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Corrigendum

Around ¢-independence
(Compositio Math. 154 (2018), 223—-248)

Bruno Chiarellotto and Christopher Lazda

ABSTRACT

We correct the proof of the main ¢-independence result of the above-mentioned paper
by showing that for any smooth and proper variety over an equicharacteristic local
field, there exists a globally defined such variety with the same (p-adic and ¢-adic)
cohomology.

1. Introduction

It was pointed out to us by Zheng that the proof of [CL18, Theorem 6.1] is invalid. The problem
is in the final step of the proof on p. 237, where we showed that there was an exact sequence

0— H™(X)— H*"(Xo) - HT"(X1) = -+

and claimed to deduce ¢-independence of H}(X) from (-independence of all the other terms
Hf”(Xn). Of course, this deduction does not work, since there might be infinitely many such
other terms.

In their paper [LZ19], Lu and Zheng provide (amongst other things) an alternative proof of
this ¢-independence result, at least for ¢ # p, see Theorem 1.4(2). In this corrigendum we will
explain how to fix the proof of [CL18, Theorem 6.1] by instead proving a stronger version of
[CL18, Corollary 5.5] where the semistable hypothesis is removed. In particular, this includes
the case £ = p.

Notation and conventions
We will use notation from [CL18] freely.

2. Log structures

We begin with a general result on semistable reduction and log schemes. Let R be a complete
discrete valuation ring (DVR) with perfect residue field k, 7 a uniformiser for R, and let
X — Spec(R) be a strictly semistable scheme. That is, X’ is Zariski locally étale over R[zq, ...,
xyn)/(z1 -2, — ) for some n,r. There is a natural log structure My on X given by functions
invertible outside the special fibre X, and we let M x denote the pull-back of this log structure
to X. We will also write X; for the reduction of X modulo 7**!, and k> for k equipped with the
log structure pulled back from the canonical log structure R* on R.
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CORRIGENDUM

PRrROPOSITION 2.1 (Illusie, Nakayama [Nak98, Appendix A.4]). If X, X' are strictly semistable
schemes over R, and g : X1 — X/ is an isomorphism between their mod m2-reductions, then g

induces a canonical isomorphism g : (X, Mx) = (X', Mx:) of log schemes over k*.

Sketch of proof. Use g to identify X; and X7, and thus X and X'. Let Mx and M’y be the log
structures on X coming from X and X’ respectively.

Near a closed point of X let XM, ..., X(") be the irreducible components of X, and pick
T1,..., 2, € Oy such that X = V(x;). Similarly pick ), ...,z € Oy such that X =V (2}).
Let v € O% and v' € O%, be such that z; - - -z, = vw and @ - - - . = /7. Then in a neighbourhood
of p the morphisms (X, My) — Spec(R*) and (X', M) — Spec(R*) can be described by the
following diagrams:

a a
(u,al,...,zzT)»—)umll R L

My =20y &N Ox

(A,a)»—)()\v“,a,...,a)T T
A\,a)—>ATe
R*®N ) R
Uy eeyar Y uz Lt
Mayr = 0% &N (o Jouey Oxr
(A,a)H(Av’a,a,...,a)T T
. (Aa)—>Am?
R*®N R

Pulling back to k, we see that the morphisms (X, M) — Spec(k*) and (X, M’y) — Spec(k*)
can be described by the diagrams

al a.
(w,a1,..,ar)>uxy t-xp”

MX =~ O} o N7 OX
(A,a)H(Av—a’aMa)T T
)\,a — 0%
k* &N (Aa)—>20 :
and
!~ * r (U,al,_,_7a7‘>._)uw’1a1“.m;-a’r
X = OX e N Oy
(A’Q)H(Avlava,-..,a)T T
A,a)— 0%
k* &N (\a)—>A0 .

respectively, again in a neighbourhood of p. Since V(z;) = V() inside X;, we must have

z; = u;x, for some u; € (9}1, and so we can define an isomorphism
~ /
MX — MX
of log structures by mapping
ar

(w,ai,...,ap) = (wuf*---ul,ag,...,a.).

This is checked to be a morphism of log structures over k* by using the above local descriptions.
Note that any other choice w] must satisfy (u; — u})a} = 0 in Ox,, and hence we must have
u; — u; € (7). In particular, the above isomorphism does not depend on the choice of u;. By a
similar argument, neither does it depend on the choice of z; and z}, and so it glues to give a
global isomorphism (X, Mx) = (X, M) of log schemes over k*. O
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We will need to extend this result to cover morphisms between strictly semistable schemes
over different bases. So suppose that R — S is a finite morphism of complete DVRs, with induced
residue field extension k — kg. Let mg be a uniformiser for S, and let e = v, (7). We do not
assume that the induced extension Q(R) — Q(S) of fraction fields is separable.

Suppose that we have strictly semistable schemes X', X’ over R and ),)” over S, and a pair
of commutative diagrams

fl

Yy X % X’
l | | l
Spec(S) — Spec(R) Spec(S) — Spec(R)

As before, let us write Y; for the reduction of ) modulo ﬂ'g—H. Suppose that we have isomorphisms
gy:}/;;}/;, gxingX{

of S- and R-schemes respectively such that the diagram

Ye ! X1
v — X

L

Spec(S) — Spec(R)
commutes. Then by Proposition 2.1 we obtain isomorphisms
gy : (Y, My) > (Y, My)
of log schemes over kg, as well as
gx : (X, Mx) > (X', Mx)

of log schemes over k*. The above commutative diagrams of strictly semistable schemes induce
commutative diagrams

YV, My)—T= (X, Mx) (Y, Myr) —L= (X, Mx)

| | | |

Spec(kg) — Spec(k*) Spec(kg) — Spec(k)

of log schemes. Note that the morphism of punctured points along the bottom of each square is
given by

E*oN—-> kieN
(A, a) = (Au®, ea),

where u € S* is such that 7 = um§.
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PROPOSITION 2.2. The diagram

(Y, My) —L— (X, M)

:ng Z’\LQX
!

(Y,7 MY’) - (X,7 MX’)
of log schemes commutes.

Proof. Let us use g to identify Y. =Y/ and Y =Y’, and let My and M}, be the log structures
on Y coming from ) and ) respectively. Similarly identify X; = X and X = X', and let Mx
and M’y be the log structures on X coming from X and &X” respectively.

Locally on X and Y, choose functions y1,...,ys € Oy, ¥},...,y. € Oy cutting out the
irreducible components of Y, and functions z1,...,z, € Ox and z},...,2, € Oy cutting out
the irreducible components of X. Write

i) = agyp™ - ygis, (@) = o,

since both d;; and d;j are given by the multiplicity of the jth irreducible component of Y in
the scheme theoretic preimage of the ith irreducible component of X inside Y., we must have
dij = dj;. Moreover, since V(f*(z;)) C V(7§) = V(yf - - - y5) we must have d;; < e for all 4, j.

Now choose u; € O, such that z; = wiz;, and v; € Oy, such that y; = vjyg. Then the
isomorphisms of log structures induced by gy and gx are given by

My =0} &N° - My = Oy & N°

(0,b1, ..., bs) > (0B vbs by, .. by)

and

Mx =05%dN - My =0y N’

(w,a1,...,a;) = (wui*---uim a1,...,a,)

respectively, and the morphisms My — My and M’y — M, are defined by

(u,ai,...,a;) — (f*(u)a‘l“ '--aﬁT,Zdilai, . ,Zdisai>

and
(uyai,...,ap) — <f*(u)a’1a1 ceal®m Zdilai, e Zdisai>
% 7

respectively. Hence in the diagram
My _I9x_ My

fl if
MYLM/Y

the composite f o gx is given by

(uyai,...,ap) — <f*(u)(o/1f*(u1))a1 s (ol (ug)0, Zdﬂai, ce Zdisai>
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and the composite gy o f is given by
(u,ay,...,a;) — (f*(u)(alvf“ By (it dreyar Zdilai7 e ,Zdisai>.
i i

We thus need to show that o} f*(u;) = ;v - -v%s in OF for all i. But now we write

Qi = () = fr(uah) = £ (u) oy, -y
in Oy, and so deduce that

d; dis, 1 di1 1d; * 1,1 di1 rd
aivlﬂ ...Uslsyl v RN — f (uz)azyl g C Y s

We deduce that the difference 8; = o, f*(u;) — cv{i - - - v%s annihilates gy 4 inside Oy,
and since each d;; < e we deduce that in fact §; annihilates ¢, and therefore must lie in (7g).
Hence 8; = 0 in Oy and the proof is complete. O

3. Functoriality of comparison isomorphisms

We will also need to know that the comparison isomorphisms [CL18, Propositions 5.3, 5.4] are
compatible with morphisms of semistable schemes over different bases. So let us suppose that
we are again in the above set-up, where we have a commutative diagram

Yy X

|

Spec(S) — Spec(R)

of strictly semistable schemes ) and X over S and R respectively, with S the integral closure
of R in some finite extension of its fraction field. Let us assume that R, and hence S, is of
equicharacteristic p > 0, with fraction fields F' and F respectively, whose absolute Galois groups
we will denote by Gp and Gpy. Fix an embedding F*P — F&® of separable closures; note that
this sends F'™€ into ngame and induces an injective homomorphism Gr; — Gp with finite
cokernel.

Let X'* and Y denote these semistable schemes endowed with their canonical log structures,
and X and Y the corresponding log special fibres. We therefore have a commutative diagram

Y* X

| |

Spec(kg) — Spec(kX)

of log schemes. For every finite subextension FF C L C F*™¢ let X denote the corresponding
base change of X*, and X’“'™¢ the inverse limit of the étale topoi of all such X we
have Y t™m¢ defined entirely similarly. Via the embedding F'*™°¢ < F{™ this induces a

G Fg-equivariant morphism of topoi

Y X ,tame 5 XX ,tame
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and hence a G pg-equivariant morphism
Hét (Xx,tam67 @Z) — Hét (Yx,tame’ QZ)
in cohomology, for any ¢ # p. On the other hand we have a natural G r¢-equivariant map
HL (X xg F5P,Qp) — H4L(Y x5 Fog?, Qp),

and by [Nak98, Proposition 4.2] equivariant isomorphisms

HE (X0mme Q) S HE (X x g F5P,Qy),
HL (Y2 Q) S HE (Y xs FoP, Q).

ProrosiTiON 3.1. The diagram
H (X70tme Q) —— HY (X x g F5P,Qy)
H (Y>otame Qp) —— HL (Y x5 F§P, Qp)
commutes.

Proof. Consider the commutative diagram

iy Jy
Y X,tame y>< ,tame yF;ep

| )

ix Jx
XX ,tame XX ,tame XFsep

of topoi as in [Nak98, § 3], where )>tame and X *:'ame are defined by ‘base change’ along Fg —
F&me and F — F'™¢ respectively. Then the isomorphism

H (Y52 Qp) S HE (Y xg Fa, Q)
is given as the composite
HE (YR Q) <= Hg (V1™ Q) — HE (Y xs Fg ¥, Q)

using the proper base change theorem in log-étale cohomology [Nak97, Theorem 5.1], and there
is a similar statement for X. The claim then follows simply from commutativity of the above
diagram of log schemes. O

We will also need a version of this result for p-adic cohomology. Write W = W(k), Wg =
W(ks), let K = W[1/p], Kg = Ws[1/p], and let Rx D & C €k, and Ry D £, C Exg
denote copies of the Robba ring, the bounded Robba ring and the Amice ring over K and Kg
respectively. Lift the extension F' — Fg to a finite flat morphism S;( — S;r(s which extends to
finite flat morphisms R — Rk and £ — k. Then, as above, the morphism of log schemes
Y* — X* induces a morphism

Hliog—cris(XX/KX) - Hliog—cris(YX/Kg‘()
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in log crystalline cohomology, and the morphism Vg, — X induces a morphism
Hzlg(XF/RK) - Hgig(yFs/RKS)

in Robba-ring valued rigid cohomology. Then following [CL18, Proposition 5.4] we can construct
isomorphisms

Hliog—cris(XX/KX) ®Kr RKx = Hﬁig(XF/RK%
Hllog—cris(YX/Kg) ®Kg RKS = H;ig(yFs/RKs)
as follows. Let ¢ denote a co-ordinate on E}L( and tg a co-ordinate on 5}}5; such that t € Wg(ts].
Write S = K ® W[t] and Sk, = Ks ® Wg[ts]. Equip W[t] (respectively Wg[ts]) with the

log structure defined by the ideal (t) C W[t] (respectively (ts) C W]ts]) and define the log-
crystalline cohomology groups

Hliog-cris(‘Xx/SK) = le:og-cris(XX/W[[t]]) ®z Qv
leog—cris(yX/SKs) = Hllog—cris(yX/WS[[tS]]) ®z Q;

these are naturally endowed with the extra structure of log-(¢, V)-modules over Sk and Sk
respectively. Moreover, we have isomorphisms of ¢-modules

Hﬁ)g—cris(XX/SK) Ry 0 K = Hl%g—cris(YX/K;)’
Hliog-cris(yX/SKs) ®5K5,ts'—>0 KS s Hliog-cris(YX/Kg)’
by smooth and proper base change in log-crystalline cohomology, as well as isomorphisms of
(¢, V)-modules
Hyyeris(X ™ /SK) ®5,c Ric = Hliy(Xp/Ric),
Hiogoeris (V™ /Sks) @51c, Rics = Hiiy(Vrg/Rics),
by [LP16, Proposition 5.45]. It therefore follows from the logarithmic form of Dwork’s trick

[Ked10, Corollary 17.2.4] that the (p,V)-modules H}y, (Xp/Ry) and Hj, (Ves/Ris) are
unipotent, that there are isomorphisms

(Hﬁig(XF/RK)[logt])vzo = Hliog- XX/KX)v

. V=0 ~ .
(Hzig(yFs/RKs)[logtS]) = leog-cris(YX/Kgf)
and moreover the connection V on the rigid cohomology groups appearing on the left-hand side

can be completely recovered from the monodromy operator N on the right-hand side. This allows
us to construct isomorphisms of (¢, V)-modules

Hliog—cris(XX/KX) ®Kk RK = Hlfig(XF/RK%

Hliog-cris(YX/Kg) Ors RKs - Hgig(yFs/RKs)
where the left-hand side is endowed a natural connection coming from N; for more details see,
for example, [Mar08, §3.2].

cris(

PRrROPOSITION 3.2. The diagram

Hi

log-cris

(X*/K*) ®Kx R — Hy;y(Xr/Ri)

T

| |

le;)g-cris(YX/Kg) ®Ks RKs — Hzig(yFS /RKS)

commutes.
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Proof. Given the construction of the horizontal isomorphisms outlined above, it suffices to show
that the diagram

Hliog—cris(XX/SK) - Hliog—cris(XX/KX)

i l

Hliog—cris(yx/SKS)HHi (YX/Kg)

log-cris

of log-crystalline cohomology groups commutes, which as in Proposition 3.1 simply follows from
functoriality of log-crystalline cohomology. O

4. Cohomology and global approximations
Now suppose that k is a finite field, F' = k((t)), and X/F' is a smooth and proper variety.

DEFINITION 4.1. We say that X is globally defined if there exist a smooth curve C'/k, a k-valued

point ¢ € C(k), a smooth and proper morphism X — (C'\ {c}) and an isomorphism F' = k(C)
such that Xp = X.

[

We will prove the following strengthened version of [CL18, Corollary 5.5].

THEOREM 4.2. For any smooth and proper variety X/F there exists a globally defined smooth
and proper variety Z/F such that
Hy(X) = Hy(Z)

for all ¢ (including ¢ = p).

Once we have shown this, the proof of [CL18, Theorem 6.1] can then be completed using
[CL18, Proposition 5.8], exactly as in the proof of [CL18, Theorem 5.1].

To prove Theorem 4.2, first of all choose a proper and flat model X for X over the ring of
integers Op. By [dJ96, Theorem 6.5] we may choose an alteration Xy — X and a finite extension
Fy/F such that A} is strictly semistable over Op,.

Next, we take the fibre product Xp xx Xy, and let A] denote the disjoint union of the
reduced, irreducible components of Xy x y Xy which are flat over O, or equivalently which map
surjectively to Spec(Op,). Once more applying [dJ96, Theorem 6.5] to each of the connected
components of X7 in turn enables us to produce:

— a 2-truncated augmented simplicial scheme
Xl = X() — X

which is a proper hypercover after base changing to F’;
— a collection Fi 1,..., Fi 4 of finite field extensions of Fy

such that A7 is a disjoint union of schemes &} j, for 1 < j < s, proper and strictly semistable
over Spec(Op, ;).

Let ko denote the residue field of Fp, k1; the residue field of Fj;, and consider the
intermediate extensions

FCR"CF; ClyCHYjCF;Chy,

1269
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where Fg"/F and F}'j/Fy are separable and unramified, Fy/Fg™ and Fy;/F|"} are separable

Lj
and totally ramified, and Fy/Fg and Fy;/FY; are totally inseparable, of degree p% and phs

respectively. Let ¢ denote a uniformiser for F, ¢y one for F{j, and let P be the minimal polynomial
1/pto

of tg over Fy™. Then t{, := t; is a uniformiser for OF,. Similarly, let ¢1 ; be a uniformiser for
d .
s ) S : ) un T V) : :
F 5, and P;; the minimal polynomial of ¢; ; over F'. Then t =1 is a uniformiser for
OF, ;-

Now choose a finitely generated sub-k-algebra R C Op, containing ¢, such that there exists
a proper, flat scheme ) — Spec(R) whose base change to Op is exactly X'. By [Spi99, Theorem
10.1], we may at any point increase R to ensure that it is in fact smooth over k. Next, enlarge R so
that R§" := R®y ko C O contains all the coefficients of the minimal (Eisenstein) polynomial
Py of tp, and let R§ denote the corresponding finite flat extension Ry"[x]/(Fp) of Ri". We can
thus consider Rj C OFs as a subring containing to, and we set Rg = Rj[to]. Hence we have
Ry C OF, such that

Ry ®r OF :;’C)Pb~

Note also that Ry is finite and flat over R; after localising R within O we may in fact assume
that Ry is finite free over R.

Next we enlarge R so that there exists a proper and flat morphism )y — Spec(Rp) whose
base change to O, is Xp. Again, by further enlarging R we may in addition assume that the
map Xy — X arises from a proper surjective map

Yo—> Y
of R-schemes, and moreover that there exists an open cover of )y by schemes which are étale
over Rolx1,...,xp]/(x1 -z — t{)) for some n,r. In other words, ) is ‘strictly ¢(-semistable’.

We now repeat this process to produce further finite free extensions Ry — RS — Ry ;= R
for all j, and an injection Ry ; C OF, ; containing the image of #} ; such that

Rl’j Rr OF S OFLJ"

We can also find proper, strictly t’l’j—semistable schemes ) ; — Spec(R; ;) whose base change
to OFl,j is A7 j, so that setting )y := ]_[j Y1,; (and again, possibly increasing R), we obtain a
2-truncated augmented simplicial scheme

Nh=l—-Y

which becomes a proper hypercover over a dense open subscheme of Spec(R), and whose base
change to Op is exactly our original 2-truncated augmented simplicial scheme

X1 =2 A — X

Let ¢ : R — Op denote the canonical inclusion, and ¢* : Spec(Op) — Spec(R) the induced
morphism of schemes. Note that since +* maps the generic point of Spec(OF) to that of Spec(R),
the map ) — Spec(R) is generically smooth. We may thus choose an open subset U C Spec(R)
such that Yy — U is smooth, and such that the base change of [V1 = Yy — )] to U is a proper
hypercover.

LEMMA 4.3. For any n > 0 there exists a smooth curve C/k, a rational point ¢ € C(k), a
uniformiser t. at ¢, and a locally closed immersion C' — Spec(R) such that C'\ {¢} C U, and the
induced map

Spec(O¢ c/myy) — Spec(R)
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agrees with the modulo t"-reduction of * via the isomorphism
Oce > Op
sending t. to t.

Proof. Since R is smooth, we may choose étale co-ordinates around the image ¢*(s) of the closed
point of Spec(Op) under ¢*. This induces an étale map Spec(R) — A} for some n, and it is
a simple exercise to prove the corresponding claim for Aj. We then just take the pull-back to
Spec(R). O

The canonical inclusion ¢ induces similar inclusions
L# :R# — R# ®r Op :(’)F#
for # € {un, s, 0}, as well as

Lffj : Rfj SN Rﬁj ®r OF = OF;#J_

for all j, and again for # € {un, s, #}. We will need the following form of Krasner’s lemma [Stal8,
§0BU9.

LEMMA 4.4. Let K be a local field, with ring of integers Ok, and let P(xz) be an Eisenstein
polynomial over Ok . Let L be the corresponding finite totally ramified extension, and let a be a
root of P in L. Then for any m > 1 there exists an n > 2 such that any Q(x) € Ok|z]| congruent
to P modulo m', is Eisenstein, and L contains a root (8 of Q) such that L = K(f) and a = 8
modulo m’".

We will use this as follows: given n; > max;{[F} ; : F|} Lemma 4.4 shows that there exists
some ng > max {2, [Fp : F]} such that any polynomial Q1 ; with coefficients in Oppn which agrees
with the minimal polynomial P, ; of t; ; modulo (¢()™ is Eisenstein, and has a root in O Fi which
agrees with ¢; ; modulo t?lj Applying the lemma again shows the existence of some n > 2 such
that any polynomial Qo with coefficients in Oppn which agrees with Py modulo ¢" is Eisenstein,
and has a root in Ops which agrees with ¢y modulo ty°. Now choose a k-algebra homomorphism
A: R — Op as provided by Lemma 4.3, that is, factoring through the local ring of some smooth
point on a curve inside Spec(R) and agreeing with + modulo ¢".

Since A is a k-algebra homomorphism, we have a canonical isomorphism Ry"®r \OF S0 Fan,
which therefore induces a homomorphism

)\Bn : Rbm — OF(')JH

extending A and which agrees with ¢§* modulo ¢". Now let Qo = A\j"(Fp) denote the image under

o of the minimal polynomial Py of ?o; this is therefore a monic polynomial with coefficients
in Opgn, which agrees with Py modulo ¢". Thus it is also Eisenstein, and by the choice of n we
know that OFS contains a root of A\j"(Py) which is congruent to to modulo ¢;° and generates

Ops as an Opyn-algebra. This then allows us to extend A\g" to a homomorphism

Ao s Ry — Opg
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which agrees with ¢ modulo ¢(°, and since A{(to) generates O Fs as an Oppn-algebra, we deduce
that the diagram

X
Ry —> Op;

]

R4A>(’)F

is coCartesian. We can then extend this to a homomorphism
)\0 : R(] e OFO

agreeing with ¢o modulo (¢,)"°, and forming a similar coCartesian diagram to A§. We now play

exactly the same game for all of the Ry ;, to produce A1 ; : Ri; — OFI’]. extending all other

#

Ag and all previous )‘l,j’

diagrams

which agree with ¢1; modulo (#; ;)"7, and which form coCartesian

Al,]
RlJ OFl,j

]

R—2 - 0p

Now let Z be the base change of YV to Op via A; note that the generic fibre Zp is globally
defined by construction. Similarly define Zy to be the base change of Vg to Op, via A\, Z1; the
base change of Vi ; to OFLJ via A1, and Z; = ]_[j Z1,j, so we have a 2-truncated augmented
simplicial scheme

Z1 =2 20— Z

over Op, which gives a proper hypercover after base changing to F. For any m > 2 we can
therefore take ny > mmax;{[F1 ; : F]} to ensure:

— 2 is a proper and strictly semistable scheme over Op,, and each Z ; is a proper and strictly
semistable scheme over O, _;

— there is an isomorphism
(X = X)) ®o, Op/t™ S [21 = Z0] ®0, Op /[t

of 2-truncated simplicial schemes, such that

Xy ® Op/t" 5 2y @ Op/t™
is in fact an isomorphism of O, /(t™)-schemes, and

X ®Op/t" 5 2@ Op/t"
is obtained as a disjoint union of isomorphisms

X1, @ Op/t™ S 21, @ Op/t"

of Op, ,/(t™)-schemes.
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Thus if we let X[ and Z, denote the log schemes over kg given by the special fibres of Ap

and Zy, and A7, and Z7; the log schemes over [[7_; Spec(ky;) given by the special fibres of &3
and Z7, then by Proposition 2.2 there is an isomorphism

[Zl><,s = Z(;fs] = [les = X0>,<s]

of 2-truncated simplicial log schemes over k£*. Now by [CL18, Propositions 5.3, 5.4] there are
isomorphisms

HE(XO,FO) = Hé(ZO,Fo)v
HE(XI,FL]') = H;(Zlaijl,]')

between the cohomology of the generic fibres of Ap, A1 ; and Zy, 21, as Weil-Deligne
representations over Fp and Fi ; respectively. If we define the category

Repg, (WD) := [ | Repg, (WDr, )
j=1

of Weil-Deligne representations over F; := [] j F1 j to be the product of the categories of Weil-
Deligne representations over each F} j, then by Propositions 3.1 and 3.2, the diagram

Hé(XO,Fo) - Hg(Xl,Fl)

Ni lN

Hi(Z0,5,) — H(Z1,,)

(with horizontal arrows given by the differences of the two pullback maps) commutes via the
restriction functor from Weil-Deligne representations over Fy to Weil-Deligne representations
over Fi.

Let Indﬂ, denote a right adjoint to the restriction functor from Weil-Deligne representations
over F' to those over Fj: on the separable part this is the normal induction of representations,
on the inseparable part it is a quasi-inverse to Frobenius pull-back, and Indg1 =& ; Ind?lvj. We
therefore have a commutative diagram

Indgo Ht%'(XoyFo) - Indg HE(XLFl)

gl lg

Iﬂdgon(Zo,Fo) - IndPEl Hé(ZLFl)

and, in particular, the kernels of both horizontal maps are isomorphic as Weil-Deligne
representations over F. The proof of Theorem 4.2 now boils down to the following claim.

ProrosSITION 4.5. Let X1 = Xo — X be a 2-truncated semisimplicial proper hypercover of a
smooth and proper F-variety X, such that there exist finite field extensions Fy/F and F ;/Fy
for 1 < j < s, with X smooth over Fy, and X, = ]_[j X1,; with X, ; smooth over F ;. If we set
F = szl Fl,]" then

Hy(X) = ker(Indf; Hj(Xo) — Indf, Hi(X1))

for all primes ¢.
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Proof. By taking I~7’1 /F a sufficiently large finite extension such that all of the F} ; embed into
151 and applying [dJ96, Theorem 4.1], we can extend X; = X — X to a full proper hypercover
Xo — X such that for n > 2 there exists a finite extension F),/F; with X,, smooth over F,,. Now
applying [CL18, Lemma 6.4] we can see that the terms in ith column of the resulting spectral
sequence have to be ‘quasi-pure’ of weight . Therefore the spectral sequence degenerates exactly
as in the proof of [CL18, Theorem 6.1], and the proposition follows. O

We now deduce from the proposition that Hj(X) = H}(Zp) as Weil-Deligne representations
for all 7, £, and by construction Zg is globally defined. This completes the proof of Theorem 4.2

Remark 4.6. Note the use of the finite field hypothesis (via a weight argument) in the proof
of Proposition 4.5. It might be possible to relax the assumption to k perfect using a more
sophisticated argument.
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