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Let G be a primitive permutation group of degree n with nonabelian socle, and let
k(G) be the number of conjugacy classes of G. We prove that either k(G) < n/2 and
k(G) = o(n) as n → ∞, or G belongs to explicit families of examples.
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1. Introduction

Throughout, k(G) denotes the number of conjugacy classes of a finite group G.
Maróti [20] proved that if G is a primitive permutation group of degree n, then
k(G) � p(n), where p(n) denotes the number of partitions of n. This bound is
attained by Sn in its action on n points. Moreover, he proved that if the socle of G
is not a direct product of alternating groups, then k(G) � n6.

In this paper, we want to improve this bound under the assumption that G has
nonabelian socle. In § 1.2, we will give more context and review more results in this
area.

There are two special types of primitive groups which we wish to single out.

(A) Let G be the symmetric group Sd or the alternating group Ad on d � 5 letters.
For every 1 � k < d/2, G acts primitively on the set of k-subsets of {1, . . . , d}.
These are in number

(
d
k

)
.

(B) Let G be an almost simple group with socle PSLd(q), and assume that G �
PΓLd(q). Then G acts primitively on the set of 1-subspaces of Fd

q . These are
in number (qd − 1)/(q − 1).

Our main result says that, if G is a primitive group with nonabelian socle, then
either G has very few conjugacy classes, or else the action of G is ‘related’ to (A)
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Table 1. Almost simple primitive permutation groups G of degree n (up to equivalence) for
which k(G) � n

2 , and for which the action is not isomorphic to an action in (A) or (B)

G n k(G)

M11 11,12 10
M12 12,12 15
M22 22 12
M22.2 22 21
M23 23 17
M24 24 26
A7 15,15 9
S8

∼= SL4(2).2 35 22
PSL2(11) 11,11 8

SO−
8 (2) 119 60

Sp8(2) 120,136 81

SO+
8 (2) 120 67

Sp6(2) 28, 36 30
PSp4(3) ∼= SU4(2) 27,36,40,40 20
PSp4(3).2 27,36,40,40,45 25
PSU4(3).(2 × 2) 112 59
PΓU4(3) 112 61
SU3(3) 28 14
SU3(3).2 28 16

or (B) or to a further finitely many almost simple primitive permutation groups.
The precise statement is as follows.

Theorem 1.1. Let G be a primitive permutation group of degree n with non-
abelian socle, so Soc(G) ∼= Sr, with S nonabelian simple and r � 1. Then one of
the following holds.

(1) k(G) < n/2, and k(G) = O(nδ) for some absolute δ < 1.

(2) G � A � Sr, A is an almost simple primitive permutation group of degree m
with socle S, G acts in product action on n = mr points, and one of the
following holds:

(i) The action of A on m points is equivalent to an action in table 1, and
k(G) < n1.31.

(ii) The action of A on m points is isomorphic to an action described in (A)
or (B). In the (B)-case, k(G) < n1.9.

On the way, we remark that theorem 1.1 is a key ingredient of the paper [9],
where we study a problem of invariable generation of symmetric groups.

We will first prove theorem 1.1 in case G is almost simple, and then deduce the
general case. For convenience, we state separately the almost simple case (where
we also give an explicit estimate for δ).
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Theorem 1.2. Let G be an almost simple primitive permutation group of degree n.
Then one of the following holds.

(1) k(G) < n/2, and k(G) = O(n3/4).

(2) Either the action of G is equivalent to an action in table 1, or the action
of G is isomorphic to an action described in (A) or (B). In the (B)-case,
k(G) < 100n.

In item (1), the exponent 3/4 is sharp, although in most cases k(G) = o(n3/4) as
n → ∞; see remark 2.14 for a precise statement.

In the proof of theorem 1.2, an essential ingredient is the work of Ful-
man–Guralnick [6], which gives upper bounds for the number of conjugacy classes
of almost simple groups of Lie type.

We immediately make some clarifications regarding the statement of theorem 1.1.

Remark 1.3.

(i) We are not asserting that every case appearing in theorem 1.1(2) does not
satisfy item (1). For instance, assume that m = n, and consider G = Sd act-
ing on n =

(
d
k

)
points as in (A), and assume that cd � k � d

2 for some fixed
constant c. Then it is well known that n =

(
d
k

)
is exponential in d, while the

number of conjugacy classes of G = Sd is of the form O(1)
√

d. In particular
k(G) = no(1) as d → ∞.

(ii) In theorem 1.1(2)(ii), we can be more precise about the adjective isomorphic,
as follows. If A is Ad or Sd, then either the action of A is equivalent to
the action on k-subsets; or else (d,m) = (6, 6) or (6, 15). Moreover, if A is
almost simple with socle PSLd(q) and A � PΓLd(q), then the action of A is
equivalent to the action on the 1-subspaces or (d − 1)-subspaces of Fd

q . For
this, see lemmas 2.8 and 2.12.

(iii) Whenever G is almost simple with socle isomorphic to both Ad and PSLf (q),
we have excluded from table 1 both the groups in (A) and (B). For instance,
G = S6 has 11 conjugacy classes, and contains a subgroup S3 � S2 of index
10 acting transitively on 6 points; but this does not appear in table 1 in
view of the isomorphism S6

∼= PΣL2(9). The same reasoning applies to the
isomorphisms SL2(4) ∼= PSL2(5) ∼= A5, PSL2(7) ∼= SL3(2) and SL4(2) ∼= A8.

1.1. When is k(G) = o(n)?

Theorem 1.1 implies in particular that, if the socle of G is nonabelian, then either
k(G) = o(n), or G is ‘known’. Can we prove that k(G) = o(n) in further cases?

We are particularly interested in the cases contemplated in theorem 1.1(2)(i),
for which we show k(G) < n1.31. We first note that there are examples in which
k(G) > n1.08 for arbitrarily large n, in contrast to item (1); see lemma 4.1.

Still, it would be interesting to understand precisely when this happens (since
there are only finitely many almost simple groups to handle).
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Question 1. Let A be an almost simple primitive group on m points appearing in
table 1. Determine whether every primitive subgroup G of A � Sr on n = mr points
is such that k(G) = o(mr) as r → ∞.

This should be related to estimating the number of conjugacy classes in wreath
products, and we refer to § 4 for comments in this direction. See in particular
conjecture 4.2, which would provide an answer to question 1.

1.2. Context

There are many results in the literature which give upper bounds to the number
of conjugacy classes of a finite groups in terms of various parameters. We recall
some of these, focusing on permutation groups.

Kovács–Robinson [16] proved that every permutation group of degree n has
at most 5n−1 conjugacy classes. This estimate was subsequently improved by
Liebeck–Pyber, Maróti, and Garonzi–Maróti, as follows:

k(G) � 2n−1 ([17])

k(G) � 3(n−1)/2 for n � 3 ([20])

k(G) � 5(n−1)/3 for n � 4 ([11]).

We should mention that, in [16, 17], various other upper bounds to k(G) are proved,
where G is not necessarily a permutation group.

There are easy examples showing that these estimates are somewhat close to
best possible, even for transitive groups. Indeed, the subgroup S

n/4
4 � Sn has 5n/4

conjugacy classes; and the transitive subgroup G = S4 � Cn/4 � Sn has 5n/4−o(n)

conjugacy classes (more precisely, k(G) is asymptotic to 4 · 5n/4/n; see lemma 4.3).
For primitive groups, the situation is very different. Let G be a primitive

permutation group of degree n. Liebeck–Pyber [17, corollary 2.15] proved the
following:

(i) k(G) � p(n) if n is sufficiently large;

(ii) k(G) � n11 if the socle of G is not a direct product of alternating groups.

(Recall that p(n) = O(1)
√

n, and in fact the asymptotic behaviour of p(n) is known
by famous work of Hardy–Ramanujan.) Maróti [20] improved these results. He
showed that item (i) holds for every positive integer n and, moreover, the bound
k(N) � p(n) holds for every normal subgroup N of G. He also showed that, in item
(ii), one can replace n11 by n6.

Theorem 1.1 can be regarded as an improvement of these statements, for the case
where the socle of G is nonabelian.

1.3. Abelian socle

In this paper we do not address the case in which the socle of G is abelian. In
this case, we still have the bound k(G) � n6 from [20].

There is a deep problem, known as the non-coprime k(GV )-problem, which was
addressed by Guralnick–Tiep [13] and which asks (in particular) for a characteri-
zation of the affine primitive permutation groups of degree n for which k(G) > n.
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A resolution of this problem, if combined with the main result of this paper, would
give a characterization of all primitive permutation groups of degree n for which
k(G) > n. We refer to Guralnick–Tiep [13], Guralnick–Maróti [10] and the refer-
ences therein for results in this direction, partly motivated by Brauer’s celebrated
k(B)-conjecture.

The organization of the paper is as follows. In § 2 we prove theorem 1.2, in § 3 we
prove theorem 1.1, and in § 4 we discuss question 1 and make further comments.

2. Almost simple groups

In this section we prove theorem 1.2. Regarding item (1), we prove the inequal-
ity k(G) < n/2 in §2.2–2.4, and then we prove the asymptotic inequality k(G) =
O(n3/4) in § 2.5.

2.1. Some preliminary lemmas

We begin with a lemma from [7]. We will often apply this lemma with no mention.

Lemma 2.1. If G is a finite group and H is a subgroup of G, then

k(H)/|G : H| � k(G) � |G : H| · k(H).

If moreover H is normal in G, then

k(G) � k(H) · k(G/H).

In one occasion, we will need the following variant (see [16, p. 447]).

Lemma 2.2. Let G be a finite group and let N be a normal subgroup of G. Then

k(G) � |G : N | · #{G-conjugacy classes of N}.
We are now ready to begin the proof of theorem 1.2.

2.2. Sporadic groups

Lemma 2.3. Let G be almost simple with socle S, a sporadic simple group. Let M
be a core-free maximal subgroup of G, and write n = |G : M |. If k(G) � n

2 , then G
and n are listed in table 2.

Note that repeated values of n in table 2 signify the existence of more than one
action, up to equivalence, of the given degree. The same convention applies to later
tables pertaining to the alternating groups and the groups of Lie type.

Proof. We go through the ATLAS [3]. �

2.3. Alternating groups

We recall some results that we will use. The first is an inequality of Pribitkin
[22], as follows.
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Table 2. Faithful primitive permutation representations of degree n for sporadic almost
simple groups G such that k(G) � n

2

G n k(G)

M11 11,12 10
M12 12,12 15
M22 22 12
M22.2 22 21
M23 23 17
M24 24 26

Lemma 2.4. Let p(d) be the number of partitions of the integer d. Then

p(d) <
eπ
√

2d/3

d3/4
.

We will need the following pair of inequalities which are an easy consequence of
work of Robbins on the Stirling approximations [24].

Lemma 2.5. Let d � 2 be an integer. Then
√

2πdd+1/2 e−d � d! � e dd+1/2 e−d.

We will also need the following result of Praeger and Saxl [23].

Lemma 2.6. Let G � Sd and suppose that G is primitive and does not contain Ad.
Then |G| < 4d.

Finally, we will need an elementary lemma. For a proof, see for instance
[13, lemma 6.2].

Lemma 2.7. For every positive integer d, k(Ad) � k(Sd).

Now we can prove the main result of this subsection.

Lemma 2.8. Let G be almost simple with socle S ∼= Ad. Let M be a core-free max-
imal subgroup of G, and write n = |G : M |. If k(G) � n

2 , then one of the following
holds.

(1) G and n are listed in table 3.

(2) M is intransitive in its action on d points, thus n =
(

d
k

)
for some integer k

such that 1 � k < 1
2d.

(3) (d, n) = (6, 6) or (6, 15), and the action of G on the cosets of M is isomor-
phic, but not equivalent, to the action on the coset of a maximal intransitive
subgroup.

In item (3), if (d, n) = (6, 6) we have G = A6 or S6, and M = S5 ∩ G, where S5

is a subgroup of S6 acting primitively on 6 points. If (d, n) = (6, 15), again G = A6
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Table 3. Faithful primitive permutation representations of degree n for almost simple groups
G with socle Ad such that k(G) � n

2 , and the action is not isomorphic to an action in (A)

G n k(G)

A5 6 5
S5 6 7
A6 = PSL2(9) 10 7
A6.2 = PGL2(9) 10 11
A6.2 = S6 10 11
A6.2 = M10 10 8
A6.(2 × 2) = PΓL2(9) 10 13
A7 15,15 9
A8 15,15 14
S8 35 22

or S6, and M = (S2 � S3) ∩ G, where S2 � S3 acts transitively (and imprimitively)
on 6 points. (Note that in the latter case, if G = A6 then k(G) < n/2.)

Proof. For d � 8, we use the ATLAS [3] together with GAP [8] to obtain the given
list. For 9 � d � 20 we use GAP to check that no examples occur. Assume, then,
that d > 20.

Let us suppose, first, that M is primitive in its action on d points. Then
lemmas 2.4–2.7 imply that it is sufficient to prove the following

eπ
√

2d/3

d3/4
<

√
2πdd+1/2

4 · ed · 4d
.

If we assume that the other inequality holds, we get

eπ
√

2d/3 �
√

2π · dd+5/4

4 · ed · 4d

=⇒ 2 · eπ
√

2d/3 · (4e)d � dd+5/4

=⇒ 2 · e2.6
√

d · (4e)d � dd+5/4

=⇒ 2 · (5e)d+
√

d � dd+5/4

=⇒ d � 20.

Since d > 20, the result follows.
Let us suppose, next, that M is imprimitive in its action on d points. Then

n =
d!

(k!)��!
,
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where d = k� and k, � � 2. Now lemma 2.5 implies that

n �
√

2π · dd+1/2 · e−d

(ekk+1/2e−k)� · e · ��+1/2 · e−�
=

√
2π · dd+1/2

e · k(k+1/2)� · ��+1/2

=
√

2π

e
· �d−�

k(�−1)/2

� �d−�

k�/2

=
�d−�

(d/�)�/2
,

which implies that

(d − �) log(�) − �

2
log(d) +

�

2
log(�) � log(n)

=⇒
(

d − �

2

)
log(�) − �

2
log(d) � log(n).

(In this proof, all logarithms are base two.) If we fix d and set f(�) to be the function
on the left-hand side of the final inequality, with � ∈ (0, d), then one computes that
f ′(�) is a decreasing function. In particular, f(�) takes its minimum value in the
range � ∈ (0, d) either when � is as large as possible or as small as possible.

If � is as small as possible, then � = 2 and we obtain that

f(2) � log(n) ⇐⇒ d − log(d) − 1 � log(n).

If � is as large as possible, then � = d
2 and we obtain that

f

(
d

2

)
� log(n) ⇐⇒ d

2
log(d) − 3d

4
� log(n).

Now it is easy to check that, for d � 4,

d − log(d) − 1 � d

2
log(d) − 3d

4
,

and we conclude that

d − log(d) − 1 � log(n). (2.1)

On the other hand, if k(G) � n
2 , then lemmas 2.4 and 2.7 imply that

n

2
<

eπ
√

2d/3

d3/4
.

Taking logs and using (2.1), we get

d <
1
4

log d + π

√
2d

3
log e + 2,

which, since d > 20, is false. This concludes the proof. �
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2.4. Groups of Lie type

For groups of Lie type, we will use results of Fulman and Guralnick giving bounds
on the number of conjugacy classes.

Theorem 2.9 [6, theorem 1.1]. Let G be a connected simple algebraic group of rank
r over a field of positive characteristic. Let F be a Steinberg endomorphism of G
with GF a finite group of Lie type over the field Fq. Then

k(GF ) � min{27.2qr, qr + 68qr−1}.

Theorem 2.10 [6, corollary 1.2]. Let G be an almost simple group with socle S, a
simple group of Lie type of untwisted rank r defined over Fq. Then k(G) � 100qr.

We also introduce the following notation. For a finite group G, let P (G) be the
minimal degree of a faithful permutation representation of G. If G is almost simple
with socle S, then P (G) coincides with the minimal degree of a faithful transitive
permutation representation of G, and moreover P (S) � P (G). The values of P (G)
for G a finite simple group are known; they are listed for instance in [12, table 4].

Now we deal with exceptional groups.

Lemma 2.11. Let G be almost simple with socle S, a simple exceptional group of
Lie type. Then k(G) < 1

2 |G : M | for all core-free maximal subgroups M of G.

Proof. We prove the stronger inequality k(G) < P (S)/2. We use the values for P (S)
given in [12], as well as the fact that k(G) � 100qr (from theorem 2.10).

If S is not a Suzuki group, then the value of P (S) given in [12] is sufficient to
prove that k(G) < P (S)/2, except for the groups with socle G2(3), G2(4), G2(5),
3D4(2), 2F4(2)′ and 2G2(33). In these cases, we can verify k(G) < P (S)/2 using the
ATLAS [3].

If S is a Suzuki group, then [25] tells us that k(S) = q + 3, and lemma 2.1 implies
that k(G) is at most (q + 3)f , where q = 2f . On the other hand, P (S) = q2 + 1 by
[12]. Then (q + 3)f � 1

2 (q2 + 1) if and only if q = 8 (recall that f is odd and f � 3).
But if q = 8, [3] tells us that S.3 has 17 conjugacy classes and in this case, too, we
have k(G) < P (S)/2. �

Next we deal with the case in which G has socle PSLd(q).

Lemma 2.12. Let G be almost simple with socle S ∼= PSLd(q). Let M be a core-
free maximal subgroup of G, and write n = |G : M |. If k(G) � n

2 , then one of the
following holds.

(1) G and n are listed in table 4.

(2) G � PΓLd(q) and M stabilizes a 1-dimensional or a (d − 1)-dimensional
subspace of Fd

q , thus n = qd−1
q−1 .

Note that, in table 4, in order to ensure that the lemma is true, n = 6 appears for
G = SL2(4), but not for G = PSL2(5) (even though SL2(4) ∼= PSL2(5)). Similarly,
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Table 4. Faithful primitive permutation representations of degree n for almost simple groups
G with socle PSLd(q) such that k(G) � n

2 , and the action is not isomorphic to an action
in (B) (see the remark after the statement of lemma 2.12)

G n k(G)

SL2(4) = A5 6,10 5
SL2(4).2 = S5 6,10 7
PSL2(5) = A5 5,10 5
PGL2(5) = S5 5,10 7
PSL2(7) 7,7 6
PSL2(9) = A6 6,6 7
PSL2(9).2 = S6 6,6,15,15 11
PSL2(11) 11,11 8
SL3(2) 8 6
SL3(2).2 8 9
SL4(2) = A8 8, 28 14
SL4(2).2 = S8 8,28,35 22

n = 5 appears for PSL2(5), but not for SL2(4). Similar considerations apply for the
isomorphic groups PSL2(7) and SL3(2).

Proof. In this proof we use [14]. The main theorem of this paper, together with
theorem 2.10, implies that, if k(G) � n/2, then either d � 4, or

(d, q) ∈ {(5, 2), (5, 4), (5, 8), (6, 2), (7, 2)}, (2.2)

or H := M ∩ PΓLd(q) is reducible, or H normalizes PSpd(q).
Assume first that d � 5. This rules out the case in which H normalizes PSpd(q).

Let us now consider the case where H is reducible, stabilizing a subspace of
dimension m.

Assume first that 2 � m � d − 2. Then n = |G : M | > qm(d−m) � q2d−4. If
k(G) � n

2 then, using theorem 2.10, we deduce that qd−3 < 200. We want to whit-
tle down the possibilities, as follows. [6, proposition 3.6] states that k(PSLd(q)) �
2.5qd−1. This, together with the knowledge of |Out(S)| and lemma 2.1, reduces eas-
ily to the cases (d, q) = (5, 2), (5, 3), (5, 4), (6, 2). The same argument and [14] rule
out the cases (d, q) = (5, 8), (7, 2) in (2.2). We can deal with the remaining cases
with GAP [8].

Assume now that m ∈ {1, d − 1}. The case in which G � PΓLd(q) appears in item
(2) of the statement. If G � PΓLd(q), then M is a novelty and |G : M | � q2d−3, and
the GAP calculation from the previous paragraph rules out all possibilities.

Let us turn, then, to study what happens when d ∈ {2, 3, 4}. We make use of the
counts given in [19].

When d = 2, [19] implies that

k(PSL2(q)) =
1

(q − 1, 2)
(q + 4(q − 1, 2) − 3) and k(PGL2(q)) = q + (2, q − 1).
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Table 5. Faithful primitive permutation representations of degree n for almost simple
classical groups G with socle S �∼= PSLd(q) such that k(G) � n

2

G n k(G)

SO−
8 (2) 119 60

Sp8(2) 120,136 81

SO+
8 (2) 120 67

Sp6(2) 28, 36 30
PSp4(3) = PSU4(2) 27,36,40,40 20
PSp4(3).2 = PSU4(2).2 27,36,40,40,45 25
PSU4(3).(2 × 2) 112 59
PΓU4(3) 112 61
SU3(3) 28 14
SU3(3).2 28 16

We use this in combination with the explicit list of maximal subgroups in PSL2(q)
to conclude that either

(1) q � 11; or

(2) q = 16 and M is the normalizer of a torus, or a subfield subgroup such that
M ∩ S ∼= PGL2(

√
q); or

(3) q ∈ {25, 49, 81, 64, 256} and M is a subfield subgroup such that M ∩ S ∼=
PGL2(

√
q).

Using [8] we get the possibilities in table 4.
Next assume that d = 3. If q is odd, then using [19] we see that k(PSL3(q)) � q2 +

q, and this, along with [14], allows us to conclude that q � 9. These possibilities can
all be excluded using [3]. If q is even, then [19] implies that k(G) � 2f(q2 + q + 10)
where q = 2f . Using the list of subgroups in [2] this is enough to conclude that
q � 16. Now [8] excludes the remainder.

Finally, assume that d = 4. If q is odd, then [19] implies that k(G) � 2f(q3 +
q2 + 5q + 21) where q = pf . We use [14] to conclude that q = 3. This final case is
ruled out with [3]. If q is even, then [19] implies that k(SL4(q)) = q3 + q2 + q and,
again, we use the list of subgroups in [2] to conclude that q � 16. Now [2, 3, 8] rule
out all except the listed exceptions for q = 2. �

Finally we deal with almost simple classical groups with socle S not isomorphic
to PSLd(q). Note that to deal with this class of groups it is sufficient to consider
S = PSUd(q) with d � 3 and (d, q) �= (3, 2); S = PSpd(q), with d � 4 and (d, q) �=
(4, 2); and S = PΩε

d(q) with d � 7.

Lemma 2.13. Let G be almost simple with classical socle S, S �∼= PSLd(q). Let M
be a core-free maximal subgroup of G, and write n = |G : M |. If k(G) � n

2 , then G
and n are listed in table 5.
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Proof. In order to exclude some potential examples, our basic strategy will be to
use the bound k(G) � |G : S|k(S) from lemma 2.1, and try to show that this is
smaller than P (S)/2. In order to bound k(S), we will use the results in [6] for
specific families, as follows.

Suppose that S ∼= PSUd(q). In this case [6, proposition 3.10] implies that
k(S) � 8.26qd−1, and we use the values for P (S) given in [12] to obtain that either
S is in

{PSU5(2),PSU6(2),PSU7(2),PSU5(3),PSU5(4)}
or else d � 4. Groups with the five possible socles with d > 4 can be ruled out
using [8].

If S = PSU4(q), then [19] implies that

k(S) =

⎧⎪⎨
⎪⎩

1
4 (q3 + q2 + 7q + 23), q ≡ 3 (mod 4);
1
2 (q3 + q2 + 7q + 9), q ≡ 1 (mod 4);
q3 + q2 + 3q + 2, q ≡ 0 (mod 2).

Thus, in any case, k(G) � 2f(q3 + q2 + 7q + 23) where q = pf . Since P (S) = (q +
1)(q3 + 1), by [12], we conclude that q ∈ {2, 3, 4, 5, 8, 16}. If q � 5, then [8] yields the
listed cases. If q ∈ {8, 16}, then G = PΓU4(q). The case q = 8 is eliminated by [1];
we now consider the case q = 16. We want to apply lemma 2.2 with G = PΓU4(16)
and N = SU4(16). Consider the split torus T of N of order 173, which intersects 284
nontrivial N -classes. By looking at eigenvalues, we see that none of these classes is
fixed by the standard field automorphism σ of order 8 normalizing T . We deduce
from lemma 2.2 that k(G) � 8(q3 + q2 + 3q + 2 − 284/2) = 34080, which is enough
to conclude that k(G) < P (S)/2.

If G = PSU3(q), then [19] implies that

k(S) =

{
q2 + q + 2, q �≡ 2 (mod 3);
1
3 (q2 + q + 12), q ≡ 2 (mod 3).

Thus, in any case, k(G) � 2f(q2 + q + 12) where q = pf . Since P (S) = q3 + 1 if
q �= 5, by [12], we conclude that q � 9 or G = PΓU3(16). For q � 9, we obtain the
listed examples using [3, 8]. For G = PΓU3(16), the same argument used for the
case PΓU4(16) works.

Suppose that S ∼= PSpd(q). If d � 6, then we use [6, theorems 3.12 and 3.13]
along with the values for P (S) given in [12] to conclude that S is one of the
following:

{PSp6(3),Sp6(2),Sp8(2),Sp10(2)}.
We use [3, 8] to check these cases and obtain the listed examples.

If S = PSp4(q), then we use [26] (for q odd) and [5] (for q even) to establish that

k(Sp4(q)) =

{
q2 + 5q + 10, q odd;
q2 + 2q + 3, q even.

.

This, combined with [12], implies that q � 9. Now [3, 8] yield the listed examples.
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Suppose that S ∼= PΩ2�+1(q). Here we assume that � � 3 and that q is odd.
Now [6, theorem 3.19] along with the values for P (S) given in [12] imply that
S = PΩ7(3). This final case can be excluded using [3].

Suppose that S ∼= PΩ±
2�(q) with q odd. We make use of [6, theorems 3.16 and

3.18] along with the values for P (S) given in [12] to obtain that

S ∈ {PΩ±
10(3),PΩ±

8 (3),PΩ+
8 (5),PΩ+

8 (7)}.
In PΩ+

8 (5) and PΩ+
8 (7), the outer automorphism group is S4, and a subgroup of

S4 has at most 5 conjugacy classes, therefore by lemma 2.1 we get k(G) � 5k(S),
which is enough to rule out these possibilities.

We use [1, 8] to rule out the cases where S = PΩ±
10(3) or PΩ±

8 (3).
Suppose that S ∼= Ω±

2�(q) with q even. We make use of [6, theorem 3.22] along
with the values for P (S) given in [12] to obtain that

S ∈ {Ω±
10(2),Ω±

8 (2),Ω+
8 (4)}.

We use [3] for the groups with q = 2, and we get the listed examples. We can rule
out Ω+

8 (4) using [1]. �

2.5. Proof of theorem 1.2

Let G be an almost simple primitive permutation group of degree n. Putting
together lemmas 2.3, 2.8, 2.11, 2.12 and 2.13, we get that either k(G) < n/2, or we
are in case (2) of theorem 1.2 (regarding table 1, recall remark 1.3(iii)).

Note that, if the action of G is isomorphic to an action in (B), then k(G) < 100n
follows immediately from theorem 2.10.

It remains to prove the asymptotic statement, that is, either k(G) = O(n3/4), or
the action of G is isomorphic to an action in (A) or (B). We assume that this latter
condition does not hold, and we want to show k(G) = O(n3/4).

We may assume that G is sufficiently large along the proof. Let M be the stabilizer
of a point in the action of G on n points; in particular |G : M | = n. Write S =
Soc(G).

Assume first that S ∼= Ad, and assume that M is transitive on d points; we
will show that k(G) = no(1) as d tends to infinity. By lemma 2.4 (or by the
Hardy–Ramanujan asymptotic formula), we have k(G) = O(1)

√
d. On the other

hand, by lemmas 2.5 and 2.6, if M is primitive on d points then n � (d/O(1))d;
and by (2.1) in the proof of lemma 2.8, if M is imprimitive then n � cd for some
constant c. Therefore k(G) = no(1) if S ∼= Ad.

Assume now that S ∼= PSLd(q). We have k(G) = O(qd−1) by theorem 2.10.
If H := M ∩ PΓLd(q) is reducible in the action on Fd

q , one possibility is that it
stabilizes a k-space for some 2 � k � d − 2, and so n > q2d−4. If d → ∞, we see
that k(G) = o(n3/4); and if d is bounded, we see that k(G) = O(n3/4) (we actually
have k(G) = o(n3/4) as q → ∞ except for the case (d, k) = (4, 2)). The remaining
possibility is that G � PΓLd(q) and M is the stabilizer of a flag (pair of incident
point-hyperplane) or antiflag (pair of complementary point-hyperplane). But in this
case n > q2d−3, and the previous computation is sufficient for d � 4; and for d = 3,
k(G) = O(n2/3).
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If d = 2m � 4 and H normalizes PSp2m(q), then

n � 1
(m, q − 1)

· qm2−m(q3 − 1)(q5 − 1) · · · (q2m−1 − 1)

and we can easily check that k(G) = O(qd−1) = o(n3/4).
If now H is irreducible and does not normalize PSpd(q), we can apply the main

theorem of [14]. We see easily that k(G) = o(n3/4) as d → ∞. If d is bounded
instead, then we can assume that q is large and in particular [14] implies that
n � q(d−1)(d−2)/2, which proves k(G) = o(n3/4) in case d � 5. In case d � 4, we can
use the list of maximal subgroups of PSLd(q) given in [2] in order to prove k(G) =
o(n3/4) (if H is irreducible, n  q3/2 for d = 2; n  q4 for d = 3; and n  q5 for
d = 4).

Assume finally that S is a group of Lie type and that S �∼= PSLd(q). In this case
we want to show k(G) = O(P (S)3/4), which implies the statement, since P (S) � n.
This can be checked combining k(G) = O(qr) (where r is the untwisted rank of
S) with the value of P (S) given in [12]. In fact, we get k(G) = o(P (S)3/4) unless
S ∼= PSU4(q). (We remark that, in the latter case, P (S) is equal to the number of
totally singular 2-subspaces of F4

q2 ; we also use [2] in order to see that n  q5 for
every other primitive action of G.)

This concludes the proof of theorem 1.2.

Remark 2.14. In theorem 1.2(1), we actually showed that k(G) = o(n3/4) as n →
∞ unless S ∼= PSL4(q) and G acts on the set of 2-subspaces of F4

q, or S ∼= PSU4(q)
and G acts on the set of totally singular 2-subspaces of F4

q2 . In these cases, we
have n ∼ q4 and k(S) � q3, therefore k(S) � n3/4. (Recall that f � g means that
c1f � g � c2f for positive constants c1 and c2.)

3. The general case

In this section we prove theorem 1.1. We first prove a lemma.

Lemma 3.1. Let G be a finite almost simple group with socle S. Then either S ∼=
A5, A6,PSL2(7),PSL2(11), or 4 · k(G)2 < |S|. Moreover, k(G)3 = O(|S|).

We note that we actually have k(G)3 = o(|S|) as |S| → ∞, except for the case
S ∼= PSL2(q).

Proof. We first prove 4 · k(G)2 < |S|, with the listed exceptions.
Assume first that S ∼= Ad. Then lemmas 2.4, 2.5 and a straightforward

computation imply that it is sufficient to show

3.2 · e5.2
√

d+d < dd+2,

which is true for d � 10. For d � 9, direct check gives the exceptions in the
statement.

Assume now that S ∼= PSLd(q). Using the bound k(S) � 2.5qd−1 from [6],
lemma 2.1, and the fact that |G : S| � 2f(d, q − 1), with q = pf , we see that it
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is sufficient to show

100f2(d, q − 1)3 < qd(d−1)/2−2d+2(q2 − 1) · · · (qd − 1).

If d � 4, we can easily verify that this is true. For d = 3, [19] tells us that k(S) �
q2 + q. We compute that it is enough to show

16f2(3, q − 1)3(q + 1) < q(q − 1)(q3 − 1),

which can be verified unless q = 2, 4. The case q = 2 is in the statement (since
SL3(2) ∼= PSL2(7)), while the case q = 4 can be excluded with [8].

If d = 2, we use the exact value of k(S) (recalled in the proof of lemma 2.12), in
order to reduce to the cases q � 16 or q = 25, 27, 32, 64, 81, 128, 256. Then we use
[8] and we get the cases q = 4, 5, 7, 9, 11 in the statement.

Assume that S is classical and that S �∼= PSLd(q). Here one can prove that
4k(G)2 < |S| using the upper bounds for k(S) given in [6]. One can also argue as
follows (but this is not necessary). If G appears in table 1, we can make a direct
check. If G is not in table 1, then theorem 1.2 tells us that k(G) < Pm(G)/2, where
Pm(G) denotes the smallest index of a core-free maximal subgroup of G. Now it is
known (see [15, p. 178]) that P (S) � |S|1/2. In particular, whenever Pm(G) = P (S),
we can immediately conclude 4k(G)2 < |S|. Certainly we have P (S) � Pm(G).
Using the value of P (S) given in [12] (see also [4], where an explicit M for which
|S : M | = P (S) is given), and consulting [15], we deduce that Pm(G) = P (S) unless
S ∼= PSU3(5), S ∼= Sp4(q) with q even, S ∼= PΩ+

8 (q), or S ∼= PΩ+
2m(3) with m � 4.

(If S ∼= PSU3(5), |S : M | = P (S) where M is isomorphic to A7; if S ∼= PΩ+
2m(3),

M is the stabilizer of a nondegenerate 1-space.) We can exclude the unitary case
with [3]; in the symplectic case we can use k(Sp4(q)) = q2 + 2q + 3 (see the proof
of lemma 2.13); in the orthogonal cases we can use the bound k(PΩ+

2m(q)) � 14qm

given in [6].
Assume that S is exceptional. In the proof of lemma 2.11 we actually proved

k(G) < P (S)/2, therefore we conclude by the argument of the previous paragraph.
Assume finally that S is sporadic. We use [3] to conclude 4k(G)2 < |S|.
It remains to prove the asymptotic statement, that is, k(G)3 = O(|S|) (and indeed

k(G)3 = o(|S|) if S �∼= PSL2(q)). We may assume that S is sufficiently large, and
the statement is easy to check, using lemma 2.4 and theorem 2.10. �

We need three technical lemmas.

Lemma 3.2. Assume that S ∼= Ad, or that S is the socle of some group appearing
in table 1. If S � B � A � Aut(S), then k(B) � k(A), unless A = Ω+

8 (2).S3.

Proof. If S ∼= Ad, the statement follows from lemma 2.7, and by direct check in
case d = 6. If S is the socle of some group appearing in table 1, we use [3]. �

Lemma 3.3. Assume that G is almost simple with socle S ∼= PSLd(q), with d � 3,
and let m denote the number of flags (that is, pairs of incident point-hyperplane)
in Fd

q . Then, k(G) < m/2 and k(G) = O(m2/3).

We note that we actually have k(G) = o(m2/3) as m → ∞, except in case d = 3.
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Proof. We begin with the inequality k(G) < m/2. If G � PΓLd(q), then G acts
primitively on the set of flags, and the statement follows from theorem 1.2. Assume
now that G � PΓLd(q). Then G acts primitively on the set of 2-subspaces of Fd

q .
It is easy to see that the number of 2-subspaces is smaller than the number of
flags. Assume that d � 4. Then, by lemma 2.12, either k(G) < m/2, or G appears
in table 4. Examining table 4, we see that k(G) < m/2 also in the latter case.

We are left with the case d = 3. We have k(G) � 100q2 by theorem 2.10, and
moreover m > q3. In particular, if k(G) � m/2 then q < 200. We whittle down a bit
the possibilities. Write a = (3, q − 1). By [19] and lemma 2.1, we deduce k(G) � |G :
S| · (q2 + q + 5a − 5)/a < 2|G : S| · q2. Therefore, if q = pf , we have q < 8af . Using
q < 200, we see that we are reduced to the cases q � 27 and q = 32, 64, which can
be checked with [8] (if q �= 2, 4, 8, 16, it is enough to show that 4f(q2 + q + 5a − 5)
is smaller than m, without computing the actual value of k(G)).

The asymptotic statement k(G) = O(m2/3) can be checked easily using k(G) =
O(qd−1). �

Lemma 3.4. Let A be an almost simple primitive group of degree m with socle S,
and assume that A is not in the possibilities of theorem 1.2(2). Let S � B � A.
Then, k(B) < m/2. Moreover, for every fixed α > 3/4, if S is sufficiently large
then k(B) < mα.

Proof. We begin with the inequality k(B) < m/2. Write m = |A : M | for some core-
free maximal subgroup M of A. If B = A, the claim is true by theorem 1.2. Assume,
for a contradiction, that there exists B such that k(B) � m/2 = |B : B ∩ M |/2.
Let T be a core-free subgroup of B, maximal with respect to the property that
B ∩ M � T and that T is core-free in B (that is, T does not contain S).

Note that, by the maximality of T , the subgroups of B properly containing T
must contain S. Then choose C such that T < C � B and T is maximal in C. In
particular, C acts primitively on the cosets of T , and moreover, by lemma 2.1,

|B : C| · k(C) � k(B) � |B : C||C : T |
2

,

whence k(C) � |C : T |/2. Therefore we can apply theorem 1.2. The first possibility
is that C appears in table 1. By lemma 3.2 and k(B) � m/2, we deduce A =
Ω+

8 (2).S3. Then by [3] m � 3600, which contradicts k(B) � m/2. By lemma 3.2,
we also see that it cannot be S ∼= Ad. By theorem 1.2 and lemma 2.12, the only
remaining possibility is that S ∼= PSLd(q), C � PΓLd(q) and T is the stabilizer of a
1-space or (d − 1)-space. In particular, B ∩ M stabilizes a 1-space or a (d − 1)-space.

Assume first that A � PΓLd(q). By assumption, M is not the stabilizer of a 1-
space or (d − 1)-space. Then, there is no other possibility for M (in such a way that
B ∩ M fixes a 1-space or (d − 1)-space), which is a contradiction. Assume finally
that A � PΓLd(q). Then the only possibility is that M is the stabilizer of a flag or
antiflag. In particular, m is larger than the number of flags in Fd

q , which contradicts
lemma 3.3. This final contradiction proves that k(B) < m/2 for every S � B � A.

Now we want to show that, for every fixed α > 3/4, if S is sufficiently large then
k(B) < mα for every S � B � A.
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By theorem 1.2, we have k(A) = O(m3/4). Assume that k(B) � mα. We want
to show that S has bounded order (in other words, we want to show that, if S is
sufficiently large, we get a contradiction). By taking S large, we have k(B) > k(A).
Much of the argument of the first part of the proof carries unchanged, except that
we have the inequality

|B : C| · k(C) � k(B) � |B : C|α · |C : T |α,

from which k(C) � |C : T |α · |B : C|α−1. Note that |B : C| � |Out(S)| and |C :
T | � P (S). Using [12, table 4], we easily see that |Out(S)| = P (S)o(1) as |S| → ∞
(the statement being obvious in case S ∼= Ad), from which we get that, for every
fixed β < α,

k(C) � |C : T |α · |B : C|α−1 > |C : T |β

if S is sufficiently large. In particular we may take β > 3/4, and by theorem 1.2,
we deduce that C and |C : T | must appear in item (2) of the theorem. Then, the
argument that we used in the first part of the proof, together with lemma 3.3, gives
a contradiction. �

3.1. Proof of theorem 1.1

We can now prove theorem 1.1. We will apply many times lemma 2.1, usually
with no mention. Moreover, we will often use the following theorem from [17], which
we recalled in the introduction.

Theorem 3.5. Let r � 1 and let P � Sr. Then, k(P ) � 2r−1.

Let G be a primitive permutation group of degree n with nonabelian socle
Soc(G) ∼= Sr, with S simple.

In the following proof, a permutation group G of degree n in product action refers
to a group G � A � Sr, where A is almost simple primitive on m points with socle S
and G acts on n = mr points (so we do not include the actions that sometimes are
called holomorph compound and compound diagonal ; see [18, 21] for descriptions
and terminology for finite primitive permutation groups).

Proof of theorem 1.1. Assume first that the action of G is not product action;
we want to show k(G) < n/2 and k(G) = O(nδ) for some absolute δ < 1. We begin
with the first inequality.

We have r � 2 and either n = |S|r, or r = �t with � � 2, t � 1 and n = |S|(�−1)t.
In particular n � |S|r/2. Furthermore, G � Aut(S) � Sr. Then, by lemma 2.1 and
theorem 3.5, k(G) � k(G ∩ Aut(S)r) · 2r−1. Now G ∩ Aut(S)r admits a normal
series of length r in which every factor is almost simple with socle S; there-
fore, by theorem 3.5, k(G ∩ Aut(S)r) � f(S)r, where f(S) = max{k(A) : S � A �
Aut(S)}. We deduce that it is enough to show that

2f(S) < |S|1/2.

By lemma 3.1, this is true unless S ∼= A5, A6,PSL2(7),PSL2(11). Assume then that
we are in one of these cases. If n = |S|r or n = |S|(�−1)t with � � 3, then n � |S|2r/3,
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hence by the same argument as above we have k(G) < n/2 provided

2f(S) < |S|2/3.

We can check that this is true. Therefore we are reduced to the case in which
S ∈ {A5, A6,PSL2(7),PSL2(11)}, r = 2t and n = |S|t.

Assume first that t = 1, and let h(S) be the maximum number of conjugacy
classes of a primitive group on |S| points with socle S2. We can use [8] in order to
compute that h(S) < |S|/2.

Next we deal with any t � 1. We have G � D � St, where D has socle S2 and
is primitive on |S| points. Then k(G) � k(G ∩ Dt) · 2t−1. Now G ∩ Dt admits a
normal series of length t in which every factor has socle S2 and is primitive on |S|
points; in particular k(G ∩ Dt) � h(S)t < (|S|/2)t and therefore k(G) < |S|t/2 =
n/2, as wanted.

We turn now to the asymptotic statement; namely, k(G) = O(nδ) for an absolute
δ < 1. We assume that n is sufficiently large and we show k(G) � nδ (which is
equivalent up to enlarging δ). We will show in various places that k(G) � nδ′

for
various δ′. In order to simplify notation, we will always use the same symbol δ—one
should just take the maximum.

Assume first that S is sufficiently large. By lemma 3.1, we have f(S) < |S|0.35/2.
Using n � |S|r/2, we deduce k(G) < n0.7.

Assume now that S has bounded order. If S �∼= A5, A6,PSL2(7),PSL2(11), by
lemma 3.1 we have 2f(S) < |S|1/2, and in particular

k(G) < (2 · f(S))r < |S|rδ/2 � nδ

for some δ < 1 absolute (since |S| is bounded).
Assume then that S ∼= A5, A6,PSL2(7),PSL2(11). If n = |S|r or n = |S|(�−1)t

with � � 3, then n � |S|2r/3 and, as already observed, f(S) < |S|2/3/2; therefore
the same argument as above applies. The remaining case is � = 2 and r = 2t. We
already observed that 2h(S) < |S|, from which we get

k(G) < (2 · h(S))t < |S|tδ = nδ

for some δ < 1 absolute.
Assume now that the action of G is product action, and assume that we are

not in case (2) of the statement. We want to show k(G) < n/2 and k(G) = O(nδ)
for some δ < 1 absolute. We begin with the first inequality. We have G � A � Sr,
n = mr, and A is an almost simple group with socle S admitting a primitive action
on m points, which is not among the possibilities of theorem 1.2(2).

Note that k(G) � k(G ∩ Ar) · 2r−1, and G ∩ Ar admits a normal series of length
r in which each factor is isomorphic to a subgroup S � B � A. By lemma 3.4,
k(B) < m/2 for every S � B � A, and therefore k(G ∩ Ar) < (m/2)r and k(G) <
n/2, as wanted.

The asymptotic statement k(G) = O(nδ) for some δ < 1 is proved as we did for
the case in which n = |S|r or n = |S|(�−1)t, dividing the cases |S| sufficiently large
and |S| bounded. If S is sufficiently large, by lemma 3.4 we have k(B) < m0.8/2
for every B � S � A, and therefore k(G) < n0.8/2. If S has bounded order, we
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only need to use k(B) < m/2 for every S � B � A, which holds again in view of
lemma 3.4.

Assume now that we are in case (2)(i) of the statement; we want to show
k(G) < n1.31. We have G � A � Sr and A is almost simple acting primitively on m
points.

Let us consider first the case in which A = M12 acting primitively on m = 12
points. If r � 4, [11] tells us that a subgroup of Sr has at most 5(r−1)/3 < 5r/3

conjugacy classes. In particular, using that k(A) = 15, we deduce that k(G) < 15r ·
5r/3, which we verify to be at most n1.31. If r � 3, we use that a subgroup of Sr has
at most r conjugacy classes, so k(G) � 15r · r, which is less than n1.31 for r � 3.

Let us consider now all other cases. By lemma 3.2 we have k(B) � k(A) for every
S � B � A. Then k(G) � k(A)r · 2r−1 < (2k(A))r, so we only need to show that
2k(A) � m1.31. This can be checked easily going through all cases in table 1 (but
leaving out the case of M12 acting on 12 points).

Assume finally that we are in case (2)(ii) of the statement, and the action of
A is isomorphic to an action in (B); in particular m = (qd − 1)/(q − 1). We want
to show k(G) < n1.9.

If r � 4, by theorem 2.10 we have

k(G) � (100qd−1)r · 5(r−1)/3 < (100 · 51/3)r · n,

hence we are done provided 100 · 51/3 � m0.9, that is, m � 303. If r � 3, we use
k(G) � (100qd−1)r · r, and we see that m � 303 is enough also in these cases.

Therefore we assume that m < 303; this leaves us with the cases d = 6, 7, 8 and
q = 2; or d = 5 and q � 3; or d = 4 and q � 5, or d = 3 and q � 16; or d = 2 and
q < 302.

We whittle down slightly the possibilities for d = 2. In the proof of lemma 2.12,
we recalled the exact value of k(PSL2(q)) and k(PGL2(q)). Using this and q < 302,
it is easy to deduce that k(A) � 8(q + 1) = 8m. By the same computation as above,
we are done provided 8 · 51/3 � m0.9, that is, m � 19. Therefore if d = 2 then we
may assume that q � 17.

Now we deal with all the remaining cases (for d � 8). We only need to show that
k(A) · 51/3 � m1.9, which can be checked with [8]. �

4. Further comments

4.1. Theorem 1.1(2)(i)

In theorem 1.1(2)(i), we proved k(G) < n1.31. Can we get better bounds? Since
we have finitely many possibilities for the almost simple primitive group A of degree
m, we fix A and m, and we want to estimate k(G) where G � A � Sr is primitive,
mainly when r is large.

First, we show that it is not always true that k(G) = o(n) as n → ∞ (and in fact
it is not even true that k(G) = O(n)).

Lemma 4.1. Consider A = M12 acting primitively on 12 points, and consider G =
A � Cr acting on n = 12r points, where Cr is cyclic of order r. If r is large enough,
then k(G) > n1.08.
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Proof. We have

k(G) � k(A)r

r
.

Since k(A) = 15, this is easily seen to be larger than n1.08 for r large enough. �

The same argument shows that k(G) > nα for some absolute α > 1 whenever A
and m in table 1 are such that k(A) > m (but in the table, A and m are replaced
by G and n). This happens rarely; specifically, when

(A,m) ∈ {(M12, 12), (M24, 24), (Sp6(2), 28)}.
Let us consider now the case in which k(A) � m (by looking at table 1, this is
equivalent to k(A) < m). By lemma 3.2, we have k(B) � k(A) for every subgroup
S = Soc(A) � B � A. We assume that r � 4, so that by [11] a subgroup of Sr has
at most 5(r−1)/3 < 5r/3 conjugacy classes. Then, we have k(G) < (k(A)51/3)r, and
whenever k(A) · 51/3 < m we get k(G) < nδ for some absolute δ < 1. The condition
k(A) · 51/3 < m holds in some cases, but not quite in all.

Therefore one should try to change the argument. We make the following
conjecture.

Conjecture 4.2. Let A be an almost simple primitive group on m points appear-
ing in table 1, and assume that k(A) < m. Then, for every primitive subgroup
G � A � Sr on n = mr points, k(G) = o(mr) as r → ∞.

In order to address conjecture 4.2, it seems relevant to estimate the number of
conjugacy classes in wreath products (although G need not be a full wreath product,
which is a complication).

4.2. Conjugacy classes in wreath products

Let A �= 1 be a finite group, and let P be a transitive permutation group of
degree r. Throughout, denote k = k(A). Consider the wreath product G = A � P .
By theorem 3.5, we have k(G) � kr · 2r−1. Does a considerably better bound hold?
If necessary, we may imagine that A is fixed and r → ∞. In fact, we ask a question
which is independent of the relation between A and r.

Question 2. Let A �= 1 be a finite group, let P � Sr be transitive, and set G =
A � P . Is k(G) = O(kr)?

We should note that a positive answer to question 2 would not necessarily provide
a positive answer to conjecture 4.2 (since, in conjecture 4.2, G needs not be a wreath
product).

The next lemma gives an affirmative answer to question 2 for the case where
P � Sr is regular. Before proving the lemma, we recall the combinatorial description
of the conjugacy classes of G = A � P , in general: View the k conjugacy classes of A
as k distinct colours. Let π1, . . . , πt be representatives for the conjugacy classes of P .
For each i, colour the cycles of πi in each possible way, and identify two colourings
if one is obtained from the other by conjugation in CP (πi) (note that CP (πi) acts
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on the cycles of πi). In this way we get the conjugacy classes of G = A � P ; these
can be thought of as the conjugacy classes of P , in which each cycle has a colour,
and two colourings are identified as described above.

Lemma 4.3. Let G = A � P with A �= 1, P � Sr regular, and set k = k(A). Then

k(G) =
kr

r
+ O(rkr/2).

Proof. Assume that π ∈ P has order at least 2; then π has at most r/2 cycles. Sum-
ming over all nontrivial elements π ∈ P , we deduce that the number of colourings
of the cycles of all nontrivial elements π ∈ P is at most rkr/2.

Now we consider the colourings of the cycles of the identity element 1 ∈ P . The
action of P = CP (1) on the cycles can clearly be identified with the action of P on
the set {1, . . . , r}.

Let C be a colouring of {1, . . . , r}. The size of the P -orbit of C is strictly smaller
than r if and only if C is stabilized by a nontrivial element π ∈ P , which implies
that C has constant colours along the cycles of π. Therefore, the number of such
colourings is at most rkr/2. This implies that the number of colourings whose
P -orbit has size r is at least kr − rkr/2, whence

k(G) =
kr

r
+ O(rkr/2).

This proves the lemma. �

4.3. Theorem 1.1(2)(ii)

In this case we have G � A � Sr where A is almost simple primitive on m points.
Work of Maróti [20] tells us that k(G) � p(n) and this bound is achieved if the
action of A is isomorphic to an action in (A).

Assume instead that the action of A is isomorphic to an action in (B). We have
shown that, in this case, k(G) < n1.9. This is certainly a long way from being sharp;
let us consider what might be possible.

First, recall that, if q is odd, and if A = PGL2(q), then k(A) = q + 2 > m = q + 1.
If we take for instance q = 5 then, by the same argument as in lemma 4.1, we see
that k(A � Cr) > n1.08 for r sufficiently large. Therefore it is not true in general that
k(G) = O(n).

However, in the other direction, observe that, for any G in the case under consid-
eration, the usual bound k(G) < (100qd−1)r · 2r implies that, for every fixed ε > 0,
k(G) < n1+ε provided PSLd(q) is sufficiently large (or, equivalently, provided m is
sufficiently large). We are left with the natural question:

Question 3. Let A be an almost simple primitive group isomorphic to a group
in (B), and assume that G � A � Sr is primitive on n = mr points. What is the
minimum value of ε such that k(G) < n1+ε?
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