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Abstract

We consider spatial stochastic models, which can be applied to, e.g. telecommunication
networks with two hierarchy levels. In particular, we consider Cox processes XL and
XH concentrated on the edge set T (1) of a random tessellation T , where the points
XL,n and XH,n of XL and XH can describe the locations of low-level and high-level
network components, respectively, and T (1) the underlying infrastructure of the network,
such as road systems, railways, etc. Furthermore, each point XL,n of XL is marked
with the shortest path along the edges of T to the nearest (in the Euclidean sense) point
of XH . We investigate the typical shortest path length C∗ of the resulting marked point
process, which is an important characteristic in, e.g. performance analysis and planning of
telecommunication networks. In particular, we show that the distribution of C∗ converges
to simple parametric limit distributions if a scaling factor κ converges to 0 or ∞. This
can be used to approximate the density of C∗ by analytical formulae for a wide range
of κ .
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1. Introduction

Asymptotic properties of spatial stochastic models are considered, which can be applied in,
e.g. the analysis and planning of telecommunication networks. More precisely, we consider
stochastic models for networks with two hierarchy levels, i.e. there are network components
of two different kinds: low-level components (LLCs) and high-level components (HLCs). The
locations of both HLCs and LLCs are represented by points in the Euclidean plane R

2. We then
associate with each HLC a certain subset of R

2 which is called its serving zone. This is done
in such a way that the serving zones of the HLCs are disjoint convex polygons which cover
the whole of R

2. Each LLC is linked to the HLC in whose serving zone the LLC is located.
In particular, we assume that the serving zones are constructed as the cells of the Voronoi
tessellation with respect to the locations of HLCs. This is equivalent to linking each LLC to its
nearest HLC, where ‘nearest’ means with respect to the Euclidean distance. Furthermore, we
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assume that HLCs and LLCs are located on the edges of a random geometric graph, where the
link from an LLC to its nearest HLC is assumed to be the shortest path along the edges of that
graph. In the case of telecommunication networks the edges of the random geometric graph
represent the underlying infrastructure, e.g. an inner-city street system.

We thus study a class of stochastic network models which has been introduced in [11] as the
stochastic subscriber line model (SSLM) for urban access networks. Note that the SSLM is a
model from stochastic geometry which provides tools for the description of geometric features
of the network. Based on this model, stochastic econometrical analysis can be done for real
telecommunication networks, e.g. connection costs for access networks can be determined
(see [10], [14], [30], and [33]), where we focus on the case in which the infrastructure of the
network is modeled by the edge set of a stationary random tessellation and both the HLC and
LLC are modeled by Cox processes concentrated on this edge set. Then we are especially
interested in the shortest path length along the edge set between LLCs and HLCs, which is an
important performance characteristic in cost and risk analysis as well as in strategic planning
of wired telecommunication. In order to define an appropriately chosen (global) distribution of
the shortest path length, we investigate the so-called typical shortest path length C∗. It can be
interpreted as the length of the shortest path from a location of LLCs, which is chosen at random
among all locations of LLCs, and its nearest HLC. We are then interested in the asymptotic
behavior of the distribution of C∗ for two extreme cases of model parameters. In particular, we
show that the distribution of C∗ converges to simple parametric limit distributions if a scaling
factor κ converges to 0 or ∞. This can be used to approximate the density of C∗ by analytical
formulae for a wide range of κ , which is a great advantage, e.g. for the econometrical analysis
of real telecommunication networks; see [10]. The mathematical techniques, which we exploit
in order to derive our main results presented in Theorems 3.1 and 3.2, include Palm calculus and
Poisson approximation for stationary point processes, Kingman’s subadditive ergodic theorem,
and the generalized Blaschke–Petkantschin formula from geometric measure theory.

The paper is organized as follows. In Section 2 we give a short description of the particular
stochastic network model considered in the present paper. Then, in Section 3, we present the
main results stated in Theorems 3.1 and 3.2. The proof of Theorem 3.2 is given in Section 4,
where some details are postponed to Appendix A. In Section 5, it is shown that the mixing and
integrability conditions of Theorems 3.1 and 3.2 are fulfilled for various examples of random
tessellations. Finally, in Section 6 we conclude the paper and give an outlook to possible future
research. In particular, some extensions of our results to other performance characteristics, more
general classes of random geometric graphs, and more general connection rules are discussed.
A more detailed version of the present paper can be found in [32].

2. Stochastic modeling of hierarchical networks

To begin with, we give a short description of the particular stochastic network model
considered in the present paper. Moreover, we briefly introduce the notation we will use.
For details on point processes and random tessellations, see, e.g. [7], [8], [25], [26], and [27].
Surveys on applications of tools from stochastic geometry to spatial stochastic modeling of
telecommunication networks can be found in, e.g. [16] and [37].

First we recall some basic notions regarding marked point processes in R
2. Let B2 denote

the family of Borel sets of R
2, and let M be a Polish space with its Borel σ -algebra BM.

Furthermore, let X = {(Xn, Mn)} be a marked point process with mark space M. Then we
regard X as a random element of (NM, NM), where NM is the family of all counting measures on
B2⊗BM which are simple and locally finite in the first component andNM is the usualσ -algebra
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on NM. For x ∈ R
2, we define the shift operator tx by txX = tx{(Xn, Mn)} = {(Xn − x, Mn)}.

Now assume that X = {(Xn, Mn)} is stationary with intensity λ > 0. Then the Palm mark
distribution Po

X : BM → [0, 1] of X is given by

Po
X(G) = 1

λ
E #{n : Xn ∈ [0, 1)2, Mn ∈ G}, G ∈ BM.

A random variable M∗ distributed according to Po
X is called the typical mark of X.

In the following, two jointly stationary marked point processes X(1) = {(X(1)
n , M

(1)
n )} and

X(2) = {(X(2)
n , M

(2)
n )} with intensities λ1 and λ2 and mark spaces M1 and M2, respectively,

will be considered as a random element Y = (X(1), X(2)) of the product space NM1,M2 =
NM1 × NM2 . The Palm distribution P∗

X(i) of Y with respect to the ith component, i = 1, 2, is
then defined on NM1 ⊗ NM2 ⊗ BMi

by

P∗
X(i) (A × G) = 1

λi

E #{n : X(i)
n ∈ [0, 1)2, M(i)

n ∈ G, t
X

(i)
n

Y ∈ A}, (2.1)

where A ∈ NM1 ⊗ NM2 and G ∈ BMi
. Note that the Palm mark distribution Po

X(i) of X(i) can
be obtained from P∗

X(i) as a marginal distribution.
As a model for the underlying random geometric graph, we consider the edge set T (1)

of a random tessellation T = {�n} of R
2. If T is stationary then we define the intensity

γ of T as γ = E ν1(T
(1) ∩ [0, 1]2), where ν1 denotes the 1-dimensional Hausdorff mea-

sure. In the following we always assume that T is a (normalized) stationary tessellation
with E ν1(T

(1) ∩ [0, 1]2) = 1. Furthermore, for each γ > 0, we consider the scaled tessella-
tion Tγ with intensity γ defined by Tγ = T/γ , i.e. we scale the edge set T (1) such that
E ν1(T

(1)
γ ∩ [0, 1]2) = γ . Note that a stationary tessellation T is called ergodic and mixing if

the random closed set T (1) is ergodic and mixing, respectively.
For any γ > 0, we consider Cox point processes XH = {XH,n} and XL = {XL,n} concen-

trated on T
(1)
γ in order to model the locations of HLCs and LLCs, respectively. In particular, we

assume that XH is a Cox process on T
(1)
γ with linear intensity λ� which is constructed by placing

homogeneous Poisson processes on the edges of Tγ with linear intensity λ�. Analogously, XL

is a Cox process on T
(1)
γ with linear intensity λ′

�, where we assume that XH and XL are
conditionally independent given Tγ . Note that the planar intensities λ and λ′ of XH and XL

are given by λ = λ�γ and λ′ = λ′
�γ .

Let TH = {�H,n} denote the Voronoi tessellation induced by the points XH,n of the Cox
process XH = {XH,n}, i.e.

�H,n = {x ∈ R
2 : |x − XH,n| ≤ |x − XH,m| for all m 	= n},

where | · | denotes the Euclidean norm. The cells �H,n of TH are considered to be the serving
zones of HLCs. We can then construct the marked point process XL,C = {(XL,n, Cn)}, where
the mark Cn is the length of the shortest path from XL,n to XH,j along the edge set T

(1)
γ

of Tγ provided that XL,n ∈ �H,j . Thus, each LLC is connected to its nearest HLC in the
Euclidean sense and not in the shortest path sense. However, for applications, this is a reasonable
assumption since the planning of telecommunication networks is complicated and existing
networks have evolved for long periods. Therefore, it is unrealistic to assume that serving
zones are defined with respect to the shortest path distance and it is appropriate to use a simpler
rule. Furthermore, analysis of real data has shown that the approach considered in the present
paper is realistic (see [10]). Realizations of service zones and shortest paths are displayed in
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Figure 1: HLCs with serving zones (filled circles) and LLCs (open circles) with shortest paths (dashed
lines) along the edge set (gray lines) of a PVT (left) and PLT (right).

Figure 1, where Tγ is a Poisson–Voronoi tessellation (PVT) and a Poisson line tessellation
(PLT), respectively.

The model characteristic we are mainly interested in is the distribution of the typical mark
C∗ of XL,C . Thus, we are interested in the Palm mark distribution Po

XL,C
of XL,C , i.e. the

distribution of the typical shortest path length. Note that the realizations of XL,C can be
constructed from the corresponding realizations ofXL andXH,S , whereXH,S = {(XH,n, S

o
H,n)}

is a stationary marked point process with marks So
H,n = (T

(1)
γ ∩ �H,n) − XH,n. Thus, instead

of XL,C , we can consider the vector Y = (XL, XH,S) and the Palm distribution P∗
XL

of Y with
respect to XL, which has been introduced in (2.1). Let (X∗

L, X̃H,S) be distributed according to
P∗

XL
, where we use the notation X̃H,S = {(X̃H,n, S̃

o
H,n)} and

T̃ (1)
γ =

⋃
n≥1

(S̃o
H,n + X̃H,n).

Note that X̃H = {X̃H,n} is a (nonstationary) Cox process on T̃
(1)
γ with linear intensity λ�. Let

X̃H,0 denote the closest point (in the Euclidean sense) of {X̃H,n} to the origin o. Then, the
typical shortest path length C∗ can be given by C∗ = c(X̃H,0), where c(X̃H,0) denotes the
length of the shortest path from o to X̃H,0 along T̃

(1)
γ . In the following we assume that the joint

distribution of C∗, X̃H , and T̃γ is given by P∗
XL

.

3. Limit theorems for the typical shortest path length

We investigate the asymptotic behavior of the distribution of C∗ for two different cases:
γ /λ� → 0 with λ� fixed and γ /λ� → ∞ with γ λ� fixed, i.e. unboundedly sparse edge sets
and unboundedly dense edge sets, respectively. For γ /λ� → 0, we show in Theorem 3.1
that the distribution of C∗ converges weakly to an exponential distribution, where no specific
assumption on the underlying stationary tessellation T is needed. Furthermore, for γ /λ� → ∞
and stationary, isotropic, and mixing T , we show in Theorem 3.2 that C∗ converges weakly to
a Weibull distribution.

3.1. Scaling invariance property

Recall that the stochastic network model introduced in Section 2 and, in particular, the
distribution of C∗ is fully specified by T , γ , λ�, and λ′

�. Moreover, it can be shown (see,
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Figure 2: Realizations of XH,S = {(XH,n, S
o
H,n)} for κ = 0.5 (left) and κ = 1000 (right).

e.g. [14] and [33]) that the distribution of C∗ does not depend on λ′
�. Therefore, we only regard

the parameters γ and λ� in the following. Sometimes we use the notation C∗ = C∗(γ, λ�) to
emphasize that the distribution of C∗ depends on γ and λ�.

Furthermore, a scaling invariance property holds for this model. If the value of the quotient
κ = γ /λ� is constant then the structure of XH,S is fixed, but on different scales for different
parameter vectors (γ, λ�) = (κλ�, λ�). We are interested in the limiting behavior of C∗ for
κ → 0 with λ� fixed and for κ → ∞ with λ = λ�γ fixed. In Figure 2 realizations of XH,S are
shown for extremely small and large values of κ , where the realization of T is sampled from a
PLT. We can see that, for small κ , the segment systems within the serving zones mainly consist
of one single segment only, whereas, for large κ , the networks inside the serving zones become
rather dense.

3.2. Asymptotic exponential distribution for κ → 0

First we regard the case in which κ = γ /λ� → 0 with λ� fixed, i.e. γ → 0.

Theorem 3.1. Let T be an arbitrary stationary tessellation. Then, for any fixed λ� > 0, it
holds that

C∗(γ, λ�)
d−→ Z as γ → 0,

where ‘
d−→’denotes convergence in distribution and Z ∼ Exp(2λ�), i.e. the random variable Z

is exponentially distributed with expectation (2λ�)
−1.

Proof. It can be shown that C∗ converges in distribution to the distance from o to the nearest
point of a stationary Poisson process of intensity λ� in R which is Exp(2λ�)-distributed. For
details, see [32].

Note that the case κ → 0 with γ fixed and λ� → ∞ can be treated as follows. Owing to
the scaling invariance property mentioned in Section 3.1, we find, for Z ∼ Exp(2), that

λ�C
∗(γ, λ�)

d= C∗
(

γ

λ�

, 1

)
d−→ Z as λ� → ∞,

where ‘
d=’ denotes equality in distribution.
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3.3. Asymptotic Weibull distribution for κ → ∞
In this section we assume that T is a stationary and isotropic random tessellation which is

mixing. Furthermore, we assume that

E ν2
1 (∂�∗) < ∞, (3.1)

where ν1(∂�∗) denotes the circumference of the typical cell �∗ of T . We investigate the
asymptotic behavior of the distribution of C∗ = C∗(γ, λ�) for κ → ∞, where γ → ∞ and
λ� → 0 such that λ�γ = λ is fixed. In particular, we show that C∗ converges in distribution to
ξZ, where ξ ≥ 1 is a certain constant which is multiplied by the Euclidean distance Z from o

to the nearest point of a stationary Poisson process of intensity λ. Then, it is easy to see that Z

as well as ξZ have Weibull distributions.

Theorem 3.2. Let Z ∼ Wei(λπ, 2) for some λ > 0. Then there exists a constant ξ ≥ 1 such
that

C∗(γ, λ�)
d−→ ξZ as κ → ∞,

provided that γ → ∞ and λ� → 0 with λ�γ = λ, where ξZ ∼ Wei(λπ/ξ2, 2).

The proof of Theorem 3.2 is split into several steps. We first show in Lemma 4.2 that,
under the Palm probability measure P∗

XL
, the Euclidean distance |X̃H,0| from o to the nearest

point X̃H,0 of the point process X̃H = {X̃H,n} converges in distribution to the corresponding
characteristic of a stationary Poisson process with intensity λ. Furthermore, in Lemma 4.4,
we show that, for some constant ξ ≥ 1, the difference between ξ |X̃H,0| and the shortest path
length C∗ = C∗(γ, λ�) from the origin to X̃H,0 along T̃

(1)
γ converges in probability to 0. Then,

combining the results of Lemmas 4.2 and 4.4, the assertion of Theorem 3.2 follows.

4. Proof of Theorem 3.2

4.1. Euclidean distance from the typical LLC to its closest HLC

Throughout this section, we assume that the underlying tessellation T is ergodic. In
order to prove that the Euclidean distance |X̃H,0| from the typical LLC to its closest HLC
is asymptotically Weibull distributed, we use classical results regarding the convergence in
distribution of point processes; see, e.g. [8, Chapter 11] and [23, Chapters 7 and 10]. We first
show that the Cox process XH converges in distribution to a homogeneous Poisson process Y

if κ → ∞ provided that λ�γ = λ is constant, which we abbreviate as XH ⇒ Y .

Lemma 4.1. If κ → ∞, where λ�γ = λ for some constant λ ∈ (0, ∞), then XH ⇒ Y , where
Y is a stationary Poisson process with intensity λ.

Proof. For each γ > 1, let XH = XH (γ ) denote the Cox process of HLCs with parameters
γ and λ�, where λ� = λ/γ for some constant λ ∈ (0, ∞). Note that the Cox process XH (γ )

can be obtained from XH (1) by independent thinning with survival probability c = 1/γ and
by subsequent rescaling with scaling factor

√
1/γ . Furthermore, the Cox process XH (1) is

ergodic, since T is ergodic. Thus, using, e.g. Theorem 7.3.1 of [23], we find that XH (γ ) ⇒ Y

as γ → ∞.

Lemma 4.2. Let Z ∼ Wei(λπ, 2) for some λ > 0. Then |X̃H,0| d−→ Z as κ → ∞ provided
that γ → ∞ and λ� → 0 such that λ�γ = λ.
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Proof. Let X∗
H (γ ) be a point process in R

2 whose distribution is equal to the Palm distri-
bution of XH = XH (γ ). Furthermore, let Y be a stationary Poisson process with intensity λ.
Note that the distribution of Y + δo is then equal to the Palm distribution of Y ; see, e.g.
Proposition 13.1 of [8]. Thus, Proposition 10.3.6 of [23] yields

X∗
H (γ ) ⇒ Y + δo (4.1)

as γ → ∞ and λ� → 0, where λ�γ = λ. Since XL and XH are Cox processes concentrated
on T

(1)
γ which are conditionally independent given T

(1)
γ , we find that X̃H + δ0 and the Palm

version X∗
H of XH have the same distribution. This is an easy consequence of the representation

formula for the Palm distribution of stationary Cox processes; see, e.g. Section 5.2 of [27]. In
particular, this gives, for each r > 0,

lim
γ→∞ P(|X̃H,0| > r) = lim

γ→∞ P(X̃H (B(o, r)) = 0)

= lim
γ→∞ P((X̃H + δo)(B(o, r)) = 1)

= P((Y + δ0)(B(o, r)) = 1)

= P(Y (B(o, r)) = 0),

where we have used (4.1) in the penultimate equality. Thus, for each r > 0,

lim
γ→∞ P(|X̃H,0| > r) = P(Y (B(o, r)) = 0) = exp(−λπr2),

which means that |X̃H,0| d−→ Z ∼ Wei(λπ, 2).

4.2. Shortest path length versus scaled Euclidean distance

In this section we assume that T is a stationary, isotropic, and mixing random tessellation.
Furthermore, we assume that the integrability condition (3.1) is satisfied. Then, we can show
that, for some constant ξ ≥ 1, the difference between ξ |X̃H,0| and the shortest path length
C∗ = C∗(γ, λ�) from o to X̃H,0 along the edge set T̃

(1)
γ converges in probability to 0. In order

to show this, we need the following auxiliary result.

Lemma 4.3. Let T̃
(1)
γ,ξ,ε = {u ∈ T̃

(1)
γ : |c(u) − ξ |u|| < ε}, where ξ ≥ 1 is some constant and

c(u) denotes the length of the shortest path from u to the origin along the edges of T̃
(1)
γ . If

γ → ∞ and λ� → 0, where λ�γ = λ is fixed, then there exists ξ ≥ 1 such that, for each ε > 0
and r > 0,

lim
γ→∞ E exp

(
− λ

γ
ν1(T̃

(1)
γ \ T̃

(1)
γ,ξ,ε ∩ B(o, r))

)
= 1.

The proof of this lemma is postponed to Appendix A. Now, using Lemma 4.3, we are able
to complete the proof of Theorem 3.2 by showing that the following is true.

Lemma 4.4. If γ → ∞ and λ� → 0 such that λ�γ = λ, then there exists a constant ξ ≥ 1
with C∗(γ, λ�) − ξ |X̃H,0| p−→ 0, where ‘

p−→’ denotes convergence in probability.

Proof. We have to show that there exists a constant ξ ≥ 1 such that, for any ε > 0 and
δ > 0, we can choose γ0 > 0 with P(|C∗ − ξ |X̃H,0|| > ε) ≤ δ for all γ > γ0. Note that

P(|C∗ − ξ |X̃H,0|| > ε) = P(|C∗ − ξ |X̃H,0|| > ε, |X̃H,0| ≤ r)

+ P(|C∗ − ξ |X̃H,0|| > ε, |X̃H,0| > r),
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where r > 0 is an arbitrary fixed number. Since

P(|X̃H,0| > r) → e−λπr2
as γ → ∞

(see Lemma 4.2), we can choose r > 0 such that P(|X̃H,0| > r) < δ/2 for all γ > 0 sufficiently
large. Thus, it is enough to show that there exists γ0 > 0 such that P(|C∗ − ξ |X̃H,0|| > ε,

|X̃H,0| ≤ r) ≤ δ/2 for all γ > γ0. Let Ñ = X̃H (B(o, r)) denote the number of points of X̃H

in B(o, r). Then we have

P(|C∗ − ξ |X̃H,0|| > ε, |X̃H,0| ≤ r)

≤ E

( ∞∑
k=1

P(Ñ = k | T̃γ ) P
(

max
i=1,...,k

(|c(Yi) − ξ |Yi ||) > ε

∣∣∣ T̃γ , Ñ = k
))

= E

( ∞∑
k=1

P(Ñ = k | T̃γ )(1 − P(|c(Y1) − ξ |Y1|| ≤ ε | T̃γ )k)

)
,

where the points Y1, . . . , Yk are conditionally independent and identically distributed according
to ν1(· ∩ T̃

(1)
γ ∩ B(o, r))/ν1(T̃

(1)
γ ∩ B(o, r)) for given T̃γ and Ñ = k. In particular, for the

conditional probability in the latter expression, we have

P(|c(Y1) − ξ |Y1|| ≤ ε | T̃γ ) = ν1(T̃
(1)
γ,ξ,ε ∩ B(o, r))

ν1(T̃
(1)
γ ∩ B(o, r))

.

Using the fact that Ñ ∼ Po(λ̃) with λ̃ = λ�ν1(T̃
(1)
γ ∩ B(o, r)) given T̃γ , we obtain

∞∑
k=1

P(Ñ = k | T̃γ )(1 − P(|c(Y1) − ξ |Y1|| ≤ ε | T̃γ )k)

= 1 −
∞∑

k=0

e−λ̃ λ̃k

k!
(

λ�ν1(T̃
(1)
γ,ξ,ε ∩ B(o, r))

λ̃

)k

= 1 − exp(−λ�(ν1(T̃
(1)
γ ∩ B(o, r)) − ν1(T̃

(1)
γ,ξ,ε ∩ B(o, r)))).

Thus, we have

lim
γ→∞ P(|C∗ − ξ |X̃H,0|| > ε, |X̃H,0| ≤ r) ≤ 1− lim

γ→∞ E exp

(
− λ

γ
ν1(T̃

(1)
γ \ T̃

(1)
γ,ξ,ε ∩B(o, r))

)
.

Hence, using Lemma 4.3, this gives limγ→∞ P(|C∗ − ξ |X̃H,0|| > ε, |X̃H,0| ≤ r) = 0.

5. Examples

Recall that in Theorem 3.2 we assumed that the underlying tessellation T is stationary,
isotropic, mixing, and fulfills the integrability condition (3.1). The tessellation models consid-
ered in the literature focus mainly on PLT, PVT, Poisson–Delaunay tessellations (PDT), iterated
tessellations constructed from these basic tessellations of Poisson type, and STIT tessellations;
see, e.g. [1]–[5], [9]–[14], and [30]–[35]. Here, we assume that an iterated tessellation is
either a TI /TII -superposition or a TI /TII -nesting of tessellations TI and TII as defined in,
e.g. [3], [22], and [35]. We show that for these important models Theorem 3.2 can be applied.
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Furthermore, if T is a PLT or a TI /TII -superposition/nesting with TI being a PLT, then we can
even calculate the constant ξ explicitly that appears in Theorem 3.2. On the other hand, if T is
a PDT, we obtain an upper bound for ξ .

Corollary 5.1. Let Z ∼ Wei(λπ, 2), and let T be a PDT, PVT, PLT, STIT, or an iterated
tessellation T = TI /TII such that TI and TII fulfill (3.1), where T is either

1. a superposition of two mixing tessellations TI and TII , or

2. a nesting of a mixing tessellation TI and a stationary tessellation TII .

Then C∗ d−→ ξZ for some constant ξ ≥ 1 provided that γ → ∞ and λ� → 0 such that λ�γ = λ.
Furthermore, if T is a PLT or a TI /TII -superposition/nesting, where TI is a PLT, then ξ = 1.
If T is a PDT then ξ ≤ 4/π ≈ 1.27.

Proof. The first part of the assertion follows from Theorem 3.2 since all considered tes-
sellations are mixing (see [20], [26, Chapter 10.5], and [32]) and fulfill the integrability
condition (3.1) (see [32]).

Now we consider the case in which T is a PLT with intensity 1. Then, the edge set T̃
(1)
γ of

T̃γ is generated by a random sequence of lines L0, L1, . . . , where L1, L2, . . . form the edge
set T

(1)
γ of the (stationary and isotropic) PLT Tγ and L0 is an isotropic line through the origin

o, which is independent of Tγ . Thus, we have

1

γ
ν1(T̃

(1)
γ \ T̃

(1)
γ,ξ,ε ∩ B(o, r)) ≤ 1

γ
ν1(T

(1)
γ ∩ B(o, r)) + 2r

γ
.

Using Theorem 2.12.4 of [6], it can be shown that the family of random variables {Xγ,ξ , γ > 0}
with

Xγ,ξ = 1

γ
ν1(T̃

(1)
γ \ T̃

(1)
γ,ξ,ε ∩ B(o, r))

is uniformly integrable since

1

γ
ν1(T

(1)
γ ∩ B(o, r)) = πr2 ν1(T

(1) ∩ B(o, rγ ))

ν2(B(o, rγ ))

converges to r2π in L1 due to the fact that the PLT T is mixing and, therefore, ergodic (see [8,
Theorem 12.2.IV]). Furthermore, in Lemma 4.3 we showed that there exists a ξ ≥ 1 such
that the Laplace transform of Xγ,ξ converges to 1, which implies that Xγ,ξ

p−→ 0 (see [18,
Theorem 5.3]). Thus, applying Theorem 2.12.4 of [6] again, we obtain

lim
γ→∞ E Xγ,ξ = 0. (5.1)

However, if T
(1)
γ gets denser, there are lines which intersect L0 close to o. Thus, all points on

these lines have approximately the direct connections as shortest paths. This can be used to
show that ξ = 1. Suppose that ξ > 1, and let r > 2 > ε > 0 with ξ > 1 + ε. If the line Li

intersects the segment L0,ε, where L0,ε = L0 ∩ B(o, ε/2), then, for each y ∈ Li , it holds that
0 ≤ c(y) − |y| ≤ ε since the path from y to o via the intersection point Li ∩ L0,ε is not longer
than |y| + ε. Thus, if |y| > 2,

|c(y) − ξ |y|| = |c(y) − |y| − (ξ − 1)|y|| ≥ ε(|y| − 1) ≥ ε,
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which means that y ∈ T̃
(1)
γ \ T̃

(1)
γ,ξ,ε. Furthermore, if Li ∩ L0,ε 	= ∅, it is easy to see that

ν1(Li ∩ B(o, r) \ B(o, 2)) ≥ a for some constant a > 0. These two observations lead to

Xγ,ξ = 1

γ
ν1(T̃

(1)
γ \ T̃

(1)
γ,ξ,ε ∩ B(o, r))

≥ 1

γ
ν1

( ⋃
{i : Li∩L0, ε 	=∅}

{Li ∩ B(o, r) \ B(o, 2)}
)

≥ a

γ
#{Li : Li ∩ L0,ε 	= ∅},

and, since #{Li : Li ∩ L0,ε 	= ∅} ∼ Po(2εγ /π),

lim inf
γ→∞ E Xγ,ξ ≥ lim

γ→∞
a

γ
E #{Li : Li ∩ L0,ε 	= ∅} = 2εa

π
> 0,

which is in contradiction to (5.1). Thus, ξ = 1 holds. If T is a superposition/nesting such that
TI is a PLT, then basically the same arguments yield ξ = 1. Finally, let T be a PDT and let
N(y) denote that node of T which is closest to y ∈ R

2. It has been shown in [4] that, for any
t > 0 and y ∈ ∂B(o, 1), there is a path P(ty) from N(o) to N(ty) on T (1) with length c(P (ty))

such that, almost surely, c(P (ty))/t → 4/π as t → ∞, which yields ξ ≤ 4/π .

6. Conclusion and outlook

We considered the typical shortest path length C∗ of stochastic network models with two
hierarchy levels, where the locations of network components are modeled by Cox processes on
the edges of random tessellations. It was shown that the distribution of C∗ converges to known
limit distributions for extreme cases of the model parameters, i.e. if a certain scaling factor κ

tends to 0 or ∞.
The results of the present paper have applications in the analysis of telecommunication access

networks since the distribution of C∗ is closely related to cost and risk analysis of such networks
(see [10]). Using the fitting techniques introduced in [13], an optimal tessellation model can
be chosen for a given set of road data. Moreover, the scaling factor κ can be estimated. Then,
on the one hand, for small values of κ , the limit distribution of C∗ is directly available and it
does not depend on the type of optimal tessellation model. On the other hand, for large values
of κ , the limit distribution of C∗ and an upper bound for this distribution is directly available if
the optimal model is PLT or PLT-superposition/nesting and PDT, respectively.

In order to get an idea of how small or large the scaling factor κ should be (to replace the
distribution of C∗ by the corresponding limit distribution) and how to calculate the constant
ξ appearing in the limit distribution for C∗ as κ → ∞, the density of C∗ can be estimated
by Monte Carlo simulation of the typical serving zone (see [33]). This can be done for PVT,
PLT, and PDT as well as for superpositions and nestings built from these basic tessellation
models, using simulation algorithms of the typical serving zone introduced in [9], [12], [31],
and [34]. In Figures 3 and 4 estimated densities for different values of κ are shown together
with the corresponding limit distributions if the tessellation model chosen for the underlying
road system is a PLT and PVT, respectively. As can be seen in Figure 4(b), the density of the
Wei(λπ/1.1452, 2)-distribution approximates the density of C∗ very well for T being a PVT
and κ ≥ 1000. This suggests that in this case the constant ξ appearing in Theorem 3.2 is
approximately 1.145.
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Figure 3: Densities of C∗ if T is a PLT (together with the corresponding limit distributions).

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0

 = 2.5
 = 1.0
 = 0.1

Exp(2)

 = 10000 
 = 2000 
 = 1000 

Wei = (         .1452, 2) 
Wei = (     ,2) 

κ
κ

κ

κ
κ
κ

λπ/1 
λπ

Figure 4: Densities of C∗ if T is a PVT (together with the corresponding limit distributions).

Furthermore, the limiting distributions derived in the present paper can be used to choose
parametric densities which can be fitted to the estimated density of C∗ for a large range of κ .
Parametric families which include both exponential and Weibull distributions turned out to be
good choices; see [10]. In Figure 5 estimated densities for different values of κ are shown
together with fitted truncated Weibull distributions. These truncated Weibull distributions have
two parameters and there is quite a good fit for both tessellation models considered in Figure 5
and a large range of values of κ .

Note that the setting of Theorem 3.2 can be generalized in different ways. For example, the
statement of this theorem remains valid if instead of C∗ the typical subscriber line length S∗
is considered, where S∗ is the shortest path length from the origin to the nearest point XH,0 of
XH , which is defined as the sum of the distance from the origin to the nearest point of the edge
set T (1) and the shortest path length on T (1) from this point to XH,0 (see [14]). In this case the
auxiliary results corresponding to Lemmas 4.3 and 4.4 can basically be proved in the same way.

Furthermore, in the proof of Theorem 3.2 it is not necessary to assume that T is a random
tessellation, but it is possible to consider a stationary and isotropic segment process in R

2

which is mixing and such that there is only one single cluster with probability 1. In particular,
Theorem 3.2 can be extended to random geometric graphs.
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Figure 5: Densities of C∗ (with fitted parametric densities) for a PLT (left) and PVT (right).

Another kind of extension can be obtained by relaxing the assumption that XL,n is connected
to the nearest point of XH , i.e. TH is a Voronoi tessellation. For instance, XL,n can be connected
to its kth nearest neighbor of XH for any k ≥ 1. Then, in Theorem 3.2 we only have to replace Z

by the distance from the origin to the kth nearest point of a Poisson process which is distributed
according to a generalized Gamma distribution (see [15] and [36]). Further possible extensions
include that TH is a certain Cox–Laguerre tessellation (see [21]) or an aggregated tessellation
(see [3] and [28]).

Appendix A. Proof of Lemma 4.3

Obviously,

lim sup
γ→∞

E exp

(
− λ

γ
ν1(T̃

(1)
γ \ T̃

(1)
γ,ξ,ε ∩ B(o, r))

)
≤ 1.

Thus, it is sufficient to show that

lim inf
γ→∞ E exp

(
− λ

γ
ν1(T̃

(1)
γ \ T̃

(1)
γ,ξ,ε ∩ B(o, r))

)
≥ 1. (A.1)

Proof of (A.1). First recall that we can identify T̃
(1)
γ with the Palm version 
∗

T
(1)
γ

of the statio-

nary random measure 

T

(1)
γ

given by 

T

(1)
γ

(B) = ν1(B ∩ T
(1)
γ ) for B ∈ B2 since 


T
(1)
γ

is the

random driving measure of the Cox process XL; see [27, p. 156]. Then, using the abbreviation

h(τ (1)) = exp

(
− λ

γ
ν1(τ

(1) \ τ
(1)
ξ,ε ∩ B(o, r))

)
,

where τ
(1)
ξ,ε = {u ∈ τ (1) : |c(u) − ξ |u|| < ε} and c(u) denotes the length of the shortest path

from u to o along the edge set τ (1) of a tessellation τ with o ∈ τ (1), we obtain, from the
Campbell theorem for stationary random measures (see [8, Proposition 13.2.V]),

E h(T̃ (1)
γ ) = 1

γ ν2(B(o, 1/γ ))
E

(∫
T

(1)
γ ∩B(o,1/γ )

h(T (1)
γ − x)ν1(dx)

)

= 1

π
E

(∫
T (1)∩B(o,1)

h

(
T (1)

γ − z

γ

)
ν1(dz)

)
,
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where we have used the substitution z = γ x in the last expression, bearing in mind that
(1/γ )T (1) = T

(1)
γ . Furthermore, we set T

(1)
γ,ε,z = {y ∈ T

(1)
γ : |c(y, z/γ ) − ξ |y − z/γ || < ε},

where c(y, z/γ ) denotes the length of the shortest path from y to z/γ along the edges of the
considered graph. Then, for each γ ≥ 1, we obtain

E h(T̃ (1)
γ ) = 1

π
E

(∫
T (1)∩B(o,1)

exp

(
− λ

γ
ν1

(
T (1)

γ \ T (1)
γ,ε,z ∩ B

(
z

γ
, r

)))
ν1(dz)

)

≥ 1

π
E

(
ν1(T

(1) ∩ B(o, 1))

× inf
z∈T (1)∩B(o,1)

exp

(
− λ

γ
ν1

(
T (1)

γ \ T (1)
γ,ε,z ∩ B

(
z

γ
, r

))))

≥ 1

π
E

(
ν1(T

(1) ∩ B(o, 1))

× exp

(
− sup

z∈T (1)∩B(o,1)

λ

γ
ν1(T

(1)
γ \ T (1)

γ,ε,z ∩ B(o, r + 1))

))
.

Now, in order to prove (A.1), it is sufficient to show that

Xγ,ξ
L1→ 0 for γ → ∞, (A.2)

where Xγ,ξ = supz∈T (1)∩B(o,1)(1/γ )ν1(T
(1)
γ \ T

(1)
γ,ε,z ∩ B(o, r + 1)). To see this, note that (A.2)

implies that the random variable Yγ,ξ = exp(−λXγ,ξ )ν1(T
(1) ∩ B(o, 1)) converges in proba-

bility to ν1(T
(1) ∩ B(o, 1)). Moreover, Yγ,ξ ≤ ν1(T

(1) ∩ B(o, 1)) for all γ ≥ 1 and E ν1(T
(1)∩

B(o, 1)) = π < ∞. Thus, {Yγ,ξ , γ ≥ 1} is uniformly integrable and Theorem 2.12.4 of [6]
yields limγ→∞ 1/π E Yγ,ξ = 1, which shows that (A.1) is true.

Proof of (A.2). Since Xγ,ξ ≥ 0, it suffices to show that E Xγ,ξ → 0. Furthermore, note that,
with probability 1, the segments of the segment system T

(1)
γ ∩ B(o, r + 1) fulfill the conditions

of the generalized Blaschke–Petkantschin formula (see [17, Proposition 5.4]). Thus, using the
notation L+

� for the half line with direction � through o, we obtain

E Xγ,ξ = E

(
1

γ
sup

z∈T (1)∩B(o,1)

∫ 2π

0

∑
{Xi∈T

(1)
γ ∩L+

� : |Xi |≤r+1}

|Xi |
sin αi

1[ε,∞)

×
(∣∣∣∣c

(
Xi,

z

γ

)
− ξ

∣∣∣∣Xi − z

γ

∣∣∣∣
∣∣∣∣
)

d�

)

≤ r + 1

γ

× E

(∫ 2π

0
sup

z∈T (1)∩B(o,1)

∑
{Xi∈T

(1)
γ ∩L+

� : |Xi |≤r+1}

1

sin αi

1[ε,∞)

×
(∣∣∣∣c

(
Xi,

z

γ

)
− ξ

∣∣∣∣Xi − z

γ

∣∣∣∣
∣∣∣∣
)

d�

)

= 2π(r + 1) E gγ (T (1)),
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where in the last line we used Fubini’s theorem, the isotropy of T , and the abbreviation

gγ (T (1)) = 1

γ
sup

z∈T (1)∩B(o,1)

∑
{Xi∈T

(1)
γ ∩L+ : |Xi |≤r+1}

1

sin αi

1[ε,∞)

(∣∣∣∣c
(

Xi,
z

γ

)
− ξ

∣∣∣∣Xi − z

γ

∣∣∣∣
∣∣∣∣
)

with L+ = L+
0 . Since the point process T (1) ∩ R is stationary with intensity 2/π (see [26,

Theorem 4.5.3]), where we identify R with the x-axis, we can apply the inversion formula for
Palm distributions of stationary point processes on R; see Proposition 11.3(iii) of [18]. Thus,
if T (1)∗ denotes the Palm version of T (1) with respect to the point process T (1) ∩ R, we obtain

E gγ (T (1)) = 2

π
E

(∫ ∞

0
1[0,X∗

1 ](x)gγ (T (1)∗ − x) dx

)
,

where the points of {X∗
i } = T (1)∗ ∩ R are numbered in ascending order such that · · · < X∗−1 <

X∗
0 = 0 < X∗

1 < X∗
2 < · · ·. Hence, in order to prove (A.2), it suffices to show that

lim
γ→∞ E

(∫ ∞

0
1[0,X∗

1 ](x)gγ (T (1)∗ − x) dx

)
= 0. (A.3)

The proof of (A.3) is subdivided into two main steps. First, we show that

lim
γ→∞ g̃γ (x, T (1)∗) = 0 (A.4)

almost everywhere with respect to the product measure ν1 ⊗ P∗, where we have used the
abbreviating notation g̃γ (x, T (1)∗) = 1[0,X∗

1 ](x)gγ (T (1)∗ − x) and P∗ denotes the distribution
of T (1)∗. Then, we show that {g̃γ , γ > 0} is uniformly (ν1 ⊗ P∗)-integrable. By means of
Theorem 2.12.4 of [6], this implies that (A.3) holds.

Proof of (A.4). Note that, for each x ∈ [0, X∗
1], we obtain

gγ (T (1)∗ − x)

≤ 1

γ
sup

z∈(T (1)∗−x)∩B(o,1)

∑
{Xi∈(T

(1)∗
γ −x/γ )∩L+ : |Xi |≤r+1}

1

sin αi

1[ε,∞)

×
(∣∣∣∣c

(
Xi,

z

γ

)
− ξ

∣∣∣∣Xi − z

γ

∣∣∣∣
∣∣∣∣
)

≤ 1

γ

∑
{X∗

i ∈T (1)∗∩(L++x) : X∗
i ∈B(x,(r+1)γ )}

1

sin αi

sup
z∈T (1)∗∩B(x,1)

1[ε,∞)

×
(

1

γ
|c(X∗

i , z) − ξ |X∗
i − z||

)

= 1

γ

∑
{X∗

i ∈T (1)∗∩L+ : |X∗
i |≤(r+a)γ }

1

sin αi

1[ε,∞)

(
1

γ
sup

z∈T (1)∗∩B(o,a)

|c(X∗
i , z) − ξ |X∗

i − z||
)

,

where a = 1 + X∗
1 . Furthermore, we have

1

γ
sup

z∈T (1)∗∩B(o,a)

|c(X∗
i , z) − ξ |X∗

i − z|| ≤ 1

γ
(c(o, X∗

i ) − ξ |X∗
i |)

+ 1

γ

(
sup

z∈T (1)∗∩B(o,a)

c(z, o) + ξa
)
.
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Clearly, the second term of this upper bound tends to zero P∗-almost surely as γ → ∞. Thus,
in order to show that (A.4) holds, it suffices to prove that, P∗-almost surely,

1

γ
(c(o, X∗

i ) − ξX∗
i ) ∈

(
−ε

2
,
ε

2

)
(A.5)

for all sufficiently large i ≥ 1 such that X∗
i ≤ (r + a)γ .

Proof of (A.5). Note that X = {|X∗
i − X∗

j |, i, j ≥ 1, i < j} is an additive process. Since
T (1)∗ ∩ R is cycle-stationary (see, e.g. [29]), we have {|X∗

i − X∗
j |} d= {|X∗

i+1 − X∗
j+1|}, where

0 < E X∗
1 < ∞. Thus, by the subadditive ergodic theorem (see [19, Theorem 1]), the finite

limit limi→∞ X∗
i / i = ζX exists P∗-almost surely. Furthermore, consider the family Y =

{Yij , i, j ≥ 1, i < j} with Yij = c(X∗
i , X

∗
j ), where c(X∗

i , X
∗
j ) denotes the shortest path

length from X∗
i to X∗

j on T (1)∗. Then E Y01 = E c(X∗
0, X∗

1) < ∞ holds by condition (3.1)
(see [32]), and we can again apply the subadditive ergodic theorem to show that the finite limit
limj→∞ c(X∗

0, X∗
j )/j = ζY exists P∗-almost surely. Furthermore, both X and Y are ergodic

since T is mixing; see [32]. Thus, ζX and ζY are constant. Since 0 < E X∗
1 = ζX ≤ ζY < ∞,

this gives

lim
j→∞

c(o, X∗
j )

X∗
j

= lim
j→∞

j

X∗
j

c(X∗
0, X∗

j )

j
= ξ, (A.6)

where ξ = ζY /ζX ∈ [1, ∞). Now let ε̃ > 0 such that ε̃(r + a) < ε/2. Then (A.6) implies that
c(o, X∗

i )/X∗
i − ξ ∈ (−ε̃, ε̃) with probability 1 for all sufficiently large i and, therefore,

1

γ
(c(o, X∗

i ) − ξX∗
i ) ∈

(
−ε

2
,
ε

2

)

if i is sufficiently large and X∗
i /γ ≤ r + a.

Uniform integrability. Finally, we show that the family {g̃γ , γ > 0} considered in (A.4) is
uniformly (ν1⊗P∗)-integrable. From the ergodic theorem for stationary marked point processes
(see [8, Theorem 12.2.IV]), we obtain

lim
γ→∞

1

γ

∑
{Xi∈T (1)∩L+ : |Xi |≤(r+1)γ }

1

sin αi

= (r + 1) E(sin α∗)−1

almost surely and in L1 since the point process T (1) ∩ R marked with the intersection angles
is ergodic and E(sin α∗)−1 = π/2 < ∞, where α∗ denotes the typical intersection angle (see,
e.g. [27, p. 288]). Using the inversion formula for Palm distributions of stationary marked point
processes on R (see Proposition 11.3(iii) of [18]), this yields

1[0,X∗
1 ](x)

1

γ

∑
{Xi∈(T (1)∗−x)∩L+ : |Xi |≤(r+1)γ }

1

sin αi

→ (r + 1) 1[0,X∗
1 ](x) E(sin α∗)−1

in L1(ν1 ⊗ P∗) as γ → ∞. Furthermore, we have

1[0,X∗
1 ](x)gγ (T (1)∗ − x) ≤ 1[0,X∗

1 ](x)
1

γ

∑
{Xi∈(T (1)∗−x)∩L+ : |Xi |≤(r+1)γ }

1

sin αi

;

thus, the family {g̃γ , γ > 0} considered in (A.4) is uniformly (ν1 ⊗ P∗)-integrable.
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