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Abstract
In this paper, I introduce a Bayesian model for detecting changepoints in a time series of overdispersed

counts, such as contributions to candidates over the course of a campaign or counts of terrorist violence. To

avoid having to specify the number of changepoint ex ante, this model incorporates a hierarchical Dirichlet

process prior to estimate the number of changepoints as well as their location. This allows researchers

to discover salient structural breaks and perform inference on the number of such breaks in a given time

series. I demonstrate the usefulness of the model with applications to campaign contributions in the 2012

U.S. Republican presidential primary and incidences of global terrorism from 1970 to 2015.

Keywords: structural change, Bayesian nonparametric model, count data

1 Introduction

A common task in the analysis of time-series count data is to estimate any structural breaks in

the distribution of the count (Spirling 2007; Brandt and Sandler 2010; Park 2010). For example,

in electoral campaigns, the number of contributions to a given candidate represents a costly

form of political participation and, thus, can be seen as a measure of enthusiasm for a particular

candidate. Discovering a shift in the distribution of these contributions over time could provide a

measure of when a candidacy takes off or falls flat.

To estimate these shifts, I develop a nonparametric Bayesian changepoint model with two

important features thatmake it suitable for handling awide range of count data such as campaign

contributions. First, the model relies on a hierarchical Dirichlet process (HDP) prior to allow the

model to infer the number of changepoints from the data (Teh et al. 2006). Obviously, for most

applications, it would extraordinarily difficult for researchers to know, with certainty, the number

of changepoints in the data. Formany researchers, in fact, estimating the number of changepoints

might be as interesting as estimating their location. The HDP prior is one of several recentmodels

that allows for estimation and inference on both the number and the location of changepoints,

making it an extremely flexible model for a wide array of applications.

Second, I model the distribution of the counts as negative binomial, which can account for

overdispersion in count data. Extant changepoint models for count data in political science

(Spirling 2007; Brandt and Sandler 2010; Park 2010) rely on the Poisson distribution, but many

types of counts can have higher variance than a Poisson model would imply, which can lead to

incorrect inferences about the number and timing of changepoints. Campaigns often attempt

to fundraise through email or at events, both of which lead to clusters of donations at specific

times. In counts of terrorist activity, the number of injuries in a particular month might exhibit

overdispersion since one attack might produce a large number of injuries and one conflict might

Author’s note: Thanks to Steve Ansolabehere, AdamGlynn, Gary King, KevinQuinn, Maya Sen, and participants at the Texas

A&M Modeling Politics and Policy in Time and Space Conference for comments and suggestions. All remaining errors are

my own. Data and replication code for this article can be found in Blackwell (2017). The routines described in this paper

have been implemented in the R package MCMCpack (Martin, Quinn and Park 2011).
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producemany attacks. The negative binomialmodel easily handles these types of overdispersion.

These two model features make this a powerful and flexible approach to estimating structural

breaks in count data.

2 A Model for Changepoints in Overdispersed Count Data

2.1 Changepoint models
Changepoint models estimate discrete changes in the distribution of time-series data. I focus on

a specific class of changepoint models called hidden Markov models (HMMs). Given a time series

of observed contribution counts, y = (y1, . . . , yT ), an HMM assumes that the count at time t is

independent of other time periods conditional on time-specific state variables, st , which follow

a Markov process. In the usual finite HMM, there are a finite number of states, st ∈ {1, . . . ,K },

and each state, st = k , is associated with a particular set of parameters for the distribution of the

outcome, θk : yt �st ∼ F (θst ), where F (·) is a family of distributions.
Changepoint models have been fruitfully applied to count data in many contexts. Chib (1998)

developed an unconditional Poisson changepoint model to find changes in the Poisson rate

parameter over time. Park (2010) extended thismodel to a conditionalPoisson changepointmodel

that could find structural breaks in a vector of Poisson regression coefficients. One drawback

of these approaches is the Poisson model is a poor fit for count data that is overdispersed.

Thesemodels implicitly assume that the (conditional) mean in any specific regime is equal to the

(conditional) variance, which is unlikely to hold in general and fails in the applications below. In

theSupplementalMaterials,1 I show that usingaPoissonmodel onoverdispersed countdata leads

to incorrect inferences on the number and timing of changepoints.

As shown by Frühwirth-Schnatter et al. (2009) in the context of mixture modeling, we can

handleoverdispersion inacountmodelbyaugmenting theusualPoissonwitha randomintercept:

yt �st = k , βk , ηt ∼ Po(ηt exp(X ′t βk )), (1)

where Xt is a J × 1 vector of covariates, βk are the J × 1 vector coefficients on the covariates

from state k , and β = (β1, . . . , βK ) is the collection of coefficients across states. If no covariates are

included except an intercept term, then each βk is a scalar. The random effects, η = (η1, . . . , ηT ),

allow for the marginal distribution of the data (that is, p(yt �λt )) to have a separate mean and

variance. In fact, if we place a Gamma prior on the random intercept,

ηt �st = k , ρk ∼ Ga(ρk , ρk ), (2)

then the distribution of the data (possibly conditional onXt ) after marginalizing over the random

effects is negative binomial. Negative binomial models are common in political science for

handling count data with overdispersion (King 1989). Note that the prior in (2) allows for different

amounts of overdispersion in different regimes. As ρk tends toward infinity, the model converges

to a Poissonmodel.

2.2 Estimating the number of changepoints
A changepoint in an HMM is when the time-series transitions from one state to another, so that

st � st+t . Thus, specifying how themodel switches in this fashion is important to HMMs in general

and changepoint models, specifically. Chib (1998) introduced a Bayesian HMM with a constraint

on this transition process so that if st = k , then st+1 can only stay in state k or transition to a new

state, k + 1 and there is a known number of regimes, K . In that model, each of these K regimes

1 Available online at https://doi.org/10.1017/pan.2017.42.
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must be visited so there are exactly K − 1 changepoints, which can create misleading estimates if
K is misspecified.

To avoid having to specify the number of changepoints a priori, I rely on a Bayesian

nonparametric approach called the hierarchical Dirichlet process or HDP (Teh et al. 2006) that

allows the model to infer (1) the number of changepoints and (2) their location. The HDP is a

generalization of the Dirichlet process prior that creates an infinite mixture models as opposed

to the finite mixture model common in changepoint models.2 Thus, the Dirichlet process prior

places no restrictions on the number of regimes a priori (Ferguson 1973; Escobar and West

1995). Hierarchical Dirichlet processes allow for different groups of observations to have different

mixtures, but to share mixture components (that is, what is being mixed over) across groups. In

the context of changepoint models and HMMs, the groups are defined by the state, st , and the

mixtures are the transition probabilities between one state to the next.

The HDP for HMMs (called HDP-HMM) places structure on the transition probabilities from one

state to another. Given that the process in state j at time t , we need to determine the probability

that the process stays in this state or transitions to a new state, as captured by the probability

vector πj . When there are an infinite number of possible states, this is complicated because πj is

infinite dimensional. Furthermore, each state should have its own set of transition probabilities so

that, for instance, the probability of staying in a state is higher than leaving it. Thus, there will be

an infinite number of transition probability vectors, πj . The hierarchical Dirichlet process model

handles thisby treating these transitionprobabilitiesasbeingdrawn fromaDirichletprocessprior.

One way to represent the HDP-HMM is as a limit of finite hierarchical models:

yt �st , β , ηt ∼ Po(ηt exp(Xt βst )) (3)

ηt �st , ρ ∼ Ga(ρst , ρst ) (4)

st �st−1 = j ,π j ∼ Discrete(πj 1, . . . , πjK ) (5)

π j �α , δ ∼ Dirichlet(αδ1, . . . , αδK ), (6)

δ �γ ∼ Dirichlet(γ/K , . . . , γ/K ). (7)

In the implementation of the sampler, I assume that the distribution of the initial s1 is uniform

over the set of possible states. In this model, each current state j has its own vector of transition

probabilities to other states, drawn from a Dirichlet distribution, which is itself dependent on a

distribution δ that is also drawn from a Dirichlet. This common distribution allows each of the

state-specific distributions to share information and the concentration parameter α controls how

similar the π j vectors are to δ. This finite model is equivalent to the HDP-HMM as we let K → ∞.
For a richer description of the HDP-HMM and HDPs more generally, see Teh et al. (2006).

One potential drawback to using such a clusteringmodel for detecting changepoints is that the

HDP-HMMwill often rapidly switch between different states with the same parameter values (Fox

et al. 2011). To avoid these redundant states, I rely on the sticky HDP-HMM approach of Fox et al.

(2011), which models the transition probabilities with a self-transition bias:

π j �α , δ ∼ Dirichlet(αδ1, . . . , αδj + κ, . . . , αδK ). (8)

The κ in this derivation is the self-transitionbias andwill increase theprobability of staying in state

j , πj j , relative to transitioning to a new state. Thus, the prior means of the transition probabilities

2 For other uses of Dirichlet process priors in political science, see Gill and Casella (2009), Spirling and Quinn (2010), and

Grimmer (2011).
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are:

E [πj k �δ, α , κ] =
αδk + κ1{j = k }

α + κ
, (9)

where 1{·} is an indicator function. Note that this model allows the observation process to move
back and forth between all states, whereas inmost traditional changepoint models, observations

can only move “forward” to a new state and cannot “return” to a previous state Chib (1998).

In practice, there is no need to draw parameters for an infinite number of regimes. It is possible

to use a weak limit approximation with a finite, but large, number of regimes, K (Ishwaran and

James 2001). This will not limit the number of regimes estimated by the model, so long as the

upper bound on the number of regimes is large enough to never truncate the distribution in

practice. In the applications below, I use such an approximation with K = 15, which is sufficient

for both applications.

2.3 Comparison to other approaches to selecting the number of changepoints
A common approach to determining the number of changepoints is to estimate many models,

each conditional on a number of changepoints, then use a model selection tool to choose the

“best” model (Chib 1998; Park 2011). These techniques require the calculation of the marginal

likelihood, which can be easily done when the estimation approach consists of a Gibbs sampler

(Chib 1995) or Metropolis–Hastings (Chib and Jeliazkov 2011) or some combination of the two, but

these simple estimators can face difficulties in mixture and Markov switching models (Frühwirth-

Schnatter 2004). More sophisticated marginal likelihood estimators like bridge sampling require

specialized coding and tuning to achieve goodperformance. Furthermore,model comparison can

be computationally intensive since it requires full MCMC runs for each number of changepoints.

To give some perspective, I implemented a negative binomial version of the fixed-regime Chib

(1998) model with a calculation of the marginal likelihood, ran it with 11 candidate models with

k ∈ {0, 1, . . . , 10} changepoints assumed a priori, and calculated the marginal likelihood of each
model. The average time to sample 5000 draws (after a burn-in of 1000 draws) for a given number

of changepoints was 81.7 seconds, whereas the sticky HDP-HMM algorithm with 5000 draws took

89.9 seconds.

Another approach is to create a trans-dimensional MCMC algorithm that moves between

models with different numbers of regimes (Green 1995; Park 2010). These techniques can be

technically challenging to implement because there must be some mapping between parameter

sets in the different models and so usually need to be custom-tailored and tuned to a particular

application (Capp, Moulines and Rydén 2005, pp. 488–500). Furthermore, when poorly designed

or not properly tuned, these approaches can experience poor performance due to low mixing

between states.

Finally, the HDP-HMM (sticky or otherwise) is one in a class of models, often referred to as

infinite HiddenMarkov Models, that allow for a arbitrary number of regimes. Johnson andWillsky

(2013) develop a Bayesian nonparametric hidden semi-Markov models (HSMM) also based on an

HDP, which allow for the explicit modeling of the duration of each regime (see also Koop and

Potter 2007; Giordani and Kohn 2008). This approach can be quite useful when the distribution

of the state durations is of direct interest or when durations are of very different lengths (Huggins

and Wood 2014). These models, however, are more computationally intensive than the present

approach. Ko, Chong and Ghosh (2015) presents a related HMM with a Dirichlet Process prior

but with a left-to-right constraint on the regime transitions. The HDP, on the other hand, allows

regimes to be revisited and thus allows regimes to share information and produce more efficient

estimates of the underlying parameters. One downside of using Dirichlet process priors is that

they tend to overfit the data, which can lead to overestimation in the number of changepoints

(Miller and Harrison 2014). As shown in a simulation exercise in the Supplemental Materials, the
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self-transition bias in the sticky HDP-HMM appears to help partially alleviate this issue, though

even thismodelmay place posteriormass on higher numbers of changepoints even as the sample

size grows. In short, the theoretical properties of this approach as the sample size grows have not

been firmly established, but is an interesting avenue for future research.

In the Supplemental Materials, I perform simulations to see how these various methods

perform on a handful of data situations. I find that, when the outcome distributions are properly

specified, many of these techniques for inferring the number of changepoints give very similar

answers. Overall, it is important to note that there is no single best method for estimating the

number of changepoints across all contexts. All have strengths and weaknesses that depend on

the context at hand.

2.4 Quantities of interest
In the Supplemental Materials, I describe a Markov chain Monte Carlo (MCMC) approach to

estimating this model. There are several quantities of interest that can be calculated from

the MCMC output. Before describing these, it is important to note that in mixture models like

the one considered here, there is long-standing problem of interpreting quantities called the

label-switching problem (Jasra, Holmes and Stephens 2005; Geweke 2007). In short, this problem

occurs because switching the regime number of a given regime from, say, 1 to 2 has no effect

on the posterior. This leads to a multi-modal posterior and a situation where “regime 1” in one

MCMCdrawmight be referred to as “regime 2” in another draw. There are severalways of handling

this issue, including constraining the regimes to be ordered over time as in Chib (1998) or only

focusing on quantities that are invariant to relabeling (Geweke 2007). This paper focuses on the

latter approach, so it is crucial to choose quantities of interest with care.

First, tomeasure the locationof changepoints,wemust find timeperiodswhere the latent state

switched regimes, which again require some care due to the label-switching problem. To do this,

I simply calculate the posterior changepoint probability:

ĉt =
1

M

M∑

m=1

1
(
ŝ (m)t � ŝ (m)

t−1
)
, (10)

where s (m)t is themth MCMC draw of the regime for observation t , andM is the number of MCMC

draws. Note that this quantity is invariant to relabeling of the regime numbers since it is only

about comparing labelswithin adrawof theMCMCoutput.We can calculate this straightforwardly

from the MCMC output by finding the proportion of draws where a change occurs at t . The

cumulative sumof these probabilities up to period t will be equal to the posterior average number

of changepoints up to t , which can be useful when changepoint probabilities are spread out over

multiple periods. More generally, we can calculate the posterior probability that two observations

belong to the same regime: âj t =
1
M

∑M
m=1 1(ŝ

(m)
j

= ŝ (m)t ). A plot of this matrix of values can show

where regimes appear to change and when certain regimes are “revisited” in the future. Finally,

to avoid the labeling problem for a particular set of regime parameters, I calculate the posterior

distribution of the parameters for a given day rather than for a particular regime. One potential

drawback of thesemeasures is that they cannot be used to construct transitionmatrices between

states since this would require the states to be consistent over MCMC draws.

3 Illustrations of the Model

To demonstrate the usefulness of the game-changers model, I apply it to two empirical settings:

campaign contributions and terrorist attacks. For both, I use the MCMC algorithm described in
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Figure 1. Contributions and changepoints for Herman Cain in the 2012 Republican Primary.

the Supplemental Material with 100,000 iterations, thinned by 100, with a burn-in period of 5,000

iterations.3

3.1 The rise and fall of Herman Cain
The Federal Election Commission (FEC) collects data on contributions of $200 or more to

campaigns for federal office made by individuals and groups. The FEC requires campaigns

to report several pieces of information, including the date that the campaign received the

contribution (Federal Election Commission 2011). These reports allow researchers to track both

the daily number of contributions made to a campaign along with the amount contributed.

Unfortunately, extant changepoint models are poorly suited to handle campaign contributions

data due to the clustering of both fundraising attempts and contribution processing, both of

which lead to overdispersion in the contribution counts. However, these data provide an excellent

demonstration of the validity of themodel. As an illustration, I consider the candidacy of Herman

Cain in the 2012 Republican primary. Cain was one of many candidates vying for the nomination

and one of a few to reach the status of frontrunner, quickly losing that status due in part to

allegations of sexual misconduct. The quick ups and downs of Cain’s campaign provide a good

target for the changepoint model.

Figure 1 presents the posterior probability of a changepoint in the top panel.4 In the bottom

panel, I plot the raw number of contributions alongwith the posteriormean of λt , themean of the

negative binomial distribution for each observation in red. The vertical red lines correspond to

dates that have greater than 0.5 posterior probability of being a changepoint. Table 1 lists each of

these estimated changepoints and its corresponding event in the campaign. The model correctly

identifiesmajor shifts in thedistributionof contributions toHermanCain that correspond toactual

prominent events in his campaign. The model correctly identifies his rise after winning a key

straw poll on September 24th, 2011, (Sutton and Holland 2011) and his fall after sexualmisconduct

3 The data and replication code for these empirical applications can be found in Blackwell (2017).

4 I preprocess the data by removing weekends and the days leading up FEC filing dates in order focus on changepoints

related to contributor behavior. This is akin to removing stop words when clustering text data.
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Table 1. Estimated Herman Cain changepoints and their substantive explanations. Pr(Change) gives the

posterior probability of changepoint on the given dates.

Changepoint Pr(Change) Direction Event

May 6, 2011 0.961 + Fox News debate (May 5)

May 9, 2011 0.818 −
May 23, 2011 0.977 + Announces candidacy (May 21)

May 25, 2011 0.983 −
Sep. 23, 2011 0.938 + Wins Florida 5 Straw Poll (Sep. 24)

Oct. 4, 2011 0.653 +

Nov. 10, 2011 0.930 − Sexual misconduct allegations (Nov. 7)

Dec. 5, 2011 0.814 − Suspends campaign (Dec. 3)

allegations were made public on November 7th (Henderson 2011; Palmer et al. 2011). Note that

the model makes no restrictions on the number of changepoints in the data. This is crucial in this

example because specifying the number of changepoints a priori would be difficult, even if one

were to visually inspect the time series.

3.2 Terrorism around the world
Terrorism remains a persistent and malevolent threat in many countries around the world, and

how terrorism relates the political world has generated considerable scholarly interest (see Young

and Findley 2011, for a review of this literature). Many of these studies leverage time-series or

time-series cross-sectional data on terrorist attacks or the number of injuries due to terrorist

attacks. These time series tend to be highly overdispersed, however, since a single attack might

inducemanyclustered injuries or anunderlying conflictmay lead to “bundles”of attacks in agiven

country.

To investigate changes in the distribution of terrorist attacks over time, I analyze data from the

Global Terrorism Database (Terrorism 2016), which tracks both transnational and domestic terror

attacks from 1970 until 2015 (with 1993 missing). I aggregate the number of deaths and number

wounded in terrorist attacks to the monthly level to produce a time series of terrorism-related

injuries over 552months. With this long span of data and quite a few outlier months, allowing the

data to choose the number of regimes is vital. Identifying changepoints and common regimes can

elucidate some of the root causes of terrorism and point researchers to time periods and events

worthy of further study.

Figure 2 presents the results of the model for the terrorism data. The top panel of this figure

shows the posterior probability of two time periods being in the same regime, and the bottom

panel shows the counts over time. Red vertical lines represent dates with a greater than 0.5

posterior probability of being a changepoint. The clearest message from these results is the

relative stabilityof terrorism in theColdWareraand the relative instability after theUSSRcollapses

in 1991. In the latter era, a few changepoints highlight single months that had an unusually high

number of injuries, such as the 9/11 attacks, the August 1998 U.S. embassy bombings, and a

combination of the Tokyo sarin gas subway attacks and the Oklahoma City bombing in March and

April of 1995, respectively.

There are several changepoints since 9/11, each marking a significant increase in terrorist

activity. After June 2006, for instance, the terrorism-induced injury rate in Iraq, Pakistan, India,

and Afghanistan increased markedly. Another increase in terrorist attack occurs at the start of

2012, with significantly increased terrorist activity from jihadist groups such as the Taliban (in

Afghanistan and Pakistan), Al-Shabaab (East Africa), Al-Qaida in Iraq, and Boko Haram (West

Africa). A final regime starts in May of 2013 and continues through the end of the data (late 2015),

with increases in activity by all of these groups and the beginning of attacks from the Islamic State
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Figure 2. Top panel is a heatmap of the posterior probability of two months being in the same regime, with

morepink colorsdenoting twomonthshavinghigherposterior probabilitiesof belonging to the same regime.

Bottom panel is the time series of the raw data. Red vertical lines highlight months with greater than 0.5

probability of being a changepoint.

of Iraq and the Levant (ISIL). The changepoint that precipitates this final regime coincides with

two events. First, there is an escalation of the conflict between Nigeria and Boko Haram. Second,

Sunni–Shia violence erupted in May 2013 in reaction to the Iraqi Army raiding an anti-government

protest camp in the city Hawija in northern Iraq amid tension surrounding the April parliamentary

elections.

Even without guidance on the number or location of structural breaks, the model is able

to find politically relevant dates where the distribution of terrorist activity sharply changed.

Previous studies have generally found different changepoints than the ones found here, but

these studies generally focused on incident counts by type.5 Note that extending this model to

include region parameters or covariates as is common in the literature would be straightforward.

In this augmented model, changepoints would detect when the overall level of terrorism or the

distribution of terrorism across region changes or if the effect of various covariates changes.

4 Conclusion

This paper applies a novel statisticalmodel that estimates thenumber and timingof changepoints

in overdispersed count data. This model, which relies on Bayesian nonparametrics, gives

researchers the ability to cluster political time series into distinct regimes and detect significant

shifts in the distribution of the counts. The model uses recent developments in Dirichlet process

priors to estimate the number of changepoints rather than specifying the number a priori. This is

5 In previouswork, Enders and Sandler (2005) employed an alternativemultiple structural breakmodel to various terrorism

time series and found breaks in third quarter of 1975 (an increase) and the second quarter of 1996 (a decrease) for the time

series of deaths. Brandt and Sandler (2009) and Brandt and Sandler (2010) both analyze regression changepoint models

of terrorism, though they focus on incident counts broken out by type of event, which can be appropriately modeled with

the Poisson distribution.
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important in many applications where the number of changepoints is unknown or is the target of

inference itself. While the model here has been tailored to overdispersed count data, modifying

the base (within-regime)model to allow for continuous, binary, and ordered categorical outcome

variables is possible.

Supplementarymaterials

For supplementary materials accompanying this paper, please visit

https://doi.org/10.1017/pan.2017.42.
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