CONFORMALLY FLAT HYPERSURFACES
OF SYMMETRIC SPACES

YOSHIKO MATSUYAMA

(Received 18 April 1983; revised 26 July 1983)

Communicated by K. Mackenzie

Abstract

In this paper we consider how much we can say about an irreducible symmetric space M which admits a single hypersurface with at most two distinct principal curvatures. Then we prove that if N is conformally flat, then N is quasiumbilical and M must be a sphere, a real projective space or the noncompact dual of a sphere or a real projective space.

Recently, the following problem was proposed by B. Y. Chen and L. Verstraelen [3]: if we assume that an irreducible symmetric space M admits a single submanifold with a particular property, how much can we say about the ambient space? With respect to this problem, the author showed in [4] the following: (1) If M admits a (connected) locally symmetric hypersurface N ($\dim N \geq 3$) with at most two distinct principal curvatures, then M must be a sphere, a real projective space, or the noncompact dual of a sphere or a real projective space. (2) If an irreducible symmetric space M admits an Einstein hypersurface N ($\dim N \geq 3$) with at most two distinct principal curvatures, then M must be of rank 1.

The purpose of this paper is to prove the following:

Theorem. If an irreducible symmetric space M admits a conformally flat hypersurfaced N ($\dim N \geq 4$) with at most two distinct principal curvatures, then M must be a sphere, a real projective space, or the noncompact dual of a sphere or a real projective space.
It is well-known that an n-dimensional ($n \geq 4$) hypersurface N in a sphere, a real projective space, or the noncompact dual of a sphere or a real projective space is conformally flat if and only if it is quasiumbilical (see [1] for instance). Hence, we know that: A conformally flat hypersurface N ($\dim N \geq 4$) with at most two distinct principal curvatures in an irreducible symmetric space is quasiumbilical (see Theorem 8.1 of [3]).

1. Symmetric spaces and basic formulas

Let M be a connected Riemannian symmetric space. As usual if G denotes the closure of the group of isometries generated by an involutive isometry for each point of M, then G acts transitively on M; hence the isotropy subgroup H, say at 0, is compact and $M = G/H$. Let \mathfrak{g}, \mathfrak{h} denote the Lie algebras corresponding to G, H, respectively. Then we call $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$, and $\mathfrak{h} = [\mathfrak{m}, \mathfrak{m}]$ by the Cartan decomposition. It is well-known the space \mathfrak{m} consists of the Killing vector field X whose covariant derivative vanishes at 0; in particular, the evaluation map at 0 gives a linear isomorphism of \mathfrak{m} onto T_0M: $X \mapsto X(0)$. Hence we have

Lemma 1.1. For the curvature tensor R at 0

$$R(X, Y)Z = -[[X, Y], Z] \quad \text{for } X, Y, Z \in \mathfrak{m}.$$

Lemma 1.2. A linear subspace L of the tangent space T_0M to a symmetric space M is the tangent space to some totally geodesic submanifold N of M if and only if L satisfies the condition $[[\mathfrak{m}, \mathfrak{m}], \mathfrak{m}] \subset \mathfrak{m}$, where

$$\mathfrak{m} = \{ X \in \mathfrak{m}; X(0) \in L \}.$$

Next, let N be a hypersurface of an $(n + 1)$-dimensional Riemannian manifold M. And let ∇ and ∇' be the covariant differentiations on M and N, respectively. Then the second fundamental form A of the immersion is given by

$$\nabla_X Y = \nabla'_X Y + g(A X, Y) \xi,$$

$$\nabla_X \xi = -A X,$$

for vector fields X, Y tangent to N and a unit vector field ξ normal to N, where g is the metric tensor of N induced by the immersion from the metric tensor g of M. The equations of Gauss and Codazzi are then given respectively

$$R'(X, Y; Z, W) = R(X, Y; Z, W) + g(A Y, Z)g(A X, W) - g(A X, Z)g(A Y, W),$$

https://doi.org/10.1017/S1446788700023065 Published online by Cambridge University Press
(1.4) \[R(X, Y; Z, \xi) = g((\nabla_X A) Y, Z) - g((\nabla_Y A) X, Z), \]
for vector fields \(X, Y, Z, W \) tangent to \(N \) and \(\xi \) normal to \(N \), where \(R \) and \(R' \) are the curvature tensors of \(M \) and \(N \), respectively, and \(R(X, Y; Z, W) = g(R(X, Y)Z, W) \).

The following result is basic:

Lemma 1.3 (Chen & Nagano [2]). If an irreducible symmetric space \(M \) admits a totally geodesic hypersurface, then \(M \) must be a sphere, a real projective space, or the noncompact dual of a sphere or a real projective space.

2. Proof of Theorem

Let \(N \) be a hypersurface in \(M \) and \(E_1, \ldots, E_n \) be an orthonormal basis of \(T_x N \), \(x \in N \). Then the Ricci tensor \(S' \) of \(N \) satisfies

\[
(2.1) \quad S'(Y, Z) = \sum_{i=1}^{n} R'(E_i, Y; Z, E_i) \\
= S(Y, Z) - R(\xi, Y; Z, \xi) + \text{trace} g(AY, Z) - g(A^2 Y, Z)
\]

for \(Y, Z \in T_x N \), where \(S \) denotes the Ricci tensor of \(M \).

We suppose that there is a point \(x_0 \) at which two principal curvatures \(\alpha, \beta \) are exactly distinct. Then we can choose a neighborhood \(U \) of \(x_0 \) on which \(\alpha \neq \beta \). We put \(T_\alpha = \{ X \in TU | AX = \alpha X \} \) and \(T_\beta = \{ X \in TU | AX = \beta X \} \). Then the equation (2.1) gives

\[
(2.1)' \quad S'(Y, Z) = S(Y, Z) - R(\xi, Y; Z, \xi) \\
+ (p\alpha + (n - p)\beta) g(AY, Z) - g(A^2 Y, Z),
\]

where \(p \) denotes the multiplicity of \(\alpha \). Thus the scalar curvatures \(\rho' \) and \(\rho \) of \(N \) and \(M \) satisfy

\[
(2.2) \quad \rho' = \sum_{i=1}^{n} S'(E_i, E_i) \\
= \rho - 2S(\xi, \xi) + (p\alpha + (n - p)\beta)^2 - (p\alpha^2 + (n - p)\beta^2) \\
= \frac{n - 1}{n + 1} \rho + p(p - 1)\alpha^2 + 2p(n - p)\alpha \beta + (n - p)(n - p - 1)\beta^2,
\]

where the last equality holds since \(M \) is Einsteinian. Now, by the assumption that \(N \) is conformally flat, the Weyl conformal curvature tensor of \(N \) vanishes. Thus by (2.1)' and (2.2), we see that the curvature tensor \(R \) of \(M \) satisfies
\[(n - 2) \left\{ R(X, Y; Z, W) + g(AX, W)g(AY, Z) - g(AX, Z)g(AY, W) \right\} = g(Y, W) \left\{ R(\xi, X; Z, \xi) - (p\alpha + (n - p)\beta)g(AX, Z) + g(A^2X, Z) \right\} \\
- g(X, W) \left\{ R(\xi, Y; Z, \xi)X - (p\alpha + (n - p)\beta)g(AY, Z) + g(A^2Y, Z) \right\} \\
+ g(X, Z) \left\{ R(\xi, Y; W, \xi) - (p\alpha + (n - p)\beta)g(AX, W) + g(A^2Y, W) \right\} \\
- g(Y, Z) \left\{ R(\xi, X; W, \xi) - (p\alpha + (n - p)\beta)g(AX, W) + g(A^2X, W) \right\} \\
+ \frac{p}{n+1} \left\{ g(X, W)g(Y, Z) - g(X, Z)g(Y, W) \right\} \\
- \frac{1}{n-1} \left(p(p-1)\alpha^2 + 2p(n-p)\alpha\beta + (n-p)(n-p-1)\beta^2 \right) \\
\cdot \left\{ g(X, W)g(Y, Z) - g(X, Z)g(Y, W) \right\} \\
\] for \(X, Y, Z, W \) tangent to \(N \).

Let \(X, Y, Z, W \) and \(T \) be vector fields tangent to \(N \). By differentiation of (2.3) with respect to \(T \), we may obtain, after a straightforward computation, that

\[(n - 2) \left\{ g(AX, X)R(W, Z; Y, \xi) + g(AX, Y)R(Z, W; X, \xi) \right\} \\
+ g(AX, Z)R(Y, X; W, \xi) + g(AX, W)R(X, Y; Z, \xi) \\
+ g(AX, W)g((\nabla^T_A Y, Z) - g(AX, Z)g((\nabla^T_A Y, W)) \\
= g(Y, W) \left\{ -R(AX, X; Z, \xi) \\
- (p\alpha + (n - p)\beta)g(AY, Z) + g((\nabla^T_A)^2 X, Z) \right\} \\
- g(AX, W) \left\{ -R(AX, Y; Z, \xi) - R(\xi, Y; Z, \xi) \\
- (p\alpha + (n - p)\beta)g((\nabla^T_A) Y, Z) + g((\nabla^T_A)^2 Y, Z) \right\} \\
+ g(AX, W) \left\{ -R(AX, Y; W, \xi) \\
- (p\alpha + (n - p)\beta)g((\nabla^T_A Y, W) + g((\nabla^T_A)^2 Y, W) \right\} \\
- g(AX, W) \left\{ -R(\xi, X; W, \xi) \\
- (p\alpha + (n - p)\beta)g((\nabla^T_A) X, W) + g((\nabla^T_A)^2 X, W) \right\} \\
- \frac{1}{n-1} \left(p(p-1)\alpha^2 + 2p(n-p)\alpha\beta + (n-p)(n-p-1)\beta^2 \right) \\
\cdot \left\{ g(AX, W)g(Y, Z) - g(AX, Z)g(Y, W) \right\}. \]
If \(X, Y, Z, W \) are vectors in \(T_a \) such that \(X = W, Y = Z \) and \(X, Y \) are orthonormal, then by (1.4) and (2.4) we find

\[
(2.5) \quad (n - 2)\{2\alpha Xa(T, X) + 2\alpha Ya(T, Y) + 2\alpha Ta\} =
-2\{-2ATa + \alpha Ya(T, Y) + g((\alpha I - A)\nabla'_Y Y, AT) + \alpha Xa(T, X) + g((\alpha I - A)\nabla'_X X, AT) \\
- \(pTa + (n - p)TB \)a - (\(p\alpha + (n - p)\beta \))Ta + Ta^2 \}
- \frac{1}{n - 1} \{p(p - 1)Ta^2 + 2p(n - p)Ta\beta + (n - p)(n - p - 1)TB^2 \}.
\]

In particular, for \(X = T \), (2.5) implies

\[
(2.6) \quad 4(n - 2)\alpha Xa = -2\{-2(2p - 1)\alpha Xa - (n - p)\beta Xa - (n - p)\alpha X\beta \} \\
- \frac{1}{n - 1} \{2p(p - 1)\alpha Xa + 2p(n - p)\beta Xa \\
+ 2p(n - p)\alpha X\beta + 2(n - p)(n - p - 1)\beta X\beta \}.
\]

Let \(T = X, W = \omega \) in \(T_\beta \) and \(Y, Z \) in \(T_a \) be orthonormal vectors. Then (2.4) gives

\[
(2.7) \quad -(n - 2)\beta(\beta - \alpha)g(\nabla'_Z \omega, Y) = 0
\]
for orthonormal vectors \(Y, Z \) in \(T_a \). By linearization, we find

\[
(2.8) \quad \beta_i\{g(\nabla'_Y \omega, Y) - g(\nabla'_Z \omega, Z)\} = 0
\]
for orthonormal vectors \(Y, Z \) in \(T_a \). Similarly, we have

\[
(2.9) \quad \alpha g(\nabla'_\omega_1 X, \omega_2) = 0,
\]
\[
(2.10) \quad \alpha\{g(\nabla'_\omega_1 X, \omega_1) - g(\nabla'_\omega_2 X, \omega_2)\} = 0
\]
for \(X \) in \(T_a \) and orthonormal vectors \(\omega_1, \omega_2 \) in \(T_\beta \).

Let \(Y = W, Z \) in \(T_a \) be orthonormal vectors and \(T = \omega_1, X = \omega_2 \) unit vectors in \(T_\beta \). Then (2.4) gives

\[
(2.11) \quad (n - 2)\{-\beta g(\omega_1, \omega_2)Z\alpha - \alpha(\alpha - \beta)g(\nabla'_\omega_1 Z, \omega_2) \\
= -\beta(\alpha - \beta)g(\nabla'_\omega_1 Z, \omega_2) + \beta(\alpha - \beta)g(\nabla'_\omega_2 Z, \omega_1) \}
- \beta(\alpha - \beta)g(\nabla'_\omega_1 Z, \omega_2) + \beta g(\omega_1, \omega_2)Z\beta \\
- (p\alpha + (n - p)\beta)(\alpha - \beta)g(\nabla'_\omega_1 Z, \omega_2) + (\alpha^2 - \beta^2)g(\nabla'_\omega_1 Z, \omega_2).
\]
For unit vectors \(Y = W = \omega_0 \) in \(T_\beta, \) \(Z \) in \(T_a, \) and \(T = \omega_1, \) \(X = \omega_2 \) in \(T_\beta \) which are perpendicular to \(\omega_0 \)

(2.12)

\[
(n - 2) \left\{ -\beta g(\omega_1, \omega_2) Z\beta + \beta (\alpha - \beta) g(\omega_1, \omega_2) g(\nabla_{\omega_1} Z, \omega_0) - \beta (\alpha - \beta) g(\nabla_{\omega_1} Z, \omega_2) \right\}
\]

\[
= -\beta (\alpha - \beta) g(\nabla_{\omega_1} Z, \omega_2) + \beta g(\omega_1, \omega_2) Z\beta
\]

\[
- \beta (\alpha - \beta) g(\nabla_{\omega_1} Z, \omega_2) + \beta (\alpha - \beta) g(\nabla_{\omega_1} Z, \omega_1)
\]

\[
- (p \alpha + (n - p) \beta)(\alpha - \beta) g(\nabla_{\omega_1} Z, \omega_2) + (\alpha^2 - \beta^2) g(\nabla_{\omega_1} Z, \omega_2).
\]

Subtracting (2.12) from (2.11), we obtain

(2.13)

\[
\alpha \{-\beta Z\alpha + \beta Z\beta\} g(\omega_1, \omega_2) - \alpha (\alpha - \beta) g(\nabla_{\omega_1} Z, \omega_2)\}
\]

\[
= \alpha \beta (\alpha - \beta) \{ g(\omega_1, \omega_2) g(\nabla_{\omega_1} Z, \omega_0) - g(\nabla_{\omega_1} Z, \omega_2) \}
\]

Putting \(\omega_1 = \omega_2 \) and using (2.10), we find

(2.13)'

\[
\alpha \{-\beta Z\alpha + \beta Z\beta - \alpha \beta \} g(\nabla_{\omega_1} Z, \omega_1) \} = 0
\]

Let \(X_1, \ldots, X_p, \omega_1, \ldots, \omega_{n-p} \) be an orthonormal basis of \(T_x N \) such that \(X_1, \ldots, X_p \) (resp. \(\omega_1, \ldots, \omega_{n-p} \)) forms an orthonormal basis of \(T_a \) (resp. \(T_\beta \)). Since \(M \) is Einstein, we have

\[
0 = S(X_i, \xi)
\]

(2.14)

\[
= \sum_{j=1}^{p} R(X_i, X_j; X_j, \xi) + \sum_{k=1}^{n-p} R(X_i, \omega_k; \omega_k, \xi)
\]

\[
= pX_i \alpha + (n - p)X_i \beta - (n - p)(\alpha - \beta) g(\nabla_{\omega_k} X_i, \omega_k),
\]

using (2.10) for all \(i, k. \) From (2.13)' and (2.14) we obtain

(2.15)

\[
\alpha \{ (p \alpha + (n - p) \beta) X_i \alpha + (n - p)(\alpha - \beta) X_i \beta \} = 0.
\]

Now, we assume that \(\dim T_a \geq 3. \) Let \(X, Y = Z, T = W \) be orthonormal vectors in \(T_a. \) Then (2.4) gives

(2.16)

\[
(n - 1) a X\alpha = 0.
\]

If \(a \neq 0, \) then from (2.6) we obtain \((n - p - 1)(\alpha - \beta) X\beta = 0. \) Since we may assume \(p \neq n - 1, \) we have \(X\beta = 0. \) Therefore from (2.9), (2.10) and (2.13)' we obtain \(g(\nabla_{\omega_1} Z, \omega_2) = 0 \) for all \(\omega_1, \omega_2 \) in \(T_\beta. \) If \(\alpha \equiv 0, \) then (2.6) gives \(X\beta = 0. \) Then (2.11) and (2.12) imply

(2.11)'

\[
\beta^2 \{ (n - p + 1) g(\nabla_{\omega_1} Z, \omega_2) - g(\nabla_{\omega_2} Z, \omega_1) \} = 0
\]
Putting \(\omega_1 = \omega_2 \) in (2.12)', we have

\[
\beta^2 (n - 2) \left\{-g(\omega_1, \omega_2) g(\nabla'_{\omega_0} Z, \omega_0) + g(\nabla'_{\omega_1} Z, \omega_1)\right\} = 0.
\]

for orthonormal vectors \(\omega_0, \omega_1 \) in \(T_\beta \). Combining (2.14) and (2.17), we obtain

\[
g(\nabla'_{\omega_1} Z, \omega_1) = 0.
\]

By linearization, we find

\[
(n - p + 2) g(\nabla'_{\omega_1} Z, \omega_2) = 0,
\]

that is,

\[
g(\nabla'_{\omega_1} Z, \omega_2) = 0
\]

for all \(\omega_1, \omega_2 \) in \(T_\beta \). If \(\dim T_\alpha = 2 \), then we have only to show \(X_\alpha = X_\beta = 0 \) for all unit vectors \(X \) in \(T_\alpha \), since we can make use of the above argument. Then from

(2.6) and (2.15)

\[
\alpha \{ (2\alpha + (n - 2)\beta) X_\alpha + (n - 2)(\alpha - \beta) X_\beta \} = 0
\]

and

\[
(2n^2 - 9n + 9) \alpha - (n - 2)(n - 3)\beta \} X_\alpha - (n - 2)(n - 3)(\alpha - \beta) X_\beta = 0.
\]

Hence we obtain \(X_\alpha = X_\beta = 0 \). Therefore we have \(R(X, Y; Z, \xi) = 0 \) for all \(X, Y, Z \) in \(TU \). From Lemmas 1.1, 1.2 and 1.3 we obtain the conclusion.

References