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ON LOOPS WHICH HAVE DIHEDRAL
2-GROUPS AS INNER MAPPING GROUPS

MARKKU NIEMENMAA

In this paper we consider the situation that a group G has a subgroup H which
is a dihedral 2-group and with connected transversals A and B in G. We show
that G is then solvable and moreover, if G is generated by the set A U B, then
H is subnormal in G. We apply these results to loop theory and it follows that
if the inner mapping group of a loop Q is a dihedral 2-group then Q is centrally
nilpotent.

1. INTRODUCTION

Quasigroups, loops and corresponding multiplication groups were first studied by
Albert [1, 2] and Brack [3]. In 1946 Brack showed that if a finite loop Q is centrally
nilpotent then M(Q) (the multiplication group of Q) is solvable. On the other hand, if
M(Q) is nilpotent then Q is centrally nilpotent. When we study multiplication groups
of loops, a central role is played by one special subgroup. This subgroup I(Q) of M(Q)
is called the inner mapping group of the loop and it is the analogue for loops of the
inner automorphism group of a group. Therefore it is reasonable to expect that I(Q)
reflects at least some properties of the loop Q. The relation between the properties
of Q, I{Q) and M(Q) has been studied very thoroughly by Brack [4, Section VIII]
in the case that Q is a commutative Moufang loop. The general case (without any
identities restricting the structure of the loop) was investigated by Kepka, Niemenmaa
and Rosenberger [7, 11, 12, 13, 14]. They managed to show that if Q is a loop such
that the inner mapping group is cyclic, then Q is an Abelian group [7, Theorem 2.4].
It also turned out that if Q is a finite loop such that the inner mapping group I(Q) is
Abelian then Q is centrally nilpotent [13, Corollary 6.4]. If the inner mapping group
is not Abelian then, of course, things get more complicated. From [10, Theorem 3.4]
it follows that if I(Q) is non-abelian of order six then M(Q) is solvable. However,
in this case Q is not necessarily centrally nilpotent. The purpose of this paper is to
investigate the situation that Q is a loop and I(Q) is a dihedral 2-group. We show
that then M(Q) is solvable and Q is a centrally nilpotent loop.
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Now the link between multiplication groups of loops and certain transversal con-
ditions was given by Kepka and Niemenmaa [11, Theorem 4.1]. It has turned out
that many properties of loops can be reduced to the properties of so called connected
transversals in the multiplication group. Therefore also in this paper we first list some
basic properties of connected transversals in Section 2. In Section 3 we prove that
if a finite group G has a subgroup H such that H is a dihedral 2-group and there
exist ^-connected transversals A and B in G, then G is solvable. In the proof we
use Thompson's [15] result on a special class of non-solvable groups and we are led to
investigate the existence of connected transversals in the groups PSL(2, q). By using a
neat little argument on centralisers we are able to show that also in the case of infinite
G the above result is true. In Section 4 we assume that in addition G is generated by
A U B and we can show that then H is subnormal in G. As an application of this
result we immediately have our main theorem about the central nilpotency of loops.

Our notation in group theory is standard as in [6]. Basic facts about loops, their
multiplication groups and central nilpotency can be found in [3, 4, 9, 11, 12]. There are
also other approaches to these problems. The relation between finite simple Moufang
loops and finite simple groups is investigated in [8] and [5, 16] contain interesting
material about Coxeter groups and p-groups.

2. PRELIMINARIES

The basic tool for our study is the concept of connected transversals. If G is
a group, H ^ G and A and B are two left transversals to H in G such that the
commutator group [A, B] is a subgroup of H then we say that A and B are H-
connected transversals in G. By HQ we denote the core of H in G (the largest normal
subgroup of G contained in H). The relation between multiplication groups of loops
and connected transversals is given by

THEOREM 2 . 1 . A group G is isomorphic to the multiplication group of a loop if
and only if there exist a subgroup H satisfying HG — 1 and H-connected transversals
A and B such that G = {A,B).

For the proof of the theorem, see [11, Theorem 4.1]. In the following lemmas we
assume that A and B are H-connected transversals in G.

LEMMA 2 . 2 . Now A9 and B9 are left and right transversals to H in G for
every g G G. If HG = 1, then leAnB.

In this paper we ofteu nave the situation that H is a Sylow 2-subgroup of G and
HG = 1 • By Lemma 2.2, this means that the transversals A and B can not contain
any 2-elements.

LEMMA 2 . 3 . If C C A U B and K = {H,C), then C C KG.
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LEMMA 2 . 4 . If HG = 1, then NG{H) = H x Z{G).

LEMMA 2 . 5 . Let H be a cyclic subgroup of a group G. Then G' ^ H if and

only if there exists a pair A, B of H -connected transversals in G such that G = (A, B).

LEMMA 2 . 6 . If H is cyclic then G is solvable and G(3) = 1.

For the proofs, see [11, Lemma 2.1, Lemma 2.2, Proposition 2.7] and [7, Theorem
2.2 and Corollary 2.3].

In this paper we also need a knowledge of the structure of dihedral 2-groups and
of the structure of the projective special linear groups PSL(2,q). All this material can
easily be found in [6].

3. SOLVABILITY

In this section we investigate the case where H ^ G is a dihedral 2-group. We
start by considering the situation in projective special linear groups.

LEMMA 3 . 1 . Let G = PSL(2, q) where q = 2™ ± 1 > 17 is a prime number. If
H is a maximal subgroup of G and H is a dihedral 2-group of order q ± 1 then there
exist no H-connected transversals in G.

PROOF: Assume first that q — 2n - 1 and \H\ = q + 1. If A and B are H-
connected transversals in G, then |vl| = |J5| = q{q — \)/2. Now a~1b~1ab G H and
thus ab G aH for every a G A and b G B. If ab = ac then 1 ^ 6c"1 G CG{a).
Thus we place q(q — l)/2 — (q + 1) elements in the set D = CG{O) — {1}. By Lemma
2.2, o is not a 2 - element in G, hence the set D has at most q — 1 elements. Thus
there exists c E D such that c = 6i&2-1 = bab^1. Now &i — cb?, and 63 = cb^.
If o £ A, then [a,cbi\ = [a,bi]{a,c]bi G H, hence [a,c] G Hbi~l(i = 2,4). But then
[a,c] G Hb*~l n H11*'1 = F. If 8 divides |F| then F has a cyclic subgroup K whose
order is divisible by four. Since H and its conjugates are maximal in G we conclude
that K is normal in G. Thus |F| is at most four, since G is simple. Now [a,c] G F
for every a G A and this means that we put 9(9 — l)/2 commutators in the four places
in F. It follows that there exists h G F such that h — [ai,c] — ... = [<h,c] where
* ^ 9(9 — l)/8- If [«i,c] = [a.2,c] then aia2~

1 G CG{C), thus we place t — 1 elements
in the set CG(C) — 1 which has at most q — 1 elements. Now q ^ 17 and then certainly
aiaj~1 — oiOj"1 for some a;- ^ a; and this leads to a contradiction.

In the case that q - 2n + 1, \H\ = q - 1 and |i4| = \B\ - q(q + l)/2 we can
proceed in a similar way. U

Now we prove

THEOREM 3 . 2 . Let G be a Unite group and H ^ G a dihedral 2-group. If there
exist H-connected transversals in G then G is solvable.
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PROOF: Let G be a minimal counterexample. If HQ > 1, then H/HQ is cyclic or
dihedral, hence G/HQ is solvable by Lemma 2.6 or by induction. Thus we may assume
that Ha = 1 •

If H is not a maximal subgroup of G then G has a proper subgroup K such that
1 < E < K < G. By Lemma 2.3, Ka > 1 and since HKa/KG is cyclic or dihedral
we conclude that G/KQ is solvable. By induction, K is solvable and then, of course,
G is solvable. Thus we may assume that H is a maximal subgroup of G (and a Sylow
2-subgroup of G).

If G is simple then following Thompson [15, p.461-462] we know that G =
PSL(2,q), where q — \H\ ± 1 ^ 17 is a prime. One should observe here that the
groups PSL(2,7) and PSL(2,9) can also be found in Thompson's classification but they
do not have maximal subgroups which are 2-groups. By Lemma 3.1, G does not have
^-connected transversals. Thus we may also assume that G is not simple.

Following again Thompson [15] we conclude that there exists a normal subgroup
N of G such that G = NH and [G : N] = 2, N n H is a dihedral 2-group and a Sylow
2-subgroup of N and N = PSL(2,q) , where q = \N fl H\ ± 1 ^ 7is a prime number
or q = 9.

Now we denote by A and B the IT-connected transversals in G. If A U B C N
then A and B are N D JJ-connected tranversals in N. By induction, N is solvable.
But this is not possible and therefore there exists a £ A — N (or B — N). Now we
divide the rest of the proof into three parts.

(1) Let q ^ 17 be a prime. If a 6 A - N, then a2 6 N and |a| = 1q or \a\
divides q + 1 or q — 1. Clearly, CG{O.) can have at most 2q elements. Now we employ
the same method and notation as in the proof of Lemma 3.1. We end up with the
situation that t ^ q(q — l ) /8 and we place t — 1 elements of the form aiOj"1 in the
group CG(C) (which has at most 2q elements). If |CG(C)| = 2q then Ca(c) contains
an involution u and we thus place t — 1 elements in the set CG(C) — {l,u}. If q ^ 17
then q(q — l)/8 — 1 > 2q — 2 and we are done.

(2) Let N S PSL(2,7). Now \H\ = 16 and then clearly \A\ = \B\ = 21. Now
a E A — N implies that a2 £ N, hence \a2\ — 2,3,4 or 7. By Lemma 2.2, |a|= 4 or
8 is not possible. If \a\ = 6 , then |CG(O)| — 6 and we can employ the method from
the proof of Lemma 3.1. We just have to observe that here a~1b~1ab £ N l~l H and
\N D H\ = 8 . After this, routine calculations as in Lemma3.1 lead us to a contradiction.
If |a| = 14, then a7 is an involution and thus it belongs to a conjugate H\ of H in G.
Since o7 £ J?ia (k=l,...,13) we have that CG(OT) ^ {<Mife) where the elements tt are
involutions and (tk) = zf-Hi0*) < N. Thus T = Civ(a7) ^ (a2,tk), hence 14 divides
T. From the information about the maxinial subgroups of PSL(2,7) we conclude that
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T = N, hence CN(a7) = N. Now G = N(a7) and thus a7 G Z(G). By induction,
G/Z{G) is solvable and then also G is solvable, a contradiction.

(3) Let N Si PSL(2,9). Now \H\ = 16 and \A\ = \B\ = 45. If a G A - N,
then a2 £ N and |a*| = 3 or 5 or |a2 | divides 4. By Lemma 2.2, \a\ = 4 or 8 is not
possible. If |o| = 6, then |CG(o)| = 6 or 18. We first assume that |Co(a)| = 6. Once
again we use the method and notation from Lemma 3.1. (Here one should observe
that a-^b^ab G N (1 H and |JV !"l H\ = 8.) Since (45 - 8)/5 > 7 it follows that
the commutators [a,c] belong to a subgroup which has at most two elements. Thus
t - 1 ^ 2 2 and we put at least 22 elements in the set CG{C) - {1}. This set has at
most 17 elements and we have our contradiction. Let | C G ( O ) | = 18. Now a3 is an
involution and C/v(°S) contains a group of order 9 and an elementary Abelian group
of order four. (Compare with the situation of the element a7 in PSL(2,7).) But this
means that CN(O.3) = N and we conclude that a3 G Z(G). By induction G/Z(G) is
solvable and therefore G is solvable, a contradiction. If \a\ = 10, then we again use
calculations similar to Lemma 3.1. Now |CG(C) | is at most 10 and we easily get the
final contradiction. The proof is complete. u

Next we prove that our theorem also holds when G is infinite.

THEOREM 3 . 3 . Let H < G, where H is a dihedral 2-group and assume that

there exists a pair A, B of H-connected transversals. Then G is solvable.

PROOF: If HQ > 1, then H/HG is cyclic or dihedral. In the former case G/HQ

is solvable by Lemma 2.6 and we are done. In the latter case we can investigate the
groups G/HQ and H/HG and thus we can assume that HQ is trivial.

First assume that G = (A, B). Let a be a fixed element of A and h a fixed
element of H and write F(a, h) — {b G B : a~1b~1ab = h}. If b and c are elements of
F(a,h) then be'1 G Ca(a) and b G Ca{a)c. Thus F(a,h) C CG(a)bh where bh is a
fixed element from F(a, h) and B = \JF(a, h), where h goes through all the elements
of H. Now G = BH C CG{a){bh : h G H}H and thus [G : CG(a)} < \H\2. (We are
indebted to Tomas Kepka who pointed out this way of using centralisers.) Since H is
a finite subgroup of (A, B) it follows that [G : CG(H)] is finite, whence [G : NG(H)] is
finite. Now NG(H) = H x Z(G) and thus [G : Z(G)} is finite. Clearly HZ{G)/Z{G)
is a dihedral 2-group and from Theorem 3.2 it follows that G/Z(G) is solvable, hence
G is solvable.

Then let K = {A, B) be a proper subgroup of G. Now A and B are K C\H-

connected transversals in K. Thus K is a solvable group by the first part of the proof.
Since [G : K] is finite we have a normal subgroup N ^ K such that [G : N] is finite.
Again by Theorem 3.2, G/N is solvable and therefore G is solvable. The proof is
complete. D
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By using Theorems 2.1 and 3.3 we easily get the following

COROLLARY 3 . 4 . If Q is a loop such that the inner mapping group I(Q) is a

dihedral 2-group then M(Q) is solvable.

4. CENTRAL NILPOTENCY OF LOOPS

In this section we deal with the central nilpotency of a loop. For this concept and
related results we advise the reader to consult [3, 9, 12, 13]. However, we first prove
a purely group theoretical result which binds together transversals, commutators and
subnormality.

THEOREM 4 . 1 . Let G be a group and H ^ G be a dihedral 2-subgroup with

connected transversals A and B. If G is generated by A U B then H is subnormal in

G.

PROOF: We first let G be finite and a counterexample of minimal order. If HQ >

1, then H/HQ is either cyclic or dihedral. If H/HQ is cyclic, then we can use Lemma
2.5. In any case H/HQ is subnormal in G/HQ and we are done. Thus we may assume
that HG — 1.

Then assume that H is a maximal subgroup of G. By Theorem 3.2, G is solvable.
Let N be a minimal normal subgroup of G (thus N is an elementary Abelian p-group
and we can assume that the prime p / 2 ) . Now G = NH and N D H = 1.

If a G A,b £ B then a = nh and 6 = mk where m,n £ N and h,k £ H. Now
[a, b] — h~1n~1k~1m~1nhmk £ H, hence kn~1k~1m~1nhmh~1 £ H D N = 1 whence
[a, 6] = [ft, k] £ H'. In the rest of the proof we denote by S the characteristic cyclic
maximal subgroup of H. If 1 ^ a G {A U B) — N then a = nh where n £ N and either
h G H — S is an involution or h G 5 . Now (a) contains an element 1 / d £ JV and
from dnh — nhd we see that dh = hd. If h £ 5 then (ft) is normal in (d,H) — G, a
contradiction, since J?G = 1 • Thus h G -ff — S is an involution.

Now assume that A ^ B. Thus we have a G i4, b £ B such that aZ7 = 62T and a ^
6. If a = nh\ and 6 = nh^ where fti ^ /i2 are involutions then a~1b = fti"1/^ G H.

In fact, a~xb = s £ S and thus 6 — as. Moreover, [a,b] = a~1s~1a~1aas £ J7' ^ S,

hence a"1 a"1 a £ 5 and s 6 S""* n S = F. Now F is normal in (Ha~l,H) = G,

hence F = 1. Thus we may assume that a = n and b — nh, where ft G -ff — S is an
involution. Now [a,S] = 1 and this means that B C JV(ft). If A = iV, then 4U.B does
not generate G, hence we have a € A such that a = mk (here m £ N and fc £ H — S

is an involution). Obviously k ^ ft and then it follows that m £ 5 , hence A C iV(fc).
Now it is clear that if a = b then a £ N which means that a £ Z(G). Then G = B{a)

and H is normal in G. Thus if aH = bH ^ H, then either a = n G iV and b = nh or
b = m £ N and a = mfc (here ft ^ fc are involutions from H — S). Now n commutes
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with h and m commutes with k. Also nm has to commute with, say, k and from
nmk — kmn it follows that nk = kn. Now n commutes with hk £ S and then (hk) is
normal in (n, H) — G, which is a contradiction with HQ — 1 •

Thus we may assume that A = B and G = (A). Now by Lemma 2.2, we know
that Ha = Hb~x for some a, b £ A and then ab £ H (also ba £ H). Of course, a = b
is not possible. If 0 6 JV, then A C CG(a), hence a £ Z(G), G - H(a) and H is
normal in G. Thus we may assume that a = nh, b — mk where n,m £ N and fc, k are
involutions from H — S. Now nhmk £ I?, hence nhmh £ H (~\ N — 1 and mfc = n " 1 .
Similarly, n* = m~1 and we see that nh — nk = m~1 which means that hk £ S and
n € Ca(hk). This is possible only if A = k. But then mfc = (nh)'1 and 6 = a" 1 .

Thus we know that A = A~l. Now assume that a,b £ A and ab ^ H (thus
6 ^ a~1). We know now that a"1 and b~1 are from A. Thus o " 1 ^ " 1 ^ £ 17 and
b^aba'1 £ Jf, hence a~16~1a66~1a6a~1 £ if. Since m — a2 £ N (now |a| = 2p) we
get a - 1 m 6 o - 1 £ H, thus a"2™6 £ # ° . Now a~2 £ N, thus a"2™6 £ F a (1 AT = 1,
hence mb = a2, that is, 6 £ Ca(a

2) . But then A C CG(a2) , hence a2 £ Z(G) and
G = (a2)H and JJ is normal in G.

Thus .ff is not a maximal subgroup of G. Let G > K > H and 27 be a maximal
subgroup o'f K. Then KQ > 1, by Lemma 2.3. Now HKO/KQ is subnormal in G/KQ,

thus ffiiTG = -f is subnormal in G. If E is a subgroup oi G, E ^ K, H is maximal
in E, then if = K D £ is subnormal in G and we are ready. Thus there exists a unique
subgroup K of G such that H is a maximal subgroup of K. Now H is not normal
in K and NG{H) - H. Thus iT is a Sylow 2-subgroup of G. If if < T and T is a
maximal subgroup of G then T is subnormal in G and, in fact, T is normal in G. Now
H is a Sylow 2-subgroup of T and by the Frattini lemma G = TNG(H) = TH = T, a
contradiction. This completes the proof for finite G.

If G is infinite then we proceed as in the proof of Theorem 3.3 and we see that
G/Z(G) is finite. Thus HZ(G) is subnormal in G and then clearly H is subnormal in
G. D

Now we can prove our main theorem.

THEOREM 4 . 2 . If Q is a loop such that I(Q) is a dihedral 2-group, then Q is

centrally nilpotent.

PROOF: We first observe the obvious fact that the factors of a dihedral group are
either cyclic or dihedral. Then we proceed as in Section 4 of [12] and by applying
Theorem 2.1, Lemma 2.5 and Theorem 4.1, we are done. D
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