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Bruno Chiarellotto and Christopher Lazda

Abstract

We correct the proof of the main `-independence result of the above-mentioned paper
by showing that for any smooth and proper variety over an equicharacteristic local
field, there exists a globally defined such variety with the same (p-adic and `-adic)
cohomology.

1. Introduction

It was pointed out to us by Zheng that the proof of [CL18, Theorem 6.1] is invalid. The problem
is in the final step of the proof on p. 237, where we showed that there was an exact sequence

0→ H i+n
` (X)→ H i+n

` (X0)→ H i+n
` (X1)→ · · ·

and claimed to deduce `-independence of H i
`(X) from `-independence of all the other terms

H i+n
` (Xn). Of course, this deduction does not work, since there might be infinitely many such

other terms.
In their paper [LZ19], Lu and Zheng provide (amongst other things) an alternative proof of

this `-independence result, at least for ` 6= p, see Theorem 1.4(2). In this corrigendum we will
explain how to fix the proof of [CL18, Theorem 6.1] by instead proving a stronger version of
[CL18, Corollary 5.5] where the semistable hypothesis is removed. In particular, this includes
the case ` = p.

Notation and conventions
We will use notation from [CL18] freely.

2. Log structures

We begin with a general result on semistable reduction and log schemes. Let R be a complete
discrete valuation ring (DVR) with perfect residue field k, π a uniformiser for R, and let
X → Spec(R) be a strictly semistable scheme. That is, X is Zariski locally étale over R[x1, . . . ,
xn]/(x1 · · ·xr − π) for some n, r. There is a natural log structure MX on X given by functions
invertible outside the special fibre X, and we let MX denote the pull-back of this log structure
to X. We will also write Xi for the reduction of X modulo πi+1, and k× for k equipped with the
log structure pulled back from the canonical log structure R× on R.
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Proposition 2.1 (Illusie, Nakayama [Nak98, Appendix A.4]). If X ,X ′ are strictly semistable
schemes over R, and g : X1 → X ′1 is an isomorphism between their mod π2-reductions, then g

induces a canonical isomorphism g : (X,MX)
∼
→ (X ′,MX′) of log schemes over k×.

Sketch of proof. Use g to identify X1 and X ′1, and thus X and X ′. LetMX andM′X be the log
structures on X coming from X and X ′ respectively.

Near a closed point of X let X(1), . . . , X(r) be the irreducible components of X, and pick
x1, . . . , xr ∈ OX such that X(i) = V (xi). Similarly pick x′1, . . . , x

′
r ∈ OX ′ such that X(i) = V (x′i).

Let v ∈ O∗X and v′ ∈ O∗X ′ be such that x1 · · ·xr = vπ and x′1 · · ·x′r = v′π. Then in a neighbourhood
of p the morphisms (X ,MX )→ Spec(R×) and (X ′,MX ′)→ Spec(R×) can be described by the
following diagrams:

MX ∼= O∗X ⊕ Nr
(u,a1,...,ar)7→uxa11 ···x

ar
r // OX

R∗ ⊕ N

(λ,a)7→(λv−a,a,...,a)

OO

(λ,a)7→λπa

// R

OO

MX ′ ∼= O∗X ′ ⊕ Nr
(u,a1,...,ar)7→ux′a11 ···x

′ar
r // OX ′

R∗ ⊕ N

(λ,a)7→(λv′−a,a,...,a)

OO

(λ,a)7→λπa

// R

OO

Pulling back to k, we see that the morphisms (X,MX)→ Spec(k×) and (X,M′X)→ Spec(k×)
can be described by the diagrams

MX
∼= O∗X ⊕ Nr

(u,a1,...,ar)7→uxa11 ···x
ar
r // OX

k∗ ⊕ N

(λ,a)7→(λv−a,a,...,a)

OO

(λ,a)7→λ0a // k

OO

and

M′X ∼= O∗X ⊕ Nr
(u,a1,...,ar)7→ux′a11 ···x

′ar
r // OX

k∗ ⊕ N

(λ,a)7→(λv′−a,a,...,a)

OO

(λ,a)7→λ0a // k

OO

respectively, again in a neighbourhood of p. Since V (xi) = V (x′i) inside X1, we must have
xi = uix

′
i for some ui ∈ O∗X1

, and so we can define an isomorphism

MX
∼
→M′X

of log structures by mapping

(u, a1, . . . , ar) 7→ (uua11 · · ·u
ar
r , a1, . . . , ar).

This is checked to be a morphism of log structures over k× by using the above local descriptions.
Note that any other choice u′i must satisfy (ui − u′i)x′i = 0 in OX1 , and hence we must have
ui − u′i ∈ (π). In particular, the above isomorphism does not depend on the choice of ui. By a
similar argument, neither does it depend on the choice of xi and x′i, and so it glues to give a
global isomorphism (X,MX) ∼= (X,M′X) of log schemes over k×. 2
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We will need to extend this result to cover morphisms between strictly semistable schemes
over different bases. So suppose that R→ S is a finite morphism of complete DVRs, with induced
residue field extension k → kS . Let πS be a uniformiser for S, and let e = vπS (π). We do not
assume that the induced extension Q(R)→ Q(S) of fraction fields is separable.

Suppose that we have strictly semistable schemes X ,X ′ over R and Y,Y ′ over S, and a pair
of commutative diagrams

Y f //

��

X

��

Y ′ f ′ //

��

X ′

��
Spec(S) // Spec(R) Spec(S) // Spec(R)

As before, let us write Yj for the reduction of Y modulo πj+1
S . Suppose that we have isomorphisms

gY : Ye
∼
→ Y ′e , gX : X1

∼
→ X ′1

of S- and R-schemes respectively such that the diagram

Ye
f //

gY
��

X1

gX
��

Y ′e
f ′ //

��

X ′1

��
Spec(S) // Spec(R)

commutes. Then by Proposition 2.1 we obtain isomorphisms

gY : (Y,MY )
∼
→ (Y ′,MY ′)

of log schemes over k×S , as well as

gX : (X,MX)
∼
→ (X ′,MX′)

of log schemes over k×. The above commutative diagrams of strictly semistable schemes induce
commutative diagrams

(Y,MY )
f //

��

(X,MX)

��

(Y ′,MY ′)
f ′ //

��

(X,MX′)

��
Spec(k×S ) // Spec(k×) Spec(k×S ) // Spec(k)

of log schemes. Note that the morphism of punctured points along the bottom of each square is
given by

k∗ ⊕ N→ k∗S ⊕ N
(λ, a) 7→ (λua, ea),

where u ∈ S∗ is such that π = uπeS .
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Proposition 2.2. The diagram

(Y,MY )
f //

gY∼=
��

(X,MX)

gX∼=
��

(Y ′,MY ′)
f ′ // (X ′,MX′)

of log schemes commutes.

Proof. Let us use g to identify Ye = Y ′e and Y = Y ′, and let MY and M′Y be the log structures
on Y coming from Y and Y ′ respectively. Similarly identify X1 = X ′1 and X = X ′, and let MX

and M′X be the log structures on X coming from X and X ′ respectively.
Locally on X and Y , choose functions y1, . . . , ys ∈ OY , y′1, . . . , y

′
s ∈ OY ′ cutting out the

irreducible components of Y , and functions x1, . . . , xr ∈ OX and x′1, . . . , x
′
r ∈ OX ′ cutting out

the irreducible components of X. Write

f∗(xi) = αiy
di1
1 · · · y

dis
s , f ′

∗
(x′i) = α′iy

′
1
d′i1 · · · y′s

d′is ,

since both dij and d′ij are given by the multiplicity of the jth irreducible component of Y in
the scheme theoretic preimage of the ith irreducible component of X inside Ye, we must have
dij = d′ij . Moreover, since V (f∗(xi)) ⊂ V (πeS) = V (ye1 · · · yes) we must have dij 6 e for all i, j.

Now choose ui ∈ O∗X1
such that xi = uix

′
i, and vj ∈ O∗Ye such that yj = vjy

′
j . Then the

isomorphisms of log structures induced by gY and gX are given by

MY = O∗Y ⊕ Ns→M′Y = O∗Y ⊕ Ns

(v, b1, . . . , bs) 7→ (vvb11 · · · v
bs
s , b1, . . . , bs)

and

MX = O∗X ⊕ Nr →M′X = O∗X ⊕ Nr

(u, a1, . . . , ar) 7→ (uua11 · · ·u
ar
r , a1, . . . , ar)

respectively, and the morphisms MX →MY and M′X →M′Y are defined by

(u, a1, . . . , ar) 7→
(
f∗(u)αa11 · · ·α

ar
r ,
∑
i

di1ai, . . . ,
∑
i

disai

)
and

(u, a1, . . . , ar) 7→
(
f∗(u)α′1

a1 · · ·α′r
ar ,
∑
i

di1ai, . . . ,
∑
i

disai

)
respectively. Hence in the diagram

MX
gX //

f

��

M′X
f

��
MY

gY //M′Y
the composite f ◦ gX is given by

(u, a1, . . . , ar) 7→
(
f∗(u)(α′1f

∗(u1))a1 · · · (α′rf∗(ur))ar ,
∑
i

di1ai, . . . ,
∑
i

disai

)
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and the composite gY ◦ f is given by

(u, a1, . . . , ar) 7→
(
f∗(u)(α1v

d11
1 · · · vd1ss )a1 · · · (αrvdr11 · · · vdrss )ar ,

∑
i

di1ai, . . . ,
∑
i

disai

)
.

We thus need to show that α′if
∗(ui) = αiv

di1
1 · · · vdiss in O∗Y for all i. But now we write

αiy
di1
1 · · · y

dis
s = f∗(xi) = f∗(uix

′
i) = f∗(ui)α

′
iy
′
1
di1 · · · y′s

dis

in OYe and so deduce that

αiv
di1
1 · · · v

dis
s y′1

di1 · · · y′s
dis = f∗(ui)α

′
iy
′
1
di1 · · · y′s

dis .

We deduce that the difference βi = α′if
∗(ui)−αivdi11 · · · vdiss annihilates y′1

di1 · · · y′s
dis inside OYe ,

and since each dij 6 e we deduce that in fact βi annihilates πeS , and therefore must lie in (πS).
Hence βi = 0 in OY and the proof is complete. 2

3. Functoriality of comparison isomorphisms

We will also need to know that the comparison isomorphisms [CL18, Propositions 5.3, 5.4] are
compatible with morphisms of semistable schemes over different bases. So let us suppose that
we are again in the above set-up, where we have a commutative diagram

Y //

��

X

��
Spec(S) // Spec(R)

of strictly semistable schemes Y and X over S and R respectively, with S the integral closure
of R in some finite extension of its fraction field. Let us assume that R, and hence S, is of
equicharacteristic p > 0, with fraction fields F and FS respectively, whose absolute Galois groups
we will denote by GF and GFS

. Fix an embedding F sep ↪→ F sep
S of separable closures; note that

this sends F tame into F tame
S and induces an injective homomorphism GFS

→ GF with finite
cokernel.

Let X× and Y× denote these semistable schemes endowed with their canonical log structures,
and X× and Y × the corresponding log special fibres. We therefore have a commutative diagram

Y × //

��

X×

��
Spec(k×S ) // Spec(k×)

of log schemes. For every finite subextension F ⊂ L ⊂ F tame, let X×L denote the corresponding
base change of X×, and X×,tame the inverse limit of the étale topoi of all such X×L ; we
have Y ×,tame defined entirely similarly. Via the embedding F tame ↪→ F tame

S this induces a
GFS

-equivariant morphism of topoi

Y ×,tame
→ X×,tame
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and hence a GFS
-equivariant morphism

H i
ét(X

×,tame,Q`)→ H i
ét(Y

×,tame,Q`)

in cohomology, for any ` 6= p. On the other hand we have a natural GFS
-equivariant map

H i
ét(X ×R F sep,Q`)→ H i

ét(Y ×S F
sep
S ,Q`),

and by [Nak98, Proposition 4.2] equivariant isomorphisms

H i
ét(X

×,tame,Q`)
∼
→ H i

ét(X ×R F sep,Q`),

H i
ét(Y

×,tame,Q`)
∼
→ H i

ét(Y ×S F
sep
S ,Q`).

Proposition 3.1. The diagram

H i
ét(X

×,tame,Q`) //

��

H i
ét(X ×R F sep,Q`)

��
H i

ét(Y
×,tame,Q`) // H i

ét(Y ×S F
sep
S ,Q`)

commutes.

Proof. Consider the commutative diagram

Y ×,tame iY //

f

��

Y×,tame

f

��

YF sep
S

f

��

jYoo

X×,tame iX // X×,tame XF sep
jXoo

of topoi as in [Nak98, § 3], where Y×,tame and X×,tame are defined by ‘base change’ along FS →
F tame
S and F → F tame respectively. Then the isomorphism

H i
ét(Y

×,tame,Q`)
∼
→ H i

ét(Y ×S F
sep
S ,Q`)

is given as the composite

H i
ét(Y

×,tame,Q`)
∼
← H i

ét(Y×,tame,Q`)→ H i
ét(Y ×S F

sep
S ,Q`)

using the proper base change theorem in log-étale cohomology [Nak97, Theorem 5.1], and there
is a similar statement for X . The claim then follows simply from commutativity of the above
diagram of log schemes. 2

We will also need a version of this result for p-adic cohomology. Write W = W (k), WS =

W (kS), let K = W [1/p], KS = WS [1/p], and let RK ⊃ E†K ⊂ EK , and RKS
⊃ E†KS

⊂ EKS

denote copies of the Robba ring, the bounded Robba ring and the Amice ring over K and KS

respectively. Lift the extension F → FS to a finite flat morphism E†K → E
†
KS

which extends to
finite flat morphisms RK → RKS

and EK → EKS
. Then, as above, the morphism of log schemes

Y ×→ X× induces a morphism

H i
log-cris(X

×/K×)→ H i
log-cris(Y

×/K×S )
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in log crystalline cohomology, and the morphism YFS
→ XF induces a morphism

H i
rig(XF /RK)→ H i

rig(YFS
/RKS

)

in Robba-ring valued rigid cohomology. Then following [CL18, Proposition 5.4] we can construct
isomorphisms

H i
log-cris(X

×/K×)⊗K RK
∼
→ H i

rig(XF /RK),

H i
log-cris(Y

×/K×S )⊗KS
RKS

∼
→ H i

rig(YFS
/RKS

)

as follows. Let t denote a co-ordinate on E†K and tS a co-ordinate on E†KS
such that t ∈WSJtSK.

Write SK = K ⊗W JtK and SKS
= KS ⊗WSJtSK. Equip W JtK (respectively WSJtSK) with the

log structure defined by the ideal (t) ⊂ W JtK (respectively (tS) ⊂ W JtSK) and define the log-
crystalline cohomology groups

H i
log-cris(X×/SK) := H i

log-cris(X×/W JtK)⊗Z Q,
H i

log-cris(Y×/SKS
) := H i

log-cris(Y×/WSJtSK)⊗Z Q;

these are naturally endowed with the extra structure of log-(ϕ,∇)-modules over SK and SKS

respectively. Moreover, we have isomorphisms of ϕ-modules

H i
log-cris(X×/SK)⊗SK ,t7→0 K

∼
→ H i

log-cris(Y
×/K×S ),

H i
log-cris(Y×/SKS

)⊗SKS
,tS 7→0 KS

∼
→ H i

log-cris(Y
×/K×S ),

by smooth and proper base change in log-crystalline cohomology, as well as isomorphisms of
(ϕ,∇)-modules

H i
log-cris(X×/SK)⊗SK

RK
∼
→ H i

rig(XF /RK),

H i
log-cris(Y×/SKS

)⊗SKS
RKS

∼
→ H i

rig(YFS
/RKS

),

by [LP16, Proposition 5.45]. It therefore follows from the logarithmic form of Dwork’s trick
[Ked10, Corollary 17.2.4] that the (ϕ,∇)-modules H i

rig(XF /RK) and H i
rig(YFS

/RKS
) are

unipotent, that there are isomorphisms(
H i

rig(XF /RK)[log t]
)∇=0 ∼= H i

log-cris(X
×/K×),(

H i
rig(YFS

/RKS
)[log tS ]

)∇=0 ∼= H i
log-cris(Y

×/K×S )

and moreover the connection ∇ on the rigid cohomology groups appearing on the left-hand side
can be completely recovered from the monodromy operator N on the right-hand side. This allows
us to construct isomorphisms of (ϕ,∇)-modules

H i
log-cris(X

×/K×)⊗K RK
∼
→ H i

rig(XF /RK),

H i
log-cris(Y

×/K×S )⊗KS
RKS

∼
→ H i

rig(YFS
/RKS

)

where the left-hand side is endowed a natural connection coming from N ; for more details see,
for example, [Mar08, § 3.2].

Proposition 3.2. The diagram

H i
log-cris(X

×/K×)⊗K RK //

��

H i
rig(XF /RK)

��
H i

log-cris(Y
×/K×S )⊗KS

RKS
// H i

rig(YFS
/RKS

)

commutes.
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Proof. Given the construction of the horizontal isomorphisms outlined above, it suffices to show
that the diagram

H i
log-cris(X×/SK) //

��

H i
log-cris(X

×/K×)

��
H i

log-cris(Y×/SKS
) // H i

log-cris(Y
×/K×S )

of log-crystalline cohomology groups commutes, which as in Proposition 3.1 simply follows from
functoriality of log-crystalline cohomology. 2

4. Cohomology and global approximations

Now suppose that k is a finite field, F = k((t)), and X/F is a smooth and proper variety.

Definition 4.1. We say that X is globally defined if there exist a smooth curve C/k, a k-valued

point c ∈ C(k), a smooth and proper morphism X→ (C \ {c}) and an isomorphism F ∼= k̂(C)c
such that XF

∼= X.

We will prove the following strengthened version of [CL18, Corollary 5.5].

Theorem 4.2. For any smooth and proper variety X/F there exists a globally defined smooth
and proper variety Z/F such that

H i
`(X) ∼= H i

`(Z)

for all ` (including ` = p).

Once we have shown this, the proof of [CL18, Theorem 6.1] can then be completed using
[CL18, Proposition 5.8], exactly as in the proof of [CL18, Theorem 5.1].

To prove Theorem 4.2, first of all choose a proper and flat model X for X over the ring of
integers OF . By [dJ96, Theorem 6.5] we may choose an alteration X0→ X and a finite extension
F0/F such that X0 is strictly semistable over OF0 .

Next, we take the fibre product X0 ×X X0, and let X ′1 denote the disjoint union of the
reduced, irreducible components of X0×X X0 which are flat over OF0 , or equivalently which map
surjectively to Spec(OF0). Once more applying [dJ96, Theorem 6.5] to each of the connected
components of X ′1 in turn enables us to produce:

– a 2-truncated augmented simplicial scheme

X1 ⇒ X0→ X

which is a proper hypercover after base changing to F ;

– a collection F1,1, . . . , F1,s of finite field extensions of F0

such that X1 is a disjoint union of schemes X1,j , for 1 6 j 6 s, proper and strictly semistable
over Spec(OF1,j ).

Let k0 denote the residue field of F0, k1,j the residue field of F1,j , and consider the
intermediate extensions

F ⊂ F un
0 ⊂ F s0 ⊂ F0 ⊂ F un

1,j ⊂ F s1,j ⊂ F1,j ,
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where F un
0 /F and F un

1,j/F0 are separable and unramified, F s0 /F
un
0 and F s1,j/F

un
1,j are separable

and totally ramified, and F0/F
s
0 and F1,j/F

s
1,j are totally inseparable, of degree pd0 and pd1,j

respectively. Let t denote a uniformiser for F , t0 one for F s0 , and let P0 be the minimal polynomial

of t0 over F un
0 . Then t′0 := t

1/pd0
0 is a uniformiser for OF0 . Similarly, let t1,j be a uniformiser for

F s1,j , and P1,j the minimal polynomial of t1,j over F un
1,j . Then t′1,j := t

1/pd1,j

1,j is a uniformiser for
OF1,j .

Now choose a finitely generated sub-k-algebra R ⊂ OF , containing t, such that there exists
a proper, flat scheme Y → Spec(R) whose base change to OF is exactly X . By [Spi99, Theorem
10.1], we may at any point increase R to ensure that it is in fact smooth over k. Next, enlarge R so
that Run

0 := R⊗k k0 ⊂ OFun
0

contains all the coefficients of the minimal (Eisenstein) polynomial
P0 of t0, and let Rs0 denote the corresponding finite flat extension Run

0 [x]/(P0) of Run
0 . We can

thus consider Rs0 ⊂ OF s
0

as a subring containing t0, and we set R0 = Rs0[t′0]. Hence we have
R0 ⊂ OF0 such that

R0 ⊗R OF
∼
→ OF0 .

Note also that R0 is finite and flat over R; after localising R within OF we may in fact assume
that R0 is finite free over R.

Next we enlarge R so that there exists a proper and flat morphism Y0 → Spec(R0) whose
base change to OF0 is X0. Again, by further enlarging R we may in addition assume that the
map X0→ X arises from a proper surjective map

Y0→ Y

of R-schemes, and moreover that there exists an open cover of Y0 by schemes which are étale
over R0[x1, . . . , xn]/(x1 · · ·xr − t′0) for some n, r. In other words, Y0 is ‘strictly t′0-semistable’.

We now repeat this process to produce further finite free extensions R0→ Run
1,j→ Rs1,j→ R1,j

for all j, and an injection R1,j ⊂ OF1,j containing the image of t′1,j such that

R1,j ⊗R OF
∼
→ OF1,j .

We can also find proper, strictly t′1,j-semistable schemes Y1,j → Spec(R1,j) whose base change
to OF1,j is X1,j , so that setting Y1 :=

∐
j Y1,j (and again, possibly increasing R), we obtain a

2-truncated augmented simplicial scheme

Y1 ⇒ Y0→ Y

which becomes a proper hypercover over a dense open subscheme of Spec(R), and whose base
change to OF is exactly our original 2-truncated augmented simplicial scheme

X1 ⇒ X0→ X .

Let ι : R ↪→ OF denote the canonical inclusion, and ι∗ : Spec(OF ) → Spec(R) the induced
morphism of schemes. Note that since ι∗ maps the generic point of Spec(OF ) to that of Spec(R),
the map Y → Spec(R) is generically smooth. We may thus choose an open subset U ⊂ Spec(R)
such that YU → U is smooth, and such that the base change of [Y1 ⇒ Y0→ Y] to U is a proper
hypercover.

Lemma 4.3. For any n > 0 there exists a smooth curve C/k, a rational point c ∈ C(k), a
uniformiser tc at c, and a locally closed immersion C → Spec(R) such that C \ {c} ⊂ U , and the
induced map

Spec(OC,c/mn
c )→ Spec(R)
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agrees with the modulo tn-reduction of ι∗ via the isomorphism

ÔC,c
∼
→ OF

sending tc to t.

Proof. Since R is smooth, we may choose étale co-ordinates around the image ι∗(s) of the closed
point of Spec(OF ) under ι∗. This induces an étale map Spec(R) → Ank for some n, and it is
a simple exercise to prove the corresponding claim for Ank . We then just take the pull-back to
Spec(R). 2

The canonical inclusion ι induces similar inclusions

ι#0 : R#
0 ↪→ R#

0 ⊗R OF = O
F#
0

for # ∈ {un, s,∅}, as well as

ι#1,j : R#
1,j ↪→ R#

1,j ⊗R OF = O
F#
1,j

for all j, and again for # ∈ {un, s,∅}. We will need the following form of Krasner’s lemma [Sta18,
§ 0BU9].

Lemma 4.4. Let K be a local field, with ring of integers OK , and let P (x) be an Eisenstein
polynomial over OK . Let L be the corresponding finite totally ramified extension, and let α be a
root of P in L. Then for any m > 1 there exists an n > 2 such that any Q(x) ∈ OK [x] congruent
to P modulo mn

K is Eisenstein, and L contains a root β of Q such that L = K(β) and α ≡ β
modulo mm

L .

We will use this as follows: given n1 > maxj{[F1,j : F ]} Lemma 4.4 shows that there exists
some n0 >max {2, [F0 : F ]} such that any polynomial Q1,j with coefficients in OFun

1,j
which agrees

with the minimal polynomial P1,j of t1,j modulo (t′0)n0 is Eisenstein, and has a root in OF s
1,j

which

agrees with t1,j modulo tn1
1,j . Applying the lemma again shows the existence of some n > 2 such

that any polynomial Q0 with coefficients in OFun
0

which agrees with P0 modulo tn is Eisenstein,
and has a root in OF s

0
which agrees with t0 modulo tn0

0 . Now choose a k-algebra homomorphism
λ : R→ OF as provided by Lemma 4.3, that is, factoring through the local ring of some smooth
point on a curve inside Spec(R) and agreeing with ι modulo tn.

Since λ is a k-algebra homomorphism, we have a canonical isomorphism Run
0 ⊗R,λOF

∼
→OFun

0
,

which therefore induces a homomorphism

λun
0 : Run

0 → OFun
0

extending λ and which agrees with ιun
0 modulo tn. Now let Q0 = λun

0 (P0) denote the image under
λun

0 of the minimal polynomial P0 of t0; this is therefore a monic polynomial with coefficients
in OFun

0
, which agrees with P0 modulo tn. Thus it is also Eisenstein, and by the choice of n we

know that OF s
0

contains a root of λun
0 (P0) which is congruent to t0 modulo tn0

0 and generates
OF s

0
as an OFun

0
-algebra. This then allows us to extend λun

0 to a homomorphism

λs0 : Rs0→ OF s
0
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which agrees with ιs0 modulo tn0
0 , and since λs0(t0) generates OF s

0
as an OFun

0
-algebra, we deduce

that the diagram

Rs0
λs0 // OF s

0

R
λ //

OO

OF

OO

is coCartesian. We can then extend this to a homomorphism

λ0 : R0→ OF0

agreeing with ι0 modulo (t′0)n0 , and forming a similar coCartesian diagram to λs0. We now play

exactly the same game for all of the R1,j , to produce λ1,j : R1,j → OF1,j extending all other

λ0 and all previous λ#
1,j , which agree with ι1,j modulo (t′1,j)

n1,j , and which form coCartesian

diagrams

R1,j
λ1,j // OF1,j

R
λ //

OO

OF

OO

Now let Z be the base change of Y to OF via λ; note that the generic fibre ZF is globally

defined by construction. Similarly define Z0 to be the base change of Y0 to OF0 via λ0, Z1,j the

base change of Y1,j to OF1,j via λ1,j , and Z1 :=
∐
j Z1,j , so we have a 2-truncated augmented

simplicial scheme

Z1 ⇒ Z0→ Z

over OF , which gives a proper hypercover after base changing to F . For any m > 2 we can

therefore take n1 > mmaxj{[F1,j : F ]} to ensure:

– Z0 is a proper and strictly semistable scheme over OF0 , and each Z1,j is a proper and strictly

semistable scheme over OF1,j ;

– there is an isomorphism

[X1 ⇒ X0]⊗OF
OF /tm

∼
→ [Z1 ⇒ Z0]⊗OF

OF /tm

of 2-truncated simplicial schemes, such that

X0 ⊗OF /tm
∼
→ Z0 ⊗OF /tm

is in fact an isomorphism of OF0/(t
m)-schemes, and

X1 ⊗OF /tm
∼
→ Z1 ⊗OF /tm

is obtained as a disjoint union of isomorphisms

X1,j ⊗OF /tm
∼
→ Z1,j ⊗OF /tm

of OF1,j/(t
m)-schemes.
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Thus if we let X×0,s and Z×0,s denote the log schemes over k×0 given by the special fibres of X0

and Z0, and X×1,s and Z×1,s the log schemes over
∐s
j=1 Spec(k×1,j) given by the special fibres of X1

and Z1, then by Proposition 2.2 there is an isomorphism

[Z×1,s ⇒ Z
×
0,s]
∼= [X×1,s ⇒ X

×
0,s]

of 2-truncated simplicial log schemes over k×. Now by [CL18, Propositions 5.3, 5.4] there are
isomorphisms

H i
`(X0,F0) ∼= H i

`(Z0,F0),

H i
`(X1,F1,j )

∼= H i
`(Z1,j,F1,j )

between the cohomology of the generic fibres of X0,X1,j and Z0,Z1,j , as Weil–Deligne
representations over F0 and F1,j respectively. If we define the category

RepQ′`
(WDF1) :=

s∏
j=1

RepQ′`
(WDF1,j )

of Weil–Deligne representations over F1 :=
∏
j F1,j to be the product of the categories of Weil–

Deligne representations over each F1,j , then by Propositions 3.1 and 3.2, the diagram

H i
`(X0,F0) //

∼=
��

H i
`(X1,F1)

∼=
��

H i
`(Z0,F0) // H i

`(Z1,F1)

(with horizontal arrows given by the differences of the two pullback maps) commutes via the
restriction functor from Weil–Deligne representations over F0 to Weil–Deligne representations
over F1.

Let IndFFi
denote a right adjoint to the restriction functor from Weil–Deligne representations

over F to those over Fi: on the separable part this is the normal induction of representations,
on the inseparable part it is a quasi-inverse to Frobenius pull-back, and IndFF1

=
⊕

j IndFF1,j
. We

therefore have a commutative diagram

IndFF0
H i
`(X0,F0) //

∼=
��

IndFF1
H i
`(X1,F1)

∼=
��

IndFF0
H i
`(Z0,F0) // IndFF1

H i
`(Z1,F1)

and, in particular, the kernels of both horizontal maps are isomorphic as Weil–Deligne
representations over F . The proof of Theorem 4.2 now boils down to the following claim.

Proposition 4.5. Let X1 ⇒ X0 → X be a 2-truncated semisimplicial proper hypercover of a
smooth and proper F -variety X, such that there exist finite field extensions F0/F and F1,j/F0

for 1 6 j 6 s, with X0 smooth over F0, and X1 =
∐
j X1,j with X1,j smooth over F1,j . If we set

F1 =
∏s
j=1 F1,j , then

H i
`(X) ∼= ker(IndFF0

H i
`(X0)→ IndFF1

H i
`(X1))

for all primes `.
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Proof. By taking F̃1/F a sufficiently large finite extension such that all of the F1,j embed into

F̃1 and applying [dJ96, Theorem 4.1], we can extend X1 ⇒ X0→ X to a full proper hypercover
X•→ X such that for n > 2 there exists a finite extension Fn/F̃1 with Xn smooth over Fn. Now
applying [CL18, Lemma 6.4] we can see that the terms in ith column of the resulting spectral
sequence have to be ‘quasi-pure’ of weight i. Therefore the spectral sequence degenerates exactly
as in the proof of [CL18, Theorem 6.1], and the proposition follows. 2

We now deduce from the proposition that H i
`(X) ∼= H i

`(ZF ) as Weil–Deligne representations
for all i, `, and by construction ZF is globally defined. This completes the proof of Theorem 4.2

Remark 4.6. Note the use of the finite field hypothesis (via a weight argument) in the proof
of Proposition 4.5. It might be possible to relax the assumption to k perfect using a more
sophisticated argument.
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