ũs

)−1

and (4.40)

v0 = 1
2

⎡⎣−
(

Ūs

k̃h̃
tanh k̃h̃

)
+
{(

Ūs

k̃h̃
tanh k̃h̃

)2

+ 4
Fa

k̃
(1 + Bo−1

a k̃2) tanh k̃h̃

}1/2
⎤⎦ ,

(4.41)

and all the other parameters are the same as in (4.1a–d). The expression (4.39) is in good
agreement with the growth rate obtained from the full dispersion relation. Further, it can
be easily seen that for Ũs = 0, the growth rate expression (4.39) becomes expression (4.31)
for the quiescent water layer.

4.2.3. Stability boundary
The long-wave stability boundary, for this scenario, can be obtained from the growth rate
expression (4.39) where, a cutoff exists for ξ−1

0 = 0. In other words, for

v0 = 1 − Ũs. (4.42)
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Wind-generated waves on a water layer of finite depth

Simplifying the above expression, we can write

tanh k̃h̃

k̃h̃
= (1 − Ũs)

2

[Fah̃(1 + Bo−1
a k̃

2
)− Ũs(1 − Ũs)]

. (4.43)

In the limit of k̃h̃ → 0, we can write Fah̃ = (1 − Ũs)+ ((1 − Ũs)
2/3 − Bo−1

a (1 −
Ũs)/h̃)k̃2h̃2; therefore for k̃h̃ = 0, the stability boundary starts at Fah̃ = (1 − Ũs).
Similarly, in the limit of k̃h̃ → ∞, we have Fah̃ → 0. This behaviour for large k̃h̃ is as
already discussed in the previous subsection § 4.1.3 for the quiescent water layer. In other
words, for Bo−1

a /= 0, the region enclosed by the curve (4.43) is bounded, resulting in an
upper boundary for the unstable region.

Figure 8 shows the behaviour of the stability boundary in the Fah̃ and k̃h̃ plane for
different Ũs and h̃. The continuous and dashed lines are for h̃ = 0.1 and 1, respectively.
Both dashed and continuous curves start at the same Fah̃ for k̃h̃ = 0 and deviate from each
other as Fah̃ is increased. For h̃ = 1, the dashed curves vary linearly with k̃h̃ at least up
to k̃h̃ = 20. For h̃ = 0.1 (continuous curves), the curvature is clearly observable even for
k̃h̃ < 20 and large deviations from the linear behaviour occur at higher values of Ũs (see
Ũs = 0.25 in figure 8, for example). As Ũs → 0, the stability boundary corresponding to
the quiescent water layer can be recovered.

4.2.4. Long-wave behaviour of growth rate (σ )
Similar to § 4.1.4 a long-wave expansion for σ can be carried out in this case too. The
leading-order term in the k̃ � 1 expansion is given by

σ = π

4
k̃

3
h̃

(
−2 + Ũs +

√
Ũ2

s + 4Fah̃
)2

√
Ũ2

s + 4Fah̃
. (4.44)

This expression can also be derived from the Miles asymptotic expression (4.25) and in the
limit of Ũs = 0, will be the same as (4.34). For a given k̃, Fa and Ũs the variation of growth
rate with h̃ is similar to the case of quiescent water layer i.e. there is a maximum h̃ (= h̃max)
at which the long-wave growth rate attains a maximum. For a given k̃, Fa and h̃, growth
rate decreases with an increase in Ũs until the limit at Ũs = 1 − Fah̃. For the parameters
used in figure 9(b) (F = 0.15, h̃ = 0.1), the growth rate from Ũs = 0 is verified to be more
than the growth rate from Ũs = 3c̃min; however, this happens at a smaller k than which is
shown in figure 9. Similarly, for the parameters used in figure 10, the growth rate of h̃ = 1
is more than the growth rate from h̃ = 0.1.

4.3. The flow-reversal profile in the water
The flow-reversal profile given in Paquier et al. (2015) is considered in the water layer
similar to § 3.2:

Ũ(−h̃ < z̃ < 0) = Ũs

{
1 + 4

z̃

h̃
+ 3

(
z̃

h̃

)2
}
. (4.45)
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The expressions for φ̃ and Ξ̃w are as given in (3.12) and (3.13), respectively. And, we have

S̃ = 4Ũs

h̃
− ε

(
4Ũs

h̃
+ (1 − Ũs)

)
. (4.46)

As can be seen in § 3.2, the retrograde mode of the flow-reversal profile becomes unstable
for a range of parameters. Since, by definition, the phase speed of the prograde mode is
always higher than the maximum water current speed (or the surface velocity Us in the
present case), it is stable in the absence of the air. However, with air being present, the
prograde mode can become the Miles mode of instability provided the phase speed of the
prograde mode is less than the free-stream velocity.

4.3.1. Solution to the full dispersion relation
Substituting the expressions (3.12), (3.13), (4.20) and (4.46) in (2.10) and suitably
non-dimensionalizing (see § 4.1.2), we get the dispersion relation

[εΞ̃a(c̃, k̃)+ (1 − ε)Ξ̃w(c̃, k̃)](c̃ − Ũs)
2

+ S̄(c̃ − Ũs)− Fa(1 − 2ε + Bo−1
a k̃2) = 0. (4.47)

We solve (4.51) numerically, using a root-finding routine in Mathematica, to get the
respective eigenvalues of rippling and Miles modes. In figure 11(a), we show the variation
of the non-dimensional phase speed (c̃r/c̃gc) of Miles’ mode as a function of the
wavenumber for various h̃. The similarity between the figures 10(a) and 11(a) indicates
the absence of any change in the fundamental behaviour of phase speed vs k̃ with a change
in background flow in the water layer. The only difference, however, is that the phase
speed of short waves in smaller-depth water layers of figure 11(a) is clearly different from
larger-depth water layers, unlike the case of figure 10(a). The variation of non-dimensional
growth rate (k̃c̃i) as a function of non-dimensional wavenumber (k̃), for different h̃, is given
in figure 11(b). It is shown that the growth rate has a maxima at moderate k̃ and rapidly
decays for large k̃. The absence of long-wave cutoff for smaller-depth water layers is also
observed in this case of flow-reversal profile in the water layer. Similar to figure 11(a),
a difference between the growth rates of smaller and larger-depth water layers exists for
figure 11(b).

4.3.2. Stability boundary (for both the rippling and Miles instabilities)
As shown in §§ 4.1 and 4.1.4, a cutoff for Miles instability occurs when c̃ = 1, i.e. when
the phase speed of the Miles mode matches with the free-stream velocity U∞. The
eigenfunction for the air layer, then, can be reduced to φ̃ = exp(−z̃

√
k̃2 + 1), therefore,

Ξ̃a =
√

k̃2 + 1. Substituting Ξ̃a in (4.51), we obtain the stability boundary

Fa = 1

(1 − 2ε + Bo−1
a k̃2)

[[ε
√

k̃2 + 1 + (1 − ε) Ξ̃w](1 − Ũs)
2 + S̃ (1 − Ũs)]. (4.48)
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Wind-generated waves on a water layer of finite depth

10–1 100 101 102

k�
103 10–1 100 101 102

k�
103

h� = 10

h� = 1

h� = 0.1
3

2

1

0

4
c� r/

c� gc
10–3

10–5

10–7

10–9

k�c �i

(b)(a)

Figure 11. For the exponential velocity profile in the air and the flow-reversal profile in the water: (a) the
non-dimensional phase speed (c̃r/c̃gc), and (b) the non-dimensional growth rate (k̃c̃i), plotted as a function of
non-dimensional wavenumber (k̃) at different non-dimensional depth’s (h̃). The parameters used in the plot are:
Ũs = 3c̃min, ha = 1 m and U∞ = 8 m s−1.

Here, it has to be noted that, Ξ̃w is given by (3.14) with c̃ = 1. For the rippling instability,
substituting c̃ = −Ũs/3 will result in

Ξ̃w = −3

2h̃
+ 2k̃2h̃

2k̃h̃ coth(2k̃h̃/3)− 3
, (4.49)

and

Fa = 1

(1 − 2ε + Bo−1
a k̃2)

[
16
9

Ũ2
s

[
εΞ̃a + (1 − ε) Ξ̃w

]
− 4

3
S̄ Ũs

]
, (4.50)

gives the stability boundary. Here, Ξ̃a is given by (4.20) with c̃ = −Ũs/3.
In figure 12, the stability regions of both the rippling and Miles modes are presented

in vertically aligned (Fa, k̃) planes at specific values of Ũs and h̃. The contour plot in the
first two planes of each figure indicates the log of the non-dimensional growth rate (c̃i)
ranging from minimum (yellow) to maximum (blue) values. Growth rates less than 10−10

are neglected for numerical convenience. Therefore, the edge of the contour should not be
confused with the stability boundary. The expressions given by (4.48) and (4.50) provide
the curves at which c̃ = 1 and −Ũs/3, respectively. That is, at least in the initial range
of (Fa, k̃) shown in figure 12(a–d), these curves form a part of the stability boundaries
of the Miles and rippling instabilities, respectively. They are shown by continuous and
dashed curves for Miles and rippling instability, respectively. In the third plane of each
figure, we show different regions of instability demarcated as: the stable region (S), the
region where the Miles instability (M) growth rate is maximum, and the region where the
rippling instability (R) is maximum. It has to be reiterated that to draw the boundaries of
the unstable regions, a cutoff growth rate (of 10−10) is assumed.

Figure 12(a,c) show the stability regions at constant h̃ (= 1) but for different Ũs. It can
be seen that with an increase in the surface velocity Ũs, the region and growth rate of
rippling instability increased. However, increasing the surface velocity Ũs has an opposite
effect on the Miles instability. In both these plots, it should be emphasized that the rippling
instability is not limited to large wavenumbers as moderate wavenumbers are shown to
be the most unstable at small Fa. For the same Ũs (= 1/8), figure 12(b–d), shows the
stability regions for h̃ = 10, h̃ = 1 and h̃ = 0.1, respectively. We see that, a decrease in h̃
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Figure 12. The rippling and Miles instability growth rate contours plotted in the plane of non-dimensional
wavenumber (k̃) and inverse square Froude number (Fa) stacked vertically for better visibility. The base-state
horizontal velocity profile in the air layer is an exponential profile, and in the water layer, it is a flow-reversal
profile. In each figure, the bottom plane demarcates different stability regions: (S) – stable region, (M) – the
region where the Miles instability growth rate is more than the rippling instability growth rate and (R) – the
region where the rippling instability growth rate is more than the Miles instability growth rate. The continuous
(in the mid-plane) and dashed (in the upper plane) lines are the stability boundary curves obtained from (4.48)
and (4.50), respectively. The parameters considered are: (a) Ũs = 1/2 and h̃ = 1, (b) Ũs = 1/8 and h̃ = 1,
(c) Ũs = 1/8 and h̃ = 10 and (d) Ũs = 1/8 and h̃ = 0.1.

increases the growth rate of rippling instability. For h̃ = 0.1, the rippling instability occurs
for short waves and over a range Fa. But with an increase in h̃, the rippling instability
occurs at moderate wavenumbers albeit with smaller growth rates. It has to be noted that,
although the region of the Miles instability decreases with an increase in h̃, the growth
rate follows the reverse trend. In other words, rippling mode has the highest growth rate in
smaller-depth water layers than the Miles mode.

The air–water shear flow considered for figure 12 allows for a jump in the base-state
shear stress at the interface. To perform inviscid stability of a viscous base-state, the
continuity of base-state shear stress at the interface (Ũ′(0+) = μ̃Ũ′(0−)) will relate the
two non-dimensional numbers (Ũs and h̃) for a given viscosity ratio (μ̃ = μw/μa). For a
high viscosity ratio system like the air–water case, the air layer base-state shear rate will be
significantly higher than the water layer base-state shear rate. Therefore, the perturbation
velocities in the air layer will be much larger than in the water layer (Boomkamp et al.
1997). To consider the growth rate behaviour in the air–water scenario, in figure 13, we
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Wind-generated waves on a water layer of finite depth

show the growth rate contour plots similar to figure 12, but for a viscous base state. We
choose h̃ as the independent parameter. Therefore, Ũs can be obtained for a given h̃ from
the shear stress continuity at the interface as

Ũs = h̃

(4μ̃+ h̃)
. (4.51)

From figure 13(a–d), it can be seen that increasing h̃ increases the Miles instability growth
rates; however, the instability region has the reverse trend. Further, the rippling instability
growth rates and the rippling instability region seem to increase with h̃. This is because
increasing h̃ also increases Ũs (see the expression (4.51)), increasing the rippling instability
growth rates, as shown in the earlier contour plots. It must be observed that the region
where the rippling instability growth rates are the highest occurs at O(1) and O(10−1)

wavenumbers for h̃ = 10 and h̃ = 40, respectively. (see figure 13c,d). In summary, we
show that, for a given h̃, changing the surface velocity Ũs can significantly alter the region
and growth rate of rippling instability. And smaller-depth water layers have the highest
rippling instability growth rates for a given Ũs.

5. Discussion and conclusions

In this study, the effect of finite depth and surface velocity of water layer on the
rippling and Miles modes of instability is investigated. Using linear stability analysis,
the growth rate of both instabilities and their behaviour in the parameter space of
(Fs, k) is calculated. Initially, considering only the water layer, we studied the rippling
instability of an experimentally observed flow-reversal profile (Paquier et al. 2015). Here,
we derived an analytical solution in terms of spheroidal wave functions (Russell 1994). The
eigensolutions for a linear velocity profile are also given for comparison and to illustrate
the modification of gravity–capillary waves due to shear flow in the water layer. For the
case of linear velocity profile, it is known that two stable discrete eigensolutions exist: a
prograde mode (a mode travelling faster than the maximum background flow velocity) and
a retrograde mode (a mode travelling slower than the minimum background flow velocity).
We showed that, similar to the case of linear velocity profile, the phase speed of the
retrograde mode matches with the background flow velocity over a range of wavenumbers
for the case of flow-reversal profile as well. But this region of wavenumbers corresponds
to the rippling instability i.e. for this range of wavenumbers, the retrograde mode also has
a growth rate. In the parametric space of (Fs, k) this rippling mode growth rate attains
a maximum at small Fs and moderate wavenumbers. A long-wave cutoff exists for all
Fs except for Fs = 0. An analytical expression for the stability boundary is derived by
substituting c = Umin in the dispersion relation. For Fs = 0, the long-wave growth rate is
found to scale as O(k7/3).

For the combined problem, we used three different velocity profiles in water: quiescent,
linear and flow-reversal profiles and compared their results; in the air layer, an exponential
velocity profile in considered (Young & Wolfe 2014). In all the three cases, we studied
the influence of water layer depth (h̃) and surface velocity (Ũs) on the Miles instability.
We found that decreasing h̃ removes the long-wave cutoff. Therefore, unlike the classic
infinite-depth problem, a finite-depth (i.e. a thin water layer) problem can have no
long-wave cutoff depending on the parameters considered. The condition associated with
the existence of the cutoff is given by c = Umax similar to the condition for rippling
instability. Following this condition, an expression for the stability boundary is provided.
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Figure 13. For a viscous base-state (with air–water parameters), rippling and Miles instability growth rate
contours plotted in the plane of non-dimensional wavenumber (k̃) and inverse-squared of Froude number (Fa).
They are stacked vertically for better visibility. The base-state horizontal velocity profile in the air layer is
an exponential profile, and in the water layer, it is a flow-reversal profile. In each figure, the bottom plane
demarcates different stability regions: (S) – stable region, (M) – the region where the Miles instability growth
rate is more than the rippling instability growth rate and (R) – the region where the rippling instability growth
rate is more than the Miles instability growth rate. The continuous (in the mid-plane) and dashed (in the upper
plane) lines are the stability boundary curves obtained from (4.48) and (4.50), respectively. The parameters
considered are: (a) h̃ = 0.1, (b) h̃ = 1, (c) h̃ = 10 and (d) h̃ = 40. The surface velocity is chosen so that the
shear stress continuity condition at the interface is satisfied.

Also, in the cases where a long-wave cutoff does not exist, the growth rate of the instability
is found, using Burn’s integral condition (Burns 1953), to vary as ∼k3 irrespective of
the velocity profile in the water layer (but provided, the air layer has an exponential
velocity profile). For the case of flow-reversal profile in water and exponential profile in
the air, we showed different stability regions in the (Fa, k̃) parameter space for specific
surface velocities and water layer depths. We showed that increasing the surface velocity
(or decreasing the water layer depth) enhances the rippling instability region and the
corresponding growth rate. Although the stability region of rippling instability is smaller
than Miles’ instability, for the case of smaller depth water layers (see figure 12d), the
growth rate of rippling instability is orders of magnitude larger than Miles’ instability,
showing the importance of the rippling instability. In their experiments, Paquier et al.
(2015) and Paquier et al. (2016) studied the growth rates of waves as a function of
viscosity and surface velocity. They did not identify the nature of instability for the
air–water scenario. However, they argued that the liquid layer could not be unstable
for liquids with higher viscosity owing to small Reynolds numbers. In this context, we
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Wind-generated waves on a water layer of finite depth

plot the temporal growth rate, of Miles and rippling modes, as a function of free-stream
velocity and compare with the experiment results of Paquier et al. (2016) (see figure 14a).
In figure 14(b), we show the difference between the phase speed of both the modes
and the surface velocity as a function of free-stream velocity. We choose the case
of exponential velocity profile in the air and flow-reversal profile in the water. Other
parameters are chosen to be similar to the experiments of Paquier et al. (2015, 2016):
the wavelength and water layer depth (hw) are taken to be 0.035 m, ρw = 1000 kg m−3,
ρa = 1 kg m−3, g = 9.81 m s−2, T = 0.072 N m−1, the surface velocity is found from the
relation between the friction velocity, surface velocity and free-stream velocity, Us =
ρahw(0.05U∞)2/4μw m s−1; the characteristic length scale of the air layer velocity profile
is chosen such that the base-state velocity profiles in both the layers satisfy the tangential
stress continuity at the interface. Figure 14(a) shows a good match between the critical
free-stream velocities (the free-stream velocity at which the growth rates start to be
non-zero), the order of magnitude of the growth rates, and the slope of the growth rates
of both the inviscid rippling mode and the experiments. However, we must provide a
caveat – there is an inexactness in choosing the parameters to compare the results from
the inviscid theory with an exponential velocity profile in the air and the results from
the viscous experiments with a boundary layer in the air. To highlight this, we show the
rippling and Miles instability growth rates obtained from numerically solving the viscous
Orr–Sommerfeld equations in both the air and the water layers (see Appendix B for
details regarding the formulation). Although a good match is obtained between the inviscid
and the viscous growth rates of rippling instability, the growth rates differ significantly
for the Miles instability. However, the phase speeds of the viscous and inviscid Miles
instability are not very different, as shown in figure 14(b). Zeisel, Stiassnie & Agnon
(2008) encounters similar behaviour in their numerical calculations – the viscous Miles
mode growing faster than its inviscid counterpart.

To explore this further, we calculate different energy terms, following Boomkamp &
Miesen (1996), in the kinetic energy equation and plot their absolute value as a function
of free-stream velocity (see figure 15(a,b) for the inviscid case and figure 15(c,d) for the
viscous case). The various components in the energy budget shown in these plots are scaled
by the total kinetic energy. Here, black and blue curves indicate dissipation (DIS) and
Reynolds stress (REY) contributions, respectively. A continuous line represents energy in
the air layer (subscript a), and a dashed line represents energy in the water layer (subscript
w). Further, the work done by velocity and stress disturbances tangential (TAN) and normal
(NOR) to the interface are represented by red and green curves, respectively. In the inviscid
analysis, as expected, the major energy contribution to the Miles instability is from the
Reynolds stress contribution in the air layer (REYa, see figure 15a). Similarly, the major
energy contribution to the inviscid rippling instability is the Reynolds stress contribution
in the water layer (REYw, see figure 15b). REYa or REYw are balanced by the normal
interface component (NOR) without viscous dissipation.

Figure 15(c) shows the energy contributions of the viscous counterpart of the inviscid
Miles instability. Interestingly the contribution from the tangential stresses (TAN) is
the highest among all the energies. This is balanced by energy dissipation in the
air layer (DISa). Further, throughout the free-stream velocities considered, REYa is
always negative. This kind of energy contribution corresponds to the case of ‘interfacial
mode’ (also called ‘capillary–gravity waves’) as described in (Miesen & Boersma 1995;
Boomkamp & Miesen 1996). Studies such as Miles (1962), Valenzuela (1976), Kawai
(1979) and van Gastel et al. (1985) showed the presence of this viscous short-wave
instability when the critical layer of the prograde mode is in the viscous sublayer in the
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Paquier et al. (2016) (ν = 1 × 10–6 m2 s–1)
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Figure 14. For the case of flow-reversal velocity profile in the water and exponential velocity profile in the air:
(a) a comparison of temporal growth rates (kci) from the experiments of Paquier et al. (2015, 2016) with the
inviscid rippling and Miles instabilities and their viscous counterparts, (b) the deviation of phase speeds (cr) of
the rippling and Miles modes and their viscous counterparts, from surface velocity (Us), plotted as a function
of the free-stream velocity (U∞). Here, the parameters are chosen to be similar to Paquier et al. (2015, 2016)
and are given in § 5. The top axis indicates the Reynolds number of the water layer (Rew).

gas layer. In their studies, the curvature effects are absent due to the linear velocity
profile (if a lin–log velocity profile in the gas layer is considered). Therefore, the energy
contribution is only from the tangential stresses. This instability is viscosity induced and
is the reason for the difference between the growth rates of the inviscid Miles instability
and its viscous counterpart (figure 14a). Figure 15(d) shows the energy contributions of
the viscous counterpart of the inviscid rippling instability. Although the contribution of
TAN is the highest among all others, unlike the interfacial mode of figure 15(c), the
contribution of the REYw is non-negligible. This corresponds to the case of ‘internal
mode’ as described in Miles (1960), Smith & Davis (1982) and Boomkamp & Miesen
(1996). As shown by Miles (1960), the ‘internal mode’ can exist even for the case of
uniform shear flow in a thin liquid layer with a free surface. Here, the inviscid retrograde
mode containing the critical layer becomes unstable when viscosity is considered. In the
current case of a finite-depth liquid layer with a quadratic (flow-reversal) velocity profile,
the inviscid retrograde mode with a critical layer is unstable due to the curvature in the
velocity profile. In summary, although these viscous and inviscid instabilities occur due to
the critical layer in the air and water layers, their fundamental mechanisms are different.
As seen in figure 14(a), the growth rate of the rippling mode (the internal mode) is higher
than the Miles mode (the interfacial mode) at large velocities, and it tends to be more
important.

A combination of curvature and viscosity effects would act together for thin liquid film
flows underlying a shear flow in air. In a closely related problem of falling film flows,
a quadratic velocity profile with a free surface, a long-wave viscous instability exists
– the Kapitza instability (Kalliadasis et al. 2011). The non-zero profile curvature at the
interface is crucial to the instability (Smith 1990). The interfacial mode is destabilized due
to weak fluid inertia with the critical Reynolds number depending on the inclination of
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Figure 15. For the case of flow-reversal velocity profile in the water and exponential velocity profile in the air,
different energy contributions (following Boomkamp & Miesen 1996) plotted as a function of the free-stream
velocity (U∞) for (a) inviscid Miles instability, (b) inviscid rippling instability, (c) viscous counterpart of the
Miles instability and (d) viscous counterpart of the rippling instability. Here, different terms in the kinetic
energy equation are indicated as: dissipation energy in the air layer (DISa blue solid line), dissipation energy
in the water layer (DISw blue dashed line), Reynolds stress energy in the air layer (REYa black solid line),
Reynolds stress energy in the water layer (REYw black dashed line), tangential stress energy (TAN red solid
line), and normal stress energy (NOR green solid line). Continuous and dashed lines indicate the corresponding
energy in the air (subscript a) and water (subscript w) layers, respectively. Here, the parameters are chosen to
be similar to Paquier et al. (2015, 2016) and are given in § 5.

the bottom wall. The gravity-induced tangential energy transfer dominates in the Kapitza
instability, while the viscosity-induced tangential energy transfer is more relevant in the
current scenario of horizontal shear flows. Smith & Davis (1982) revisited the classical
falling film problem and analysed the long-wave instability of a horizontal thin film with
a parabolic velocity profile driven by applied shear stresses, where the instability is now
stabilized only via surface tension. However, the transition between the long-wave low
Reynolds interfacial mode for a quadratic velocity profile and the high Reynolds Miles
instability mode for a linear shear was left unexplored. A viscous linear stability study of
the shear flow, with velocity profile curvature, in both air and water layers should be done
to answer questions such as: Is the transition between the viscous modes and their inviscid
counterparts smooth? Which mode is the most unstable in a given parameter regime?
A comprehensive study of the combined viscous instability problem over a wide range
of parameter space would help us to understand the relative importance of the different
instabilities.
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Appendix A. Heun function solution to the Rayleigh equation with the flow-reversal
profile

Using the substitution given by Φ(ζ) =
√
ζ 2 − 1eα(ζ−1)Ψ (ζ ) and ζ = 2χ − 1, we

simplify the differential equation (3.9) to,

χ(χ − 1)Ψ ′′(χ)+ [2(χ − 1)+ 2χ + 4αχ(χ − 1)]Ψ ′(χ)+ 4α(2χ − 1)Ψ (χ) = 0.
(A1)

This is a confluent Heun equation with two regular singularities at χ = 0, 1 and an
irregular singularity at χ = ∞. Two linearly independent solutions of this equation can
be written as

Hc(4α, 8α, 2, 2, 4α, χ) and χ−1Hc(2 − 4α,−4α, 2, 0,−4α, 1 − χ). (A2a,b)

Here, Hc(A,B, Γ,Δ,E, χ) is the confluent Heun function and is a solution to the
confluent Heun equation (Olver et al. 2010)

χ(χ − 1)Ψ ′′(χ)+ [Γ (χ − 1)+Δχ + Eχ(χ − 1)]Ψ ′(χ)+ (Bχ − A)Ψ (χ) = 0.
(A3)

Using (A2a,b) the general solution form of φ(z) can be written as

φ̄(z̄) = C1

b
e(k(3z̄+2)/3)(Ū(z̄)− c̄)Hc (4α, 8α, 2, 2, 4α, (3z̄ + 2 + b)/2b)

+ C2e(k(3z̄+2)/3) (Ū(z̄)− c)
(3z̄ + 2 + b)

Hc (2 − 4α,−4α, 2, 0,−4α, (b − 3z̄ − 2)/2b) ,

(A4)

where U(z) is the background velocity profile, α = k̄b/3, b = √
1 + 3c̄ and C1,C2

are integration constants. We evaluate the confluent Heun function Hc using the
in-built Mathematica 12.1 function ‘HeunC.’ Note that, in this section, we have
non-dimensionalized velocity by the surface velocity Us and length by the water layer
depth h.

Appendix B. Viscous governing equations and numerical validation

The Rayleigh equation (2.9) and the boundary conditions (2.4)–(2.7) govern the
inviscid perturbations of a finite-depth two-layer system. Their viscous counterparts, the
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Wind-generated waves on a water layer of finite depth

Orr–Sommerfeld equations for the eigenfunction in the air and water layers are given by
(Boomkamp & Miesen 1996)

ik̃(Ũa − c̃)(φ̃′′
a − k̃2φ̃a)− ik̃φ̃aŨ′′

a = Re−1(φ̃(4)a + k̃4φ̃a − 2k̃2φ̃′′
a ), (B1)

ik̃(Ũw − c̃)(φ̃′′
w − k̃2φ̃w)− ik̃φ̃wŨ′′

w = rRe−1

m
(φ̃(4)w + k̃4φ̃w − 2k̃2φ̃′′

w). (B2)

Here, the subscripts a and w indicate air and water phases, respectively. The
apostrophe over variables represents a derivative with z. Equations (B1) and (B2)
are non-dimensionalized with ha, U∞ and ρa for length, velocity and density scales
respectively. Therefore, we obtain the following additional non-dimensional variables:

Reynolds number ,Re = ρaU∞ha

μa
, density ratio, r = ρa

ρw
, viscosity ratio,m = μa

μw
.

(B3a–c)

The boundary conditions at the interface are

η̂ = φ̃a(0)

(c̃ − Ũs)
= φ̃w(0)

(c̃ − Ũs)
, (Ũ′

a − Ũ′
w)η̂ = φ̃′

2 − φ̃′
1, (B4a,b)

m(φ̃′′
a + k̃2φ̃a + η̂Ũ′′

a ) = (φ̃′′
w + k̃2φ̃w + η̂Ũ′′

w), (B5)

− (φ̃′′′
a − 3k̃2φ̃′

a)+ 1
m
(φ̃′′′

w − 3k̃2φ̃′
w)− ik̃Re(φ̃aŨ′

a − (Ũs − c̃)φ̃′
a)

+ ik̃Re
r
(φ̃wŨ′

w − (Ũs − c̃)φ̃′
w) = ik̃ReFa

(
1 − r

r
+ Bo−1

a k̃2
)
η̂. (B6)

Here the kinematic boundary condition is given by (B4a,b), the tangential and normal
stress continuity conditions are given by (B5) and (B6), respectively. The non-dimensional
numbers Fa and Boa have their usual meaning from (4.1a–d). At the bottom wall, the
no-slip and no-normal-flow conditions are given by

φ̃′
w(z̃ = −h̃) = 0, φ̃w(z̃ = −h̃) = 0. (B7a,b)

At z̃ → ∞, we use the no-normal-flow condition,

φ̃a(z̃ → ∞) = 0. (B8)

It has to be remembered that the base-state velocity profiles should be chosen so that the
tangential stress condition has to satisfy at the interface, i.e. mŨ′

a(0) = Ũ′
w(0).

For given velocity profiles in air and water layers, we solve (B1) and (B2) subject to
the boundary conditions (B4a,b)–(B8), using a Chebyshev spectral collocation method
following Ramakrishnan et al. (2021). The free stream is considered to be a top wall, and
in addition to the usual no-normal-flow condition (B8), we use a no-slip condition owing
to viscosity. The height of the air layer is taken to be large enough so that the effect of
the top wall on the eigensolution is negligible. For the specific case of the exponential
velocity profile in the air and flow-reversal velocity profile in the water, grid independence
is reached for 150 and 250 grid points each in the water and air layers, respectively. To
check the validity of these results, we solve the governing equations again using MATLAB
boundary value problem solver, bvp4c. The results obtained from the spectral method are
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u∗ (in m s−1) λ (in m) Zeisel et al. (2008) Current numerical method

0.3 0.01 1.35360 + 0.017512i 1.353602 + 0.0175129i
0.8 0.01 1.55166 + 0.22260i 1.55166 + 0.222604i
1 0.2 0.49821 + 1.07237i 0.496391 + 1.071095i

Table 1. Numerical validation. Here, u∗ is the friction velocity and λ is the wavelength.

given as a guess value to the bvp4c solver. A good match between the results of the spectral
method and bvp4c is observed.

We validate our numerical method with the results reported in tables 1 and 2 of Zeisel
et al. (2008). For this, we choose a lin–log base-state velocity profile in the air layer and an
exponential velocity base-state velocity profile in the water layer as given in Zeisel et al.
(2008) The domain is divided into three layers, and a Chebyshev grid is considered in
each layer as suggested by Boomkamp et al. (1997). Instead of the iterative scheme used
by Zeisel et al. (2008), we directly solve the generalized eigenvalue problem to obtain all
the eigenvalues. The required eigenvalue and eigenfunction from the spectral method are
given as a guess value to the MATLAB bvp4c solver. The converged eigenvalue from the
bvp4c solver is taken as the result. The comparison between the eigenvalues obtained by
our numerical method and the eigenvalues obtained by Zeisel et al. (2008) are as given in
table 1. For the first two cases, we obtain an exact match with the eigenvalues of Zeisel
et al. (2008). For the third case, however, the difference might be because of the lack of
convergence in the data given by Zeisel et al. (2008).
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