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Abstract

The main theorem of this paper shows that the lattice of congruences contained in some equivalence n on
a semigroup S can be decomposed into a subdirect product of sublattices of the congruence lattices on the
'principal it-factors' of S—the semigroups formed by adjoining zeroes to the n-classes—whenever these
are well-defined. The theorem is then applied to various equivalences and classes of semigroups to give
some new results and alternative proofs of known ones.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 20 M 10; secondary 08 A 30.

1. Introduction

If S is a semigroup and n an equivalence on S, denote by A*(S) the complete lattice of
congruences on S contained in n (and by A(S) the lattice of all congruences on S). For
each Tt-class of S there is an associated groupoid formed by adjoining a zero to the
class. If the groupoid is associative, we call this a principal n-factor of S. If every such
groupoid is associative we say n has principal 7t-factors on S. The Decomposition
Theorem (see Section 2) shows that A*(S) is isomorphic with a subdirect product of
sublattices of the congruence lattices of the principal Tt-factors, when they exist.

In Section 3, it is shown that every congruence n has principal Tt-factors; so do Jt
and , / and in important cases £C and &. These are considered in Section 5. For
example if S is an inverse semigroup, A*(S) is a subdirect product of ideals of the
lattices of O-restricted congruences on its principal (Jf-) factors. (If S is completely
semisimple it follows that every congruence contained in $ is in fact contained in
Jf.) A theorem of Clifford and Preston (1967) on the structure on A^S) is
generalized to arbitrary semigroups, yielding an alternative (albeit longer) proof of
Lallement's result on the modularity of A^S). Semilattice decompositions are also
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[2] Congruences in an equivalence 163

considered—if T is a semilattice congruence on S with r-classes S,, i e S/x, then
whenever S is either inverse or a strong semilattice of the S;'s (but not generally) A*(S)
is a subdirect product of the lattices A(S,), i e S/x.

In section 6, analogous results for left congruences are considered and a result of
the author (1978a) on the semimodularity of the lattice of full inverse subsemigroups
of an inverse semigroup is generalized.

Spitznagel (1973a, b), Eberhart and Williams (1978) and others have shown how
information on A*(S) and A(S/n) (for n a congruence) may in certain cases be
combined to give information on A(S) itself. Their actual approaches differ from ours
(although subdirect decomposition is implicit in their work).

2. The Decomposition Theorem

If S is a semigroup denote by A(S) (or just A) its lattice of congruences and by A,(S)
[Ar(S)] its lattice of left [right] congruences. Because of the obvious duality between
A, and Ar we shall in fact refer to A,. The symbols i and a> will denote the trivial
and universal congruences, respectively, on S. If S has a zero 0 then O-restricted left
congruences of S (those for which {0} is a congruence class) form an ideal of A(S)
[A/S)]. Clearly if S\0 is a subsemigroup of S then the lattice of O-restricted
congruences on S is isomorphic with A(S\0).

For all undefined terms and notation the reader is referred to Howie (1976) or to
Clifford and Preston (1961,1967), for semigroups, and to Birkhoff (1967) for lattice
theory.

Let 7c be an equivalence on S. Put A"(S) = {p e A(S): p £ n}. Then A* is a
complete ideal of A (Howie (1976), p. 27). Define AflS) = {peA£S): p £ TI},
similarly.

Suppose the 7t-classes of 5 are {S,: i e S/n}. For each i e S/n, let P, = Sf be the
groupoid S, u {0} (that is if S, contains a zero, a new zero is to be adjoined) where all
products not falling in S, are 0. In general Pt need not be a semigroup.

DEFINITION. For each i e S/n, Pt is a principal n-factor of S if it is a semigroup. If
every Pt is a principal rc-factor, then n has principal factors on S.

In Section 3 we will consider which equivalences have principal factors. For now
we just comment that the principal /-factors of S are essentially the usual principal
factors of S.

THEOREM 2.1 (Decomposition Theorem). Let Sbea semigroup and n an equivalence
on S having principal factors Pt, ieS/n. Then A" [Aj1] is a subdirect product of
sublattices of the lattices A(P,) [A,<P,)], ieS/n.
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PROOF. If p is any equivalence on S such that p £ n, let pf = p \ St u {(0,0)} for each
i (where p | S; = pn(Stx St) and St is the rc-class associated with P;). Clearly p( is a 0-
restricted equivalence on Pf. Moreover p \J {p \ St : ieS/n}.

We now show that if p e A* then pf is a left congruence of P(. Let (a, b) epba^ b, and
let seP, . If s = 0, then sa = sb = 0. Otherwise s e Sf and a,beS, (since p, is 0-
restricted and a # b) so (a, fc) € p, whence (sa, sb) e p. But p £ n, so either sa = sb = 0
in P, or sa, sb e S,. In either case (sa, sb) e p;, as required.

The map p ^> pt of AJ'(S) into A,(P() is therefore well-defined for every i. Moreover,
each map is intersection-preserving. Now let p, a e A"(S) and i e S/n. Since (p v <r);
contains pf and <7,-, we have p; vffj £(pvff) ; in A,(P,). Conversely, let(a,b)s(p v<r),-,
a # fe, so that (a,b)Gpv!<7, in A,(S), as above. Then there is a sequence
a = xo,xl7...,xn = b of elements of S such that (x^^x^epu a, 1 ^ i < n. But
p u <T £ n and Sf is a rc-class containing x0, so each xt e S;, that is (xt _,, x;) e pt u crj,
1 < i ^ n. Therefore (a, b) e p{ v at so that (pvnr), £ipf VKT, in A^P,).

Hence each map p i-> p,- is a lattice morphism of Aj"(S) into A,(P,).
Now if p, a e A" and p; = <X; for all i e S/n, then p, | S; = a, | Sf for all i e S/n, whence

p = a. The result for AJ1 now follows from (for example) (11.1) of Crawley and
Dilworth (1973).

Clearly when p e A"(S), each pf is a congruence on P, and the result for A" follows
similarly. //

From the proof of the theorem it is clear that each subdirect factor of A* [AJ1]
consists of those O-restricted [left] congruences on the corresponding principal n-
factor which are induced by some [left] congruence contained in n (in the sense of the
theorem). In the following two situations, which will occur frequently in the sequel,
we can be more explicit. (Although we shall only state results concerning A", the
analogues for Af are obvious).

COROLLARY 2.2. Let % be an equivalence on S, with n-classes St, i e S/n, and suppose
each of these classes is a subsemigroup ofS. Then A* is a subdirect product ofsublattices
of the lattices A(S(), i e S/n. Each subdirect factor consists of those congruences on the
corresponding n-class which are the restrictions of congruences on S contained in n.

PROOF. Since each S, is a subsemigroup of the associated principal factor P,
(clearly well-defined), this follows from the statements in the first paragraph of this
section. //

COROLLARY 2.3. Let n be an equivalence having principal factors on S and suppose
that on each principal n-factor ofS every O-restricted congruence is induced by some
congruence on S. Then

(i) the subdirect factors of A* are ideals of the lattices of O-restricted congruences
on the principal n-factors;
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(ii) if, further, n is a congruence, then the subdirect factors are the lattices
themselves.

NOTE It is not assumed that the congruences are induced by congruences
contained in n.

PROOF. Suppose p is a 0-restricted congruence on the principal ^-factor P which is
induced by a congruence p', say, in A*(S). Let a e A(P), a £ p. Then a is O-restricted
and is induced by a', say, a' e A(S). But then a is also induced by a1 n p', in A*(S), and
(i) follows from the comments after the theorem.

If n is a congruence then n itself induces the congruence (P\0) x (P\0) u {(0,0)} on
P and this is the maximum O-restricted congruence on P. Hence the ideal in (i) is now
the entire lattice of O-restricted congruences on P. I I

This corollary has an obvious specialization to the situation of Corollary 2.2.
To avoid repetition of details in the sequel we will state here a lemma on the

recognition of those congruences on principal factors which are induced by
congruences of S.

LEMMA 2.4. Let n be an equivalence having principal factors on S and let Abe an-
class with associated principal n-factor P. Let a be a O-restricted congruence on P.
Then a is induced by some congruence on S if for all (a, b)ea such that a ^ b, and for all
s,teSl such that sate A, then sbteA and (sat,sbt)€<r.

PROOF. Let a* be the congruence on S generated by the equivalence a u is.
Clearly a \ A £ a* \ A. To prove the reverse inclusion suppose (x, y) e a* | A.
Then y is obtained from x by a sequence of elementary ^-transitions
x = x o - » x , ^ . . . - > x , = y, where the xt may be assumed distinct. By hypothesis,
since xoeA then xxeA and (x&xjea. By repeating this we eventually obtain
(x, y) e a. Hence a | A = a* \ A, as required. //

3. Principal n-factors

In this section many familiar equivalences are shown to have principal factors on
any semigroup. Clearly any equivalence all of whose classes are subsemigroups has
principal factors.

To avoid possible confusion we will, for the next lemma only, use the symbol * to
denote the operation on the groupoid A0, A £ S (a semigroup) defined by

(ab if a, b, ab e A,
a*b = •

flO otherwise.
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LEMMA 3.1. If S is a semigroup and A £ S, then A0 is a semigroup if and only if
whenever a,b,c and abceA, then abeA if and only if bee A.

PROOF. If a, b, c e A then

((ab) c if ab, (ab) ceA,
(a*b)*c =

(-0 otherwise,
and

bc) if be, a(bc)e A,
a*(b*c) =

(.0 otherwise.
Since (ab) c = a(bc) in S, then (a * b) * c = a * (b * c) for all a, b, c e A if and only if

abc and ab belong to A precisely when abc and be belong to A. jj

Since the principal rc-factors of an equivalance are formed from the equivalence
classes in just this way, we have

COROLLARY 3.2. The equivalence n on S has principal factors if
(i) n is any congruence on S,

(ii) n = / , or
(iii) n = Jf.

PROOF. Let A be a Tt-class and suppose a,b,c and abceA, that is anbnenabc.
(i) If n is a congruence on S, then abnb2nbc, so afce/4 if and only if bee A.
(ii) If it = / , then ,4 = Jahc ^ J ab ^ J a = A, that is abeA. Similarly bee A.
(iii) If 7t = J f then by Green's Theorem (see Howie (1976), Theorem II2.5) either

A2 n A is empty or A is a group. In either case the result is clear. //

REMARKS. 1. The principal /-factors of S are just the principal factors in the usual
terminology (except that if S has a minimum ,/-class, the zero is more usually
omitted from that factor).

2. The principal Jt-factors of S are either groups with zero or zero semigroups.

We will show that £f and 0t need not have principal factors on arbitrary
semigroups. However, they do on completely semisimple semigroups. (Recall from
Clifford and Preston (1967), Chapter 6, that S is completely semisimple if each
principal ^/-factor is completely 0-simple, in which case S is regular and 2 = / .
Every finite regular semigroup is completely semisimple.)

PROPOSITION 3.3. IfS is completely semisimple then <£ and & have principal factors.
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PROOF. By duality it is sufficient to consider ^ .
Let A be an £?-class of S and suppose a, b, c and abc e A. We may consider A as a

subset of its associated completely O-simple principal /-factor P. Now abc # 0 in P,
whence be # 0 also.. By Theorem 2.52(ii) of Clifford and Preston (1961),

c£ A. Similarly ab # 0 and ab e A. //

For arbitrary semigroups this need not be so. For example let B be the bicyclic
semigroup, represented as N x X (N is the set of non-negative integers) with product

(m, ri) {p, q) = (m-n + max (n, p),q-p + max (n, p)),

and consider the ^-class R = Ro_,, = {1} xN. Let a =(1,2), 6 = (1,0) and
c = (1,3). Now ab = (1, l)eR and abc = (l,3)e/? but be = (2,3)<$R. By the lemma
0t does not have principal factors in B.

In fact since any regular semigroup which is not completely semisimple contains a
copy of B, on which ^ , = « s n ( B x B) (Hall (1972)), it follows that on a regular
semigroup S, & (and dually if) has principal factors if and only if S is completely
semisimple. (On (irregular) free semigroups, for instance, 01 is, however, trivial and
hence has principal factors).

The position with S) is unclear.

4. Semimodularity

Before applying the results of the previous two sections a short digression into
lattice theory is required.

Following Crawley and Dilworth (1973) we will call a lattice L semimodular if
a>- a A b implies a v b>- b for all a,beL (Here x>- y means x covers y, that is
x > y and for no z in L is x > z > y.) Following F. Maeda and S. Maeda (1970), we
call L M-symmetric if the modularity relation M on L is symmetric, where

a M b if for all x e [a A b, b~\, b A (X v a) = x.

We now summarize the properties of M-symmetric lattices. For proofs, or
references to proofs, see Jones (1978a), where extensive use is made of the concept.

RESULT 4.1. (i) Modularity => M-symmetry ^- semimodularity.
(ii) M-symmetry is preserved by ideals, but not by sublattices in general, nor by

lattice morphisms.
(iii) M-symmetry is preserved by subdirect products.
(iv) For any set I, the lattice Tl(I) of equivalences on I is M-symmetric.

Clearly (iii) is relevant in our situation. In fact (iii) is the only part of the result
which is not true for semimodularity also. (This may explain the reason for preferring
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the stronger concept here. Actually, for lattices of finite length the two properties are
equivalent).

It was shown by Lallement (1967) that A(S) is semimodular if S is completely 0-
simple. From his description of the congruences on S it is readily seen that if we
represent S as J(®{G\ /, Z; P), then the lattice of 0-restricted (that is non-universal, in
this case) congruences on S is a subdirect product of ^~(G) and ideals of 11(7) and
n(Z), where ^{G) is the (modular) lattice of normal subgroups of G. Hence

PROPOSITION 4.2. IfS is completely 0-simple, the lattice of ^-restricted congruences
is M-symmetric {and hence so is A(S) itself). In particular ifS is completely simple, A(S)
is M-symmetric. //

Johnston (1978) made a similar observation regarding the subdirect
decomposition but incorrectly deduced semimodularity from it.

An alternative approach to decomposing congruence lattices has been pursued by
Spitznagel (1973a, b) and Eberhart and Williams (1978), in which subdirect
decompositions are implicit. We will not use their results but will mention results
similar to our own. However, one result which is worth quoting, in modified form, is
Theorem 1.3 of Eberhart and Williams (1978).

If L is a lattice, zeL, then z is a neutral element of L if (i) z A a — z A b and
z wa = z v b together imply a = b, for any a,beL and (ii) the maps z -> z A a and
z -> z v a, aeL, are endomorphisms of L.

Then (Birkhoff (1967), p. 69) if z is neutral, L is a subdirect product of the ideal
L A z and the dual ideal L v z.

RESULT 4.3. Ifz is a neutral element of the lattice L, then L is semimodular if and only
if both L A z and L v z are. //

For M-symmetric lattices this is immediate from Result 4.1. (Note that Eberhart
and Williams use a slightly different definition of 'semimodularity'.)

5. Applications to congruences

From the Decomposition Theorem it is immediate that if n has principal factors
each of whose lattices of congruences satisfies a given identity (for instance
modularity or distributivity) then A" also satisfies that identity. Semigroups with
modular congruence lattices are rather scarce, however, and we shall be more
concerned with semimodularity (via M-symmetry). One application to modularity
is to be found by considering ^f, which by Corollary 3.2 has principal factors.
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It was shown by Lallement (1966) that A1*" is modular for any semigroup, thus
generalizing the special cases proved by Clifford and Preston (1967), Theorem 7.58,
and Munn (1964) for inverse and regular semigroups respectively. Both Lallement
and Munn proved modularity by showing the congruences contained in 3^
commute. Clifford and Preston essentially proved that on an inverse semigroup k*
is a subdirect product of sublattices of the lattices of normal subgroups of its
maximal subgroups and it is this result which we may now easily generalize to
arbitrary semigroups.

An arbitrary semigroup may have no subgroup whatsoever. However with any
Jf-class H can be associated the Schutzenberger group F(H) of H : the group of all
transformations of H induced by inner right translations of S1. Then
(Schutzenberger (1957)) F(//) S T{H') ifH and H' are contained in the same ©-class
of S. If that ©-class is regular then F(if) is isomorphic with each of its maximal
subgroups.

THEOREM 5.1. IfS is any semigroup, A^S) is a subdirect product of sublattices of the
lattices of normal subgroups of the Schutzenberger groups of S. Hence A^S) is
modular.

PROOF. By the Decomposition Theorem, A*(S) is a subdirect product of the
lattices of O-restricted congruences of the principal ^f-factors of S.

Let H be an Jf-class of S. For each O-restricted congruence (on the associated
principal factor) which is induced by some congruence <x', say, of S, define an
equivalence £(<r) on T(H) by

E(a) = {(l,n)er(H)xr(H): (hX,hfi)ea for all heH}.

Let (X, ft) e E(a) and let n e T(H), n = ps\ H, say, where s e S l and xps = xs for all x e S.
Then for all h in H

mn),h(jir,)) = i(hk)s,(hii)s)eo' | H = a,

and

since hn e H. Thus (Xn, nrf) e E(a) and (nX, nyt) e E(a). So £(<r) is a congruence on F(H).
It is easily verified that the map a -> £(<r) is an embedding of the associated subdirect
factor of A^ into A(F(//)), that is into the lattice of normal subgroups of the
Schutzenberger group of H. jj

Turning now to f, it is immediate from the Decomposition Theorem that A/(S) is
a subdirect product of sublattices of the congruence lattices of its principal (/-)
factors. We will consider inverse semigroups first.
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In a completely semisimple inverse semigroup (see Section* 3) each principal factor
is a Brandt semigroup and on such a semigroup every 0-restricted congruence
separates idempotents (since if e and/are related idempotents either e = /or ef =0).
Hence it is immediate from the Decomposition Theorem (and the comments
following it) that every congruence contained in # is idempotent-separating. Thus
we have

COROLLARY 5.2. On a completely semisimple inverse semigroup every congruence
contained in £ is contained in JV, that is A^ = A*.

In general this need not, of course, be true even for inverse semigroups, as any
simple inverse semigroup which is not a group has f = a> and Jf c / .

To obtain deeper results for inverse semigroups it is necessary to further analyse
the subdirect factors (along the lines of Section 2). The extra hypotheses in the next
lemma will be used in the sequel.

LEMMA 5.3. Let S be an inverse semigroup and let n be either J or a congruence
containing #. IfP is a principal n-f actor ofS then every 0-restricted congruence on P is
induced by some congruence on S.

PROOF. Before commencing the proof proper, we will show that if a, in S, is such
that satna for some s^eS1, then saa~l nana'1 at.

Now sat = (saa'1) a(a~l at), so Jsat < Jsaa-, < Ja. If n = £ then clearly saa~l na.
If n is a congruence containing ,/, note that there exist idempotents e of Jsat,f,g of
Jsaa-, and h of Ja such that e < /and g < h (by, for example, Exercise 3 of Clifford
and Preston (1967), Chapter 8). Then since , / £ n we have ensatnanh 2LV\A fng,
whence e = efngh = g, so that ansatnsaa~l. Similarly a~ latna in either case.

To apply Lemma 2.4, let A be the associated 7r-class of S, let a be a 0-restricted
congruence on P and suppose (a,b)eo, a^b, and sate A for some s,tsSl.

Then satna so that saa'1, a'1 ate A by the above. Therefore
sat = (saa~l)a{a~l at)o{saa~l)b(a~l ai)eA (since a is 0-restricted). Similarly
saa~l bb~l, b~lba~x ate A so

= (sbb~1)a{b-1bt)eA.

Again sbb~l, b'lbteA and so

So sbteA and (sat,sbt)ea. By Lemma 2.4, every 0-restricted congruence on P is
induced by some congruence on S. //

https://doi.org/10.1017/S1446788700021170 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021170


[10] Congruences in an equivalence 171

THEOREM 5.4. IfS is an inverse semigroup then A^S) is a subdirect product of ideals
of the lattices of (O-restricted) congruences of its principal (,/-) factors.

PROOF. Apply Corollary 2.3 to the Decomposition Theorem, using the lemma. //

Since M-symmetry is preserved by ideals, the theorem shows that if each principal
factor of S has an M-symmetric lattice of (O-restricted) congruences then A/(S) is M-
symmetric (whence semimodular). However, 0-simple inverse semigroups need not
in general have semimodular lattices of (O-restricted) congruences (see Scheiblich
(1970)).

Returning to the extra hypotheses of Lemma 5.3, a congruence T on S containing
# is just a semilattice congruence (Howie and Lallement (1966)) in which case each
congruence class S,- is an inverse subsemigroup of S and S is a semilattice of the
subsemigroups Sh ieS/z. Thus, applying Corollaries 2.2 and 2.3 we have

THEOREM 5.5. IfS is a semilattice of inverse subsemigroups Sh iel, with associated
congruence x, then A'(S) is a subdirect product of the lattices A(S,), i e I. //

This theorem can also be interpreted in the opposite direction : a necessary
condition that A\S), indeed A(S) itself, satisfy some lattice identity is that the
congruence lattices of the inverse semigroups in any semilattice decomposition (in
particular that corresponding to the least semilattice congruence) also satisfy that
identity.

We now consider semilattice decompositions of arbitrary semigroups. In general,
the results are not as definitive as Theorem 5.5, even for regular or completely
semisimple semigroups. If S is a semilattice of subsemigroups S,, i e I, with associated
congruence T, then A\S) is of course a subdirect product of sublattices of the lattices
A(Sj), i e I (by Corollary 2.2) but the subdirect factors need not even be ideals.

EXAMPLE 5.6. Let R = {s,t} and K = {a,b,c,d} be right zero semigroups and let
S = Rv K, with sx = tx = x for all x in K and as = a = cs,bs = b = ds,at = c = ct,
bt = d = dt. It may be verified that S is a band. Further a = {(a, b), (b, a)} u iK is a
congruence on K. But (at, bt) = (c, d) ̂ a,soa is not induced by any congruence on S.
Since coK is induced by the congruence f on S, the congruences on K induced by
congruences on S contained in , / do not form an ideal of A(K).

If, however, S is a strong semilattice of the S;'s we now show the analogue of
Theorem 5.5 is true. (Recall (Petrich (1973)) that if S is a semilattice Yoisemigroups
St, i e y, then S is a strong semilattice of the S;'s if there exist maps cpUJ: S, -• Sj
whenever i ^ j , satisfying

(i) (pi; is the identity on Sh
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(iii) if aeS , and beSj then ab = {a<Pi,y)(b<Pjjj).

LEMMA 5.7. IfS is a strong semilattice of the semigroups S(, ie Y, with associated
congruence T, then for each i, every congruence on S( is the restriction of some
congruence on S.

PROOF. Let ie 7and ere A(S(). Let (a,b)ea, a^=b, and suppose sateSi for some
s,teSl. We may assume s, t # 1 (the proof being similar if s = 1 or t = 1). Suppose
s e Sj and t e Sk, j,keY.

Now sat = (s<P/,jjt)(a(Pi,yk)(&Pik,ijk)' s o y^ = '• Hence sat = (s(pJti)a(t(pki). Similarly
sbt = (s(pj i)b(t(pki) (for {sat,sbt)eT implies sbteSi). Since s<pj t and f<pt>j are in Sf,
(sat, sbt) e a. The result follows from Lemma 2.4. //

THEOREM 5.8. / / S is a strong semilattice of semigroups Sh i e Y, with associated
congruence T, then AZ(S) is a subdirect product of the lattices A(S,), i e Y.

PROOF. This is now immediate from Corollaries 2.2 and 2.3. //

In particular if the congruence classes are all simple then T = , / (Petrich (1973),
Theorem II.4.5). As noted earlier, little is known about congruence lattices of simple
semigroups in general. However by Proposition 4.2 the lattice of congruences on a
completely simple semigroup is M-symmetric. Now it is known (Petrich (1973),
Theorem IV.4.3) that the strong semilattices of completely simple semigroups are
precisely the normal bands of groups, that is the unions of groups in which Jf is a
congruence and S/Jt? is a normal band. (A band is normal if it satisfies the identity
abca = acba.) We have therefore proved

COROLLARY 5.9. IfS is a normal band of groups then A/(S) is M-symmetric, whence
semimodular. //

This generalizes the theorem of Baird (1972) that A^S) is semimodular on a
normal band. Using the techniques described in Section 4, and other methods,
Eberhart and Williams (1978) claimed (Theorem 2.7) that A/(S) was in fact
semimodular on any band of groups. For the non-normal band of Example 5.6
(where the methods of this section fail), however, A^(S) is not semimodular as we now
show.

EXAMPLE 5.10. Let S be the band of Example 5.6. The atoms of A/(S) are
a = {(a, c), (c, a)} u i, j3 = {(b, d), (d, b)} u i and p = {(a, b), (c, d), (b, a), (d, c)} u i. Note
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that <xv /? = a u / ? $ ( o K u i (the Rees congruence modulo K), but a>K u i > p. Thus
p v a = ci)sui, which does not cover a. Let x be the congruence p u {(s, £), (t, s)}. The
diagram for A (̂S) is given in Figure 1.

6. Applications to left congruences

In this section we consider the left congruences contained in ^2. Since 3t does not
in general have principal factors the discussion will be confined to the completely
semisimple case. (See Section 3).

If S is any inverse semigroup then Af(S) £ Sf^(S), the lattice of full inverse
subsemigroups of S (Meakin (1975): an inverse subsemigroup of Sisfull if it contains
all the idempotents of S). The author showed (1978a) that £C^(S) is semimodular if S
is completely semisimple and each ^-class either is combinatorial (Jf = i) or is itself
a group with semimodular subgroup lattice. We will generalize this result to
completely semisimple semigroups in general. The first step is the analogue of
Lemmas 5.3 and 5.7.

LEMMA 6.1. Let Sbe a completely semisimple semigroup and let R be an @-class ofS.
Every O-restricted left congruence on the associated principal ^-factor is induced by a
left congruence on S.
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PROOF. Let a be a O-restricted left congruence on the principal ^-factor and
suppose (a, b)ea,a # b, and sasR for some seS1. Since 0t is a left congruence on S,
sbeR.

Now S is regular, so a has an inverse a' in 5, and e = aa '^a : in fact e is a left
identity for R. Now (sa) a' = se and (se) a = sa, so se e R. Hence sa — (se) b — sb. The
result now follows from the analogue of Lemma 2.4 for left congruences. //

THEOREM 6.2. / / S is a completely semisimple semigroup then Af is a subdirect
product of the lattices of O-restricted left congruences on its principal S%-factors.

PROOF. Apply the analogue of Corollary 2.3(ii) for left congruences.

If the ^2-class R consists of a single ^f-class, then since S is regular, R is a group,
whence the corresponding subdirect factor is just its lattice of subgroups. Now
suppose R is combinatorial.

LEMMA 6.3. Let Rbe a combinatorial Si-class of a completely semisimple semigroup
S. Then every equivalence on R is the restriction of a O-restricted left congruence on the
associated principal ^-factor P.

PROOF. Let <x be an equivalence on R and let p = au{(0,0)}, a O-restricted
equivalence on P. To show p is a left congruence on R, let (x, y) e p, x / y (so that
x,yeR) and let reR. If rx e R then since P is contained in a completely 0-simple
principal (/-) factor of S, rxeRn Lx, whence Lr n R, that is Hr, contains an
idempotent. (See Clifford and Preston (1961), Theorems 2.52 and 2.17 respectively).
But since R is combinatorial, r is that idempotent and is therefore a left identity for R,
so that (rx, ry) = (x, y) ep. If rx = 0 then ry = 0 similarly. Hence p is a left
congruence on P, inducing a.

THEOREM 6.4. IfS is completely semisimple semigroup in which each &-class either is
combinatorial or is a group with M-symmetric lattice of subgroups then \f(S) is M-
symmetric, whence semimodular.

PROOF. The lattice of O-restricted congruences on a combinatorial principal 31-
factor is, by the lemma, isomorphic with the full lattice of equivalences on the
corresponding ^-class, whence it is M-symmetric, by Result 4.1. Theorem 6.2 may
then be applied. //

COROLLARY 6.5. In any combinatorial completely semisimple semigroup, Af is
semimodular. In particular Af is semimodular in any free inverse semigroup and in any
band. II
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In any semigroup, if an ^?-class is combinatorial so is every ^-class in the same 9)-
class. Thus the condition that every ^2-class be either combinatorial or a group is
equivalent to the condition that every ^-class be either combinatorial or a left group
(that is a direct product of a left zero semigroup and a group), for if D is a non-
combinatorial ^-class, then each ^-class is a group and D consists of a single j£f-
class, whose idempotents form a left zero semigroup. (See Petrich (1973), Theorem
IV.3.9.) For inverse semigroups this reduces to the condition stated earlier.

By methods similar to those used in Jones (1978a) it may be shown that the
converse to Theorem 6.4 is true, that is Af(S) is M-symmetric if and only if each 3-
class of S either is combinatorial or is a left group whose associated group has M-
symmetric lattice of subgroups. For a full discussion, including the special cases of
modularity and distributivity, the reader is referred to the above paper, and for the
non-completely semisimple case to Jones (1978b).

Modularity and distributivity of the lattice of left congruences on a band have
been studied by Dean and Oehmke (1964).
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