CONFORMALLY FLAT HYPERSURFACES OF SYMMETRIC SPACES

YOSHIO MATSUYAMA

(Received 18 April 1983; revised 26 July 1983)

Communicated by K. Mackenzie

Abstract

In this paper we consider how much we can say about an irreducible symmetric space M which admits a single hypersurface with at most two distinct principal curvatures. Then we prove that if N is conformally flat, then N is quasiumbilical and M must be a sphere, a real projective space or the noncompact dual of a sphere or a real projective space.

1980 Mathematics subject classification (Amer. Math. Soc.): 53 C 40, 53 C 35, 53 A 30.

Recently, the following problem was proposed by B. Y. Chen and L. Verstraelen [3]: if we assume that an irreducible symmetric space M admits a single submanifold with a particular property, how much can we say about the ambient space? With respect to this problem, the author showed in [4] the following: (1) If M admits a (connected) locally symmetric hypersurface $N(\operatorname{dim} N \geqslant 3)$ with at most two distinct principal curvatures, then M must be a sphere, a real projective space, or the noncompact dual of a sphere or a real projective space. (2) If an irreducible symmetric space M admits an Einstein hypersurface $N(\operatorname{dim} N \geqslant 3)$ with at most two distinct principal curvatures, then M must be of rank 1.
The purpose of this paper is to prove the following:

Theorem. If an irreducible symmetric space M admits a conformally flat hypersurfaced $N(\operatorname{dim} N \geqslant 4)$ with at most two distinct principal curvatures, then M must be a sphere, a real projective space, or the noncompact dual of a sphere or a real projective space.

[^0]It is well-known that an n-dimensional ($n \geqslant 4$) hypersurface N in a sphere, a real projective space, or the noncompact dual of a sphere or a real projective space is conformally flat if and only if it is quasiumbilical (see [1] for instance). Hence, we know that: A conformally flat hypersurface $N(\operatorname{dim} N \geqslant 4)$ with at most two distinct principal curvatures in an irreducible symmetric space is quasiumbilical (see Theorem 8.1 of [3]).

1. Symmetric spaces and basic formulas

Let M be a connected Riemannian symmetric space. As usual if G denotes the closure of the group of isometries generated by an involutive isometry for each point of M, then G acts transitively on M; hence the isotropy subgroup H, say at 0 , is compact and $M=G / H$. Let \mathbb{G}, \mathfrak{S} denote the Lie algebras corresponding to G, H, respectively. Then we call

$$
\mathfrak{S}=\mathfrak{G}+\mathfrak{M}, \quad \text { and } \mathfrak{G}=[\mathfrak{M}, \mathfrak{M}]
$$

by the Cartan decomposition. It is well-known the space \mathfrak{M} consists of the Killing vector field X whose covariant derivative vanishes at 0 ; in particular, the evaluation map at 0 gives a linear isomorphism of \mathfrak{M} onto $T_{0} M: X \mapsto X(0)$. Hence we have

Lemma 1.1. For the curvature tensor R at 0

$$
R(X, Y) Z=-[[X, Y], Z] \text { for } X, Y, Z \in \mathfrak{M}
$$

Lemma 1.2. A linear subspace L of the tangent space $T_{0} M$ to a symmetric space M is the tangent space to some totally geodesic submanifold N of M if and only if L satisfies the condition $[[\Re, \Re], \Re] \subset \mathfrak{R}$, where

$$
\mathfrak{N}=\{X \in \mathfrak{M} ; X(0) \in L\}
$$

Next, let N be a hypersurface of an $(n+1)$-dimensional Riemannian manifold M. And let ∇ and ∇^{\prime} be the covariant differentiations on M and N, respectively. Then the second fundamental form A of the immersion is given by

$$
\begin{gather*}
\nabla_{X} Y=\nabla_{X}^{\prime} Y+g(A X, Y) \xi \tag{1.1}\\
\nabla_{X} \xi=-A X \tag{1.2}
\end{gather*}
$$

for vector fields X, Y tangent to N and a unit vector field ξ normal to N, where g is the metric tensor of N induced by the immersion from the metric tensor g of M. The equations of Gauss and Codazzi are then given respectively

$$
\begin{align*}
R^{\prime}(X, Y ; Z, W)= & R(X, Y ; Z, W)+g(A Y, Z) g(A X, W) \tag{1.3}\\
& -g(A X, Z) g(A Y, W)
\end{align*}
$$

$$
\begin{equation*}
R(X, Y ; Z, \xi)=g\left(\left(\nabla_{X}^{\prime} A\right) Y, Z\right)-g\left(\left(\nabla_{Y}^{\prime} A\right) X, Z\right), \tag{1.4}
\end{equation*}
$$

for vector fields X, Y, Z, W tangent to N and ξ normal to N, where R and R^{\prime} are the curvature tensors of M and N, respectively, and $R(X, Y ; Z, W)=$ $g(R(X, Y) Z, W)$.

The following result is basic:
Lemma 1.3 (Chen \& Nagano [2]). If an irreducible symmetric space M admits a totally geodesic hypersurface, then M must be a sphere, a real projective space, or the noncompact dual of a sphere or a real projective space.

2. Proof of Theorem

Let N be a hypersurface in M and E_{1}, \ldots, E_{n} be an orthonormal basis of $T_{x} N$, $x \in N$. Then the Ricci tensor S^{\prime} of N satisfies

$$
\begin{align*}
S^{\prime}(Y, Z) & =\sum_{i=1}^{n} R^{\prime}\left(E_{i}, Y ; Z, E_{i}\right) \tag{2.1}\\
& =S(Y, Z)-R(\xi, Y ; Z, \xi)+\operatorname{trace} A g(A Y, Z)-g\left(A^{2} Y, Z\right)
\end{align*}
$$

for $Y, Z \in T_{x} N$, where S denotes the Ricci tensor of M.
We suppose that there is a point x_{0} at which two principal curvatures α, β are exactly distinct. Then we can choose a neighborhood U of x_{0} on which $\alpha \neq \beta$. We put $T_{\alpha}=\{X \in T U \mid A X=\alpha X\}$ and $T_{\beta}=\{X \in T U \mid A X=\beta X\}$. Then the equation (2.1) gives

$$
\begin{align*}
S^{\prime}(Y, Z)= & S(Y, Z)-R(\xi, Y ; Z, \xi) \tag{2.1}\\
& +(p \alpha+(n-p) \beta) g(A Y, Z)-g\left(A^{2} Y, Z\right)
\end{align*}
$$

where p denotes the multiplicity of α. Thus the scalar curvatures ρ^{\prime} and ρ of N and M satisfy

$$
\begin{align*}
\rho^{\prime} & =\sum_{i=1}^{n} S^{\prime}\left(E_{i}, E_{i}\right) \tag{2.2}\\
& =\rho-2 S(\xi, \xi)+(p \alpha+(n-p) \beta)^{2}-\left(p \alpha^{2}+(n-p) \beta^{2}\right) \\
& =\frac{n-1}{n+1} \rho+p(p-1) \alpha^{2}+2 p(n-p) \alpha \beta+(n-p)(n-p-1) \beta^{2}
\end{align*}
$$

where the last equality holds since M is Einsteinian. Now, by the assumption that N is conformally flat, the Weyl conformal curvature tensor of N vanishes. Thus by (2.1)' and (2.2), we see that the curvature tensor R of M satisfies
(2.3)

$$
\begin{aligned}
(n- & 2)\{R(X, Y ; Z, W)+g(A X, W) g(A Y, Z)-g(A X, Z) g(A Y, W)\} \\
= & g(Y, W)\left\{R(\xi, X ; Z, \xi)-(p \alpha+(n-p) \beta) g(A X, Z)+g\left(A^{2} X, Z\right)\right\} \\
& -g(X, W)\left\{R(\xi, Y ; Z, \xi) X-(p \alpha+(n-p) \beta) g(A Y, Z)+g\left(A^{2} Y, Z\right)\right\} \\
& +g(X, Z)\left\{R(\xi, Y ; W, \xi)-(p \alpha+(n-p) \beta) g(A Y, W)+g\left(A^{2} Y, W\right)\right\} \\
& -g(Y, Z)\left\{R(\xi, X ; W, \xi)-(p \alpha+(n-p) \beta) g(A X, W)+g\left(A^{2} X, W\right)\right\} \\
& +\frac{\rho}{n+1}\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W)\} \\
& -\frac{1}{n-1}\left(p(p-1) \alpha^{2}+2 p(n-p) \alpha \beta+(n-p)(n-p-1) \beta^{2}\right) \\
& \cdot\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W)\}
\end{aligned}
$$

for X, Y, Z, W tangent to N.
Let X, Y, Z, W and T be vector fields tangent to N. By differentiation of (2.3) with respect to T, we may obtain, after a straightforward computation, that (2.4) $(n-2)\{g(A T, X) R(W, Z ; Y, \xi)+g(A T, Y) R(Z, W ; X, \xi)$

$$
\begin{aligned}
& +g(A T, Z) R(Y, X ; W, \xi)+g(A T, W) R(X, Y ; Z, \xi) \\
& +g\left(\left(\nabla_{T}^{\prime} A\right) g(A Y, Z)-g\left(\left(\nabla_{T}^{\prime} A\right) X, Z\right) g(A Y, W)\right. \\
& \left.+g(A X, W) g\left(\left(\nabla_{T}^{\prime} A\right) Y, Z\right)-g(A X, Z) g\left(\left(\nabla_{T}^{\prime} A\right) Y, W\right)\right\} \\
& =g(Y, W)\{-R(A T, X ; Z, \xi) \\
& -R(\xi, X ; Z, A T)-(p T \alpha+(n-p) T \beta) g(A X, Z) \\
& \left.-(p \alpha+(n-p) \beta) g\left(\left(\nabla_{T}^{\prime} A\right) X, Z\right)+g\left(\left(\nabla_{T}^{\prime} A^{2}\right) X, Z\right)\right\} \\
& -g(X, W)\{-R(A T, Y ; Z, \xi)-R(\xi, Y ; Z, A T) \\
& -(p T \alpha+(n-p) T \beta) g(A Y, Z) \\
& \left.-(p \alpha+(n-p) \beta) g\left(\left(\nabla_{T}^{\prime} A\right) Y, Z\right)+g\left(\left(\nabla_{T}^{\prime} A^{2}\right) Y, Z\right)\right\} \\
& +g(X, Z)\{-R(A T, Y ; W, \xi) \\
& -R(\xi, Y ; W, A T)-(p T \alpha+(n-p) T \beta) g(A Y, W) \\
& \left.-(p \alpha+(n-p) \beta) g\left(\left(\nabla_{T}^{\prime} A\right) Y, W\right)+g\left(\left(\nabla_{T}^{\prime} A^{2}\right) Y, W\right)\right\} \\
& -g(Y, Z)\{-R(A T, X ; W, \xi) \\
& -R(\xi, X ; W, A T)-(p T \alpha+(n-p) T \beta) g(A X, W) \\
& \left.-(p \alpha+(n-p) \beta) g\left(\left(\nabla_{T}^{\prime} A\right) X, W\right)+g\left(\left(\nabla_{T}^{\prime} A^{2}\right) X, W\right)\right\} \\
& -\frac{1}{n-1}\left(p(p-1) T \alpha^{2}+2 p(n-p) T \alpha \beta+(n-p)(n-p-1) T \beta^{2}\right) \\
& \cdot\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W)\} .
\end{aligned}
$$

If X, Y, Z, W are vectors in T_{α} such that $X=W, Y=Z$ and X, Y are orthonormal, then by (1.4) and (2.4) we find

$$
\begin{align*}
& (n-2)\left\{\begin{array}{l}
2 \alpha X \alpha g(T, X) \\
=-2 \alpha X \alpha g(T, Y)+2 \alpha T \alpha\} \\
=-2 A T \alpha+\alpha Y \alpha g(T, Y)+g\left((\alpha I-A) \nabla_{Y}^{\prime} Y, A T\right) \\
\\
\quad+\alpha X \alpha g(T, X)+g\left((\alpha I-A) \nabla_{X}^{\prime} X, A T\right) \\
\\
\left.\quad-(p T \alpha+(n-p) T \beta) \alpha-(p \alpha+(n-p) \beta) T \alpha+T \alpha^{2}\right\}
\end{array}\right. \tag{2.5}\\
& \quad-\frac{1}{n-1}\left(p(p-1) T \alpha^{2}+2 p(n-p) T \alpha \beta+(n-p)(n-p-1) T \beta^{2}\right)
\end{align*}
$$

In particular, for $X=T$, (2.5) implies

$$
\begin{align*}
& 4(n-2) \alpha X \alpha=-2\{-(2 p-1) \alpha X \alpha-(n-p) \beta X \alpha-(n-p) \alpha X \beta\} \tag{2.6}\\
& -\frac{1}{n-1}\{2 p(p-1) \alpha X \alpha+2 p(n-p) \beta X \alpha \\
& \quad+2 p(n-p) \alpha X \beta+2(n-p)(n-p-1) \beta X \beta\}
\end{align*}
$$

Let $T=X, W=\omega$ in T_{β} and Y, Z in T_{α} be orthonormal vectors. Then (2.4) gives

$$
\begin{equation*}
-(n-2) \beta(\beta-\alpha) g\left(\nabla_{Z}^{\prime} \omega, Y\right)=0 \tag{2.7}
\end{equation*}
$$

for orthonormal vectors Y, Z in T_{α}. By linearization, we find

$$
\begin{equation*}
\beta_{1}^{\beta}\left\{g\left(\nabla_{Y}^{\prime} \omega, Y\right)-g\left(\nabla_{Z}^{\prime} \omega, Z\right)\right\}=0 \tag{2.8}
\end{equation*}
$$

for orthonormal vectors Y, Z in T_{α}. Similarly, we have

$$
\begin{gather*}
\alpha g\left(\nabla_{\omega_{1}}^{\prime} X, \omega_{2}\right)=0, \tag{2.9}\\
\alpha\left\{g\left(\nabla_{\omega_{1}}^{\prime} X, \omega_{1}\right)-g\left(\nabla_{\omega_{2}}^{\prime} X, \omega_{2}\right)\right\}=0 \tag{2.10}
\end{gather*}
$$

for X in T_{α} and orthonormal vectors ω_{1}, ω_{2} in T_{β}.
Let $Y=W, Z$ in T_{α} be orthonormal vectors and $T=\omega_{1}, X=\omega_{2}$ unit vectors in T_{β}. Then (2.4) gives

$$
\begin{align*}
& (n-2)\left\{-\beta g\left(\omega_{1}, \omega_{2}\right) Z \alpha-\alpha(\alpha-\beta) g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)\right. \tag{2.11}\\
& \left.=-\beta(\alpha-\beta) g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)+\beta(\alpha-\beta) g\left(\nabla_{\omega_{2}}^{\prime} Z, \omega_{1}\right)\right\} \\
& -\beta(\alpha-\beta) g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)+\beta g\left(\omega_{1}, \omega_{2}\right) Z \beta \\
& -(p \alpha+(n-p) \beta)(\alpha-\beta) g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)+\left(\alpha^{2}-\beta^{2}\right) g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)
\end{align*}
$$

For unit vectors $Y=W=\omega_{0}$ in T_{β}, Z in T_{α}, and $T=\omega_{1}, X=\omega_{2}$ in T_{β} which are perpendicular to ω_{0}

$$
\begin{align*}
(n-2) & \left\{-\beta g\left(\omega_{1}, \omega_{2}\right) Z \beta+\beta(\alpha-\beta) g\left(\omega_{1}, \omega_{2}\right) g\left(\nabla_{\omega_{0}}^{\prime} Z, \omega_{0}\right)\right. \tag{2.12}\\
& \left.\quad-\beta(\alpha-\beta) g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)\right\} \\
= & -\beta(\alpha-\beta) g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)+\beta g\left(\omega_{1}, \omega_{2}\right) Z \beta \\
& -\beta(\alpha-\beta) g\left(\nabla_{\omega_{1}^{\prime}}^{\prime} Z, \omega_{2}\right)+\beta(\alpha-\beta) g\left(\nabla_{\omega_{2}}^{\prime} Z, \omega_{1}\right) \\
& -(p \alpha+(n-p) \beta)(\alpha-\beta) g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)+\left(\alpha^{2}-\beta^{2}\right) g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right) .
\end{align*}
$$

Subtracting (2.12) from (2.11), we obtain

$$
\begin{align*}
& \alpha\left\{(-\beta Z \alpha+\beta Z \beta) g\left(\omega_{1}, \omega_{2}\right)-\alpha(\alpha-\beta) g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)\right\} \tag{2.13}\\
& =\alpha \beta(\alpha-\beta)\left\{g\left(\omega_{1}, \omega_{2}\right) g\left(\nabla_{\omega_{0}}^{\prime} Z, \omega_{0}\right)-g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)\right\}
\end{align*}
$$

Putting $\omega_{1}=\omega_{2}$ and using (2.10), we find

$$
\begin{equation*}
\alpha\left\{-\beta Z \alpha+\beta Z \beta-\alpha 1 . g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{1}\right)\right\}=0 \tag{2.13}
\end{equation*}
$$

Let $X_{1}, \ldots, X_{p}, \omega_{1}, \ldots, \omega_{n-p}$ be an orthonormal basis of $T_{x} N$ such that X_{1}, \ldots, X_{p} (resp. $\omega_{1}, \ldots, \omega_{n-p}$) forms an orthonormal basis of T_{α} (resp. T_{β}). Since M is Einstein, we have

$$
\begin{align*}
0 & =S\left(X_{i}, \xi\right) \\
& =\sum_{j=1}^{p} R\left(X_{i}, X_{j} ; X_{j}, \xi\right)+\sum_{k=1}^{n-p} R\left(X_{i}, \omega_{k} ; \omega_{k}, \xi\right) \tag{2.14}\\
& =p X_{i} \alpha+(n-p) X_{i} \beta-(n-p)(\alpha-\beta) g\left(\nabla_{\omega_{k}}^{\prime} X_{i}, \omega_{k}\right),
\end{align*}
$$

using (2.10) for all i, k. From (2.13)' and (2.14) we obtain

$$
\begin{equation*}
\alpha\left\{(p \alpha+(n-p) \beta) X_{i} \alpha+(n-p)(\alpha-\beta) X_{i} \beta\right\}=0 \tag{2.15}
\end{equation*}
$$

Now, we assume that $\operatorname{dim} T_{\alpha} \geqslant 3$. Let $X, Y=Z, T=W$ be orthonormal vectors in T_{α}. Then (2.4) gives

$$
\begin{equation*}
(n-1) \alpha X \alpha=0 \tag{2.16}
\end{equation*}
$$

If $\alpha \neq 0$, then from (2.6) we obtain $(n-p-1)(\alpha-\beta) X \beta=0$. Since we may assume $p \neq n-1$, we have $X \beta=0$. Therefore from (2.9), (2.10) and (2.13)' we obtain $g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)=0$ for all ω_{1}, ω_{2} in T_{β}. If $\alpha \equiv 0$, then (2.6) gives $X \beta=0$. Then (2.11) and (2.12) imply

$$
\begin{equation*}
\beta^{2}\left\{(n-p+1) g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)-g\left(\nabla_{\omega_{2}}^{\prime} Z, \omega_{1}\right)\right\}=0 \tag{2.11}
\end{equation*}
$$

(2.12)'

$$
\begin{aligned}
\beta^{2}(n-2)\left\{-g\left(\omega_{1}, \omega_{2}\right) g\right. & \left.\left(\nabla_{\omega_{0}}^{\prime} Z, \omega_{0}\right)+g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{1}\right)\right\} \\
& =\beta^{2}\left\{(n-p+1) g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)-g\left(\nabla_{\omega_{2}}^{\prime} Z, \omega_{1}\right)\right\}=0 .
\end{aligned}
$$

Putting $\omega_{1}=\omega_{2}$ in (2.12)', we have

$$
\begin{equation*}
g\left(\nabla_{\omega_{0}}^{\prime} Z, \omega_{0}\right)=g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{1}\right) \tag{2.17}
\end{equation*}
$$

for orthonormal vectors ω_{0}, ω_{1} in T_{β}. Combining (2.14) and (2.17), we obtain $g\left(\nabla_{\omega}^{\prime} Z, \omega\right)=0$ for all ω in T_{β}. By linearization, we find

$$
\begin{equation*}
g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)+g\left(\nabla_{\omega_{2}}^{\prime} Z, \omega_{1}\right)=0 . \tag{2.18}
\end{equation*}
$$

Summing up (2.11)' and (2.18), we have

$$
(n-p+2) g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)=0,
$$

that is,

$$
g\left(\nabla_{\omega_{1}}^{\prime} Z, \omega_{2}\right)=0
$$

for all ω_{1}, ω_{2} in T_{β}. If $\operatorname{dim} T_{\alpha}=2$, then we have only to show $X \alpha=X \beta=0$ for all unit vectors X in T_{α}, since we can make use of the above argument. Then from (2.6) and (2.15)

$$
\begin{equation*}
\alpha\left\{(2 \alpha+(n-2) \beta) X_{i} \alpha+(n-2)(\alpha-\beta) X_{i} \beta\right\}=0 \tag{2.19}
\end{equation*}
$$

$$
\begin{equation*}
\left\{\left(2 n^{2}-9 n+9\right) \alpha-(n-2)(n-3) \beta\right\} X_{i} \alpha-(n-2)(n-3)(\alpha-\beta) X_{i} \beta=0 . \tag{2.20}
\end{equation*}
$$

Hence we obtain $X_{i} \alpha=X_{i} \beta=0$. Therefore we have $R(X, Y ; Z, \xi)=0$ for all X, Y, Z in $T U$. From Lemmas 1.1, 1.2 and 1.3 we obtain the conclusion.

References

[1] B. Y. Chen, Geometry of submanifolds (M. Dekker, New York, 1973).
[2] B. Y. Chen and T. Nagano, 'Totally geodesic submanifolds of symmetric spaces, II', Duke Math.J. 45 (1978), 405-425.
[3] B. Y. Chen and L. Verstraelen, 'Hypersurfaces of symmetric spaces', Bull. Inst. Math. Acad. Sinica 8 (1980), 201-236.
[4] Y. Matsuyama, 'Some hypersurfaces of symmetric spaces', Canad. Math. Bull. 28 (1983), 303-311.

Department of Mathematics

Chuo University
1-13-27 Kasuga, Bunkyo-ku
Tokyo 112, Japan

[^0]: © 1985 Australian Mathematical Society $0263-6115 / 85 \$$ A $2.00+0.00$

