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Abstract. We show that equilibrium states n of a function <f> on ([0,1], T), where
T is piecewise monotonic, have strong ergodic properties in the following three
cases:

(i) sup <f> — inf <f> <htop{T) and (f> is of bounded variation,
(ii) <f> satisfies a variation condition and T has a local specification property,
(iii) (f> = —log |T'|, which gives an absolutely continuous /A, T is C2, the orbits

of the critical points of T are finite, and all periodic orbits of T are uniformly
repelling.

0. Introduction
In this paper we deal with piecewise monotonic transformations (AT, T), i.e.

where the J( are disjoint intervals and T/Jt is continuous and strictly monotone.
We consider two related problems for such dynamical systems. The first one is to
find an equilibrium state fi for a given function <f> :X-» U of bounded variation, i.e.
a T-invariant Borel probability measure /x on X, for which the map

v -* h (u) + <f) d

attains its supremum (Ii denotes entropy). The second one is to find a T- invariant
probability measure /x, which is absolutely continuous with respect to some given
atom-free probability measure m with

m°T~l«m
(« denotes absolute continuity).

A useful method to attack both of these problems and to show ergodic properties
of the required measure /x is the investigation of the Perron-Frobenius-operator
P» as it is done in [3] and other papers (cf. the references of [3]). Let 2F be the set
of all real - or complex - valued bounded measurable functions on X. For a given
bounded measurable
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24 F. Hofbauer and G. Keller

the operator P: &-* 2F is defined by

Pf(x)= I g(y)f(y).

The following theorem is basically proved in [3] .(cf. § 1).

THEOREM. Let g :X-* (0, oo) be of bounded variation such that ||gM||oo< 1 for some
n, where - —

Suppose there is a Borel probability measure m on X such that

{ Pfdm=\fdm

for all fe^. Then we have
(i) There is a function h :X-*[0, oo) of bounded variation such that \hdm=l

andPh = h, which implies that the measure ix = hm is T-invariant and an equilibrium
state for log g.

(ii) For some k^l, the measure \i on (X, Tk) splits up into finitely many ergodic
components, on each of which Tk is weakly Bernoulli with exponential mixing rate.
This implies central limit theorems and almost sure invariance principles for stochastic
processes

where f is of bounded variation.

The aim of this paper is to apply this theorem, in order to solve the problems
mentioned above. First we consider equilibrium states. For a given continuous 4>
on X, P. Walters [13] gives a useful method to find a Borel probability measure
m on X and a A > 0 such that

Pfdm=\fdm

for all fe&, where g(x) = e*<J:)/A. In § 1 we adapt this method to our situation,
where 4> is of bounded variation. Then g =e<t'/\ is also of bounded variation and
an equilibrium state of log g is also one of 4>. The above theorem gives us the
existence and ergodic properties of an equilibrium state of <£, if we find an n with
||gnlU<l. This problem is considered in § 2 and §3. Lemma 1 in § 1 is a useful
tool for this.

In order to show ||gn||ao< 1, one needs results about the orbits of {X, T). Methods
to prove such results are developed in [6], In this paper the orbits of (X, T) are
represented as one-sided paths of an oriented graph, which we shall call the Markov
diagram of T.

In § 2 we show the existence of an n with l!gn|U< 1 for all 4> of bounded variation
with

sup (f> - inf (f> < h top(T)
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Equilibrium states for piecewise monotonic transformations 25

generalizing the example of III, § 5 in [3] (/itop denotes topological entropy). The
proof of this result relies heavily on the first half of the following estimate which
can be proved using the Markov diagram of T:

0<\[mini(e~nh inf card r"n{x})^lim sup {e~nh sup card T n{x})<oo,
n-*oo xetl n-*oa xefl

where H is a topologically transitive subset of (X, T) and h = /itop(T/Q).
In § 3 we consider <£ on X with £ £ i var,<£ <oo, where

var,t£ =sup{|<£(*)-<My)|:*, y are in the same interval,
on which T" is monotone}.

Generalizing an idea of P. Walters [13], we find an n with ||gjoo<l, if
satisfies a local specification property (for definition see (ii) of theorem 3). This
property can be proved for certain (X, T) with the aid of the Markov diagram of
T. It is shared by the (3 -transformation, so that we generalize the example of III,
§4 in [3].

In § 4 we deal with the second problem mentioned at the beginning of § 0. We
look for absolutely continuous (with respect to Lebesgue measure) invariant
measures /u, on (X, T), where T is C2 and the orbits of the critical points of T
become periodic (cf. [9], [12]). Under additional assumptions we are able to find
a function g and a measure m equivalent to Lebesgue measure such that the
requirements of the above theorem are satisfied. The measure fx, we get by (i) of
this theorem, is then the desired one. It would be interesting to know, whether
this approach also can be used to study the case, where one only requires the orbits
of the critical points to be bounded away from the critical points (cf. [10], [11], [12]).

1, The existence of m
Let T be a piecewise monotonic transformation on X = [0,1] and (f> :X-» U be of
bounded variation. It is not difficult to show that

and <£(*-) = lim 0 (0
tix i t x

exist for all x e X and that <f>(x+) ?±<f>(x~) can happen only for countably many x.
Furthermore we suppose that <f>(x) is either 4>{x+) or <f>{x-).

As in [13] we want to introduce a finer topology in X such that 4> and T become
continuous and that the Perron-Frobenius-operator P becomes a continuous
operator on the Banach space of continuous functions. To this end let

be the points, which separate the Jb set
V = {X

and

(
-o \=o y-i
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W is T-invariant and countable. If x e W, substitute A: by x+ and x— in X. We
denote the set we get by X. The order relation is extended to X by

y <x — <x + <z,

if y <x <z holds in X. The order topology makes X compact. Because X\W is
dense in X and <f)(x+), <f>(x~), T(x+), T(x~) exist (T is piecewise monotone), <f>
and T1 can be extended continuously from X\W to X. They are then continuous
functions on Xt because their discontinuities in X are contained in W. The definition
of W implies also, that T(Jt) is an open and closed interval in X (the bar denotes
closure in X). This implies that the operator P defined by

Pf(x)=
yeT~lx

maps C(X) into C(X). Furthermore P is continuous on (C(X), || ||oo), hence the dual
operator P* is continuous on the dual space of C{X), that is the Banach space of finite
Borel measures on X, with respect to the w*-topology. Applying the Schauder-
TychonofT-theorem (cf. [2]) to the continuous map

v-+P*v/P*v{\)

on the compact convex set of all positive Borel probability measures on X, one
gets a fixed point m, i.e.

m(Pf) = \m(f)
for all fe C(X), where A =P*m(l) = m(Pl).

Set g{x) = eMx)/k. Then Pf(x)=Pf(x)/\, and \Pfdm =\fdm for all / e ^ . In
the following sections we shall show under different circumstances, that

joo = sup gn(jt)<l

for some n.
Set d = (|Ign||ao)1/n < 1. One easily checks that

P"f(x)= I gn(y)/(y).
y«r"x

Hence it follows from lemma 2 of [3] that nt(A)?zdnk for all A €^Sk , where

0o=Vf:!>r-'0> and S » = { / I , . . . , / N } .

Remark that 0*3 is the partition of X into intervals, on which Tn is monotone.
Setting C = d~n, it follows that m (A) ̂  Cd1 for all A e ̂ o , because A is a subset of
some element of &ok, where k is such that

In particular, m({x}) = 0 for all xeX. As W is countable, m is concentrated on
A T \ ^ c X and we can return from X to X. Hence all requirements of the theorem
in § 0 are satisfied, if we can show ||gjoo< 1 for some n.

These arguments show also that the theorem of § 0 is actually proved in [3],
because all proofs of [3] are still valid if one uses the result m(A)^Cdt instead of
«i (A) iSrf'for A € ̂ (cf . lemma 2 of [3]) and | |g j«< 1 instead of ||g||oo< 1.
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»/

We conclude § 1, showing in lemma 2 that the condition ||gn||oo < 1 can be weakened
further. To this end we need lemma 1, which will be also useful in the following
sections.

LEMMA 1. (i) LetAu •.., Ak be subsets of Xsuch that

Suppose there are integers nu n2 nk such that

sup grt, < 1

^i&k. Then there is an n with \\gn\\x>< 1.
(ii) Suppose for every xeX there is a neighbourhood Ux ofx in X and an integer

nx such that

supgn x<l .

Then there is an n with ||grt||«, < 1.
Proof, (i) Set

w * max { n i , . . . , nfc} and y =
| }

A,

Then choose an integer t such that

(supg)V<l

and set n = tit.

For a fixed x eX let j\e{l, . . . ,*} be such that x 6 Ah. Set , , = «,,. If / l f . . . , /,
and ru . . . , n are defined, choose ; /+1 such that

and set r m « n/(+l. Finally let s e N be such that

As nt^n for all i and n - nt, we have s s r and

Now we get

because y < l f , * , , n _ r ^ . . . ^ ^ / T a n d

This can be done for all x eX, hence
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(ii) As X is compact, there are xu . • •» *k € X such that

Now apply (i). D

LEMMA 2. Let g: AT-> (0, oo) fo of bounded variation, such that g(x) is either g(x+)
or g(jc-). Suppose that - '

liminf gk(jc+) = O and liminf gfc(jc— ) = 0 forallxeX.
fc-*oo k—oo

Then there is an n with ||gn||oo< 1.

Proof. As g on X is continuous and an extension of g on X\W, it follows from
the density of X\ W in X that

liminf gfc(x) = 0 forall jceX

Hence for a fixed x eX, there is a k with gk(x)^2 and, by continuity of gk on X,
there is a neighbourhood U of x with gk(y)^4 for all y e U. The existence of an
n with ||gn||oo< 1 follows now from (ii) of lemma 1. Q

Of special interest is the case where g = 1/|T"|, because this gives absolutely
continuous invariant measures /x.

2. Equilibrium states for (f> with sup 4> -inf<f> <htop(T)
In this section we consider piecewise monotonic transformations T on AT = [0,1]
and functions

<f>:[0,1]-*R

of bounded variation satisfying

In order to show ||gn||oo< 1 for such 4> we need some results of [4], [5] and [6] for
the transformation T. Recall that

is the partition of AT = [0,1] into intervals on which T is monotone. If C-is a
subinterval of some Jk (l^k ^N), then we call the non-empty sets among TC njr

iorlrzr^N the successors of C. They again are intervals contained in some Jk e ^ .
Let 3) be the following set of subintervals of X: Q) contains 0\ and if C e ® then
all successors of C belong to 3), too. (In [4]-[6] the letter D is used for the set 3).
Furthermore an isomorphic shift space is considered instead of (Xt T)t but this
makes no essential difference.) Let M be the oriented graph whose vertices are the
elements of 2? and which has an arrow C-*D (C, D eS)) if! D is a successor of
C We call M the Markov diagram of T. Alternatively M can be considered as a
0-1 matrix with MCD = 1 iff there is an arrow C-+D. It is shown in [4] that the
successors of different elements of B often coincide, such that the oriented graph
M contains closed paths (cf. § 3, where M is explicitly determined for a special
class of T). In [6] the Markov diagram is used to investigate the non-wandering
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Equilibrium states for piecewise monotonic transformations 29

set of T. If the topological entropy htop(T) of T, which is equal to the logarithm
of the spectral radius r(M) of M, is greater than 0, one always finds an irreducible
submatrix M = M/2) (©<=©) of M with r(M) = r(M). Set

2i = {D e 2): there is a path in M from some C e 2) to D).

It is shown in [6] that the sets

F = [J{D :D eS)} and G=[J{D :D e2i\2i}

are finite unions of intervals satsifying G^F,TF^F and TG c G. The set

J-0

is a T-invariant, closed, topologically transitive subset of (AT, T).
As F is a finite union of intervals, T/F is piecewise monotonic again. Hence we

can set X=F. We consider the Markov diagram of (F, T/F) and call it again M
and its index set again 2). Let 2) denote again the irreducible subset of 2), which
gives rise to the topologically transitive subset Q of F (in [6] it is shown that there
is a 1-1 correspondence between irreducible submatrices M of M with r (M)>l
and topologically transitive subsets ft of X with /itop(n)>0). The proof of lemma
1 of [6] gives information about the structure of F. From this it follows that one
can choose the partition ^ of F into intervals where T is monotone in such a way
that SPczQ). In particular, this implies that every element of 2) can be reached on
a path in M which begins in 2). This will be used in the proof of theorem 1 below.

LEMMA 3. (i) Let

Z=JlnT~lJ2n ••• o T~(n-l)Jne^ ( / r e^ ) .
Then

Di -^T'"1/! n-'-n TJi-x nJ,

is an element ofQ) and D,+i is a successor ofDt. Furthermore Tn~lZ =Dn.
(ii) If Di is in 2) for 1 < I <n, DiG^, and D,+i is a successor of £>,, determine

Jte0> such that D, £/,. Then

This implies that there is a 1-1 correspondence between elements Z e ^ S with
Tn~lZ =De2) and paths of length n beginning at some element of & and ending
atD.

Proof, (i) As T is monotone on every Jk) we have

Because of TlZ ^Di+U we have Di+i ^ 0 and hence Di + 1 is a successor of Dt. As
Dx = / 1 e ® this gives that all D, are in 2). The equation Tn~lZ=Dn is a special
case of the formula

https://doi.org/10.1017/S014338570000955X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000955X
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which we prove by induction. For / = 1 we have D\ =Ju which is the definition of
D\. The induction step is as follows.

DM = TDi n / i + i = T(T1-\J, n • • • n T""""/,)) n / , + 1

= T\JX n--n T""""/, n T-'/,+1)

using the formula Tl{A n r~'B) = TU r\B.
(ii) As Z>i e SP, we have Z?i = / i . Suppose we have shown that - - - '

As Di+i is a successor of Dh there is a Jl+i e 0* with

Di+1

But this gives (cf. (i))

= TlJx n-'-nTJi nJl+1

proving (ii) by induction. •

The following lemma summarizes results of [4], [5] and [6].

LEMMA 4. (i) /*top(ft, T) = log a, where a — r{M).
(ii) M has a left eigenvector {IID)D^ and a right eigenvector (VD)DS^ for the

eigenvalue a such that £ uDVo = 1. uD>0, VD > 0 . The matrix (PCD)C.DG3 given by
CDVDIOLVC is then a stochastic matrix with stationary probability vector
given by TTD =

(iii) As M is irreducible, P is also irreducible. Tliere is a < j s l such that Pq is
aperiodic.

Now we can prove

THEOREM 1. Set a = exp (/itop(n, T)). Then
(i) for every D eQ) we have

lim inf (a~n card {Ze&Z\Tn~lZ =D})>0\
n-»oo

(ii)

lim inf (a ~n inf card T~n{x}) = c for some c>0.
n—oo xeF

Proof, (cf. the proof of theorem 4 in [6]). It follows from lemma 3, that

card(ZE&n\Tn~lZ =D\ = Y. A/CD1^
Ce0>

because

rCDX)= I • • ' I MCc2Mc*c3" ' MCn.lD

is the number of paths in M, which begin at C and end at D. Suppose first that
. Then MCo -0 for all C&Q), because M is a maximal irreducible submatrix
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of M and from D e & there is a path to all C e & in M. Hence

By lemma 4 we have i * & » « P & 1 W 7 « t o for QDe§. By standard results
of probability we have P$S converges to TTD (* ->oo) for all QDe% beause P
is an aperiodic Markov chain with stationary probability vector ir. This implies

-> TTDVCIVD = KD«C for fc -»oo.

Choose now a fixed/ with Q^j^q — l. Then

= S a"' I Ml&a'qkMliS

which is a positive constant for every /, because MCE & 0 holds for finitely many
E €.0) (every element of 3) has finitely many successors). Hence

liminf(a"n card{Ze^\TH~lZ =D})=:cD>0.

, there is a D' e Q) and a / such that M$D ^ 1. Then

liminfa"" I S

In order to show (ii) we remark that

card T'n{x)>card {Z e^>S+1 \TnZ =

where D € ̂ * is such that x e £>, because Tn is bijective on such a Z. Hence

liminf(a~ninfcardr~n{*})>mincD>O, as\jD=F. •
xeF DGS 1 DeS1

Remark. Theorem 4 of [6] shows that card 0>o ^dan for some d <co and hence

lim sup («"" sup card T~n{x}) <oo,
F
p

I6F

using that £ D 6 a «D < °°'
Now we can show

THEOREM 2. Let T be a piecewise monotonic transformation on [0, 1] and let
<t> : t0,1]-»R 6e of bounded variation such that sup<f>-mt(f> <htOp(T). Then 4> has
an equilibrium state /x satisfying (ii) o/r/ie r/iw«/n q « o ^ m § 0.
Proof. We consider a T-invariant F <= [0,1] as above with /i,op(F, T) = /ieop(T) and
restrict $ and T to F. By the results of § 1, for g = e*/A, it suffices to find an n

gn||oo < 1. Since gn is continuous on F and F is dense in F, we have ||gn||co = supF gn.

https://doi.org/10.1017/S014338570000955X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000955X


32 F. Hofbauer and G. Keller

Set a - exp htop(F, T) and /3 = sup g/inf g = exp (sup <£ - inf <£). Then 0 < a and

yeT~nx

: inf card r~"{x}- inf gM
.xeF F

:ca" sup gn • (inf g/sup g)" (by theorem 1)
F F F

Hence

As /3/a < 1 one finds an n with

I

We show now that the bound htop(T) for sup (̂  -inf <f> is sharp. Take T(x)
2x (mod 1) on X = [0,1]. For every

we find a 4> with sup 4> — inf (f> - b, such that P does not have the properties stated
in the theorem in § 0.

Set
00

<f> - X tffc ' l (2- f c - \2- k ] !
fc-0

where a* is a sequence of real numbers converging to 0. It is shown in [8] (the
two-shift is used there instead of T) that the operator P does not satisfy Ph =. h
for a bounded A, if

OO

£ e*n^l, wheresn =ao+* *
n-0

For a fixed K set

fc+2 ., , ,
= - 2 log

and

Then <̂  is of bounded variation and

sup <f> - ini tf> =b for K s 3.
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Furthermore

- 6

=6"<1, for /C-^oo, because 6 > log 2.
1 — e

Hence for every b > log 2 there is a K such that

oo

k - 0

3. Local specification of T and a variation condition oftf>
In this section we consider piecewise monotonic transformations satisfying the '
property stated in (ii) of theorem 3 below. It can be called a local specification
property, because one gets specification as it is defined in § 21 of [1], if the nt and
k do not depend on (Z^jai and the sequence (nj+\ — /t/)/s-i is bounded. In order to
show ||gn||co< 1 we only need a local property of <£ and not a global one as in § 2.
Define

var,<£ :=sup {\<f>(x)-<f>(y)\: x, y e Z , Z e ^ } .

Then we have

THEOREM 3. Let (f>: X-+Ube of bounded variation. Suppose
(i) I£ivar,<£=:c<oo,
(ii) for every sequence Z\ 3 Z 2 3 Z 3 3 • • • with Z, e 0*o there are integers ni<n2<

«3< • • • and k, which may depend on (Z/)/ai, such that
k

U Tn'+/Zn( = X for all i > 1.

Then there is an n with \\gn\\<x>< 1.

Proof, (cf. Walters [13]). For A g X denote by A the closure of A in X. For each
sequence (Z,),a l as in (ii) we may consider H ^ - i Z , as one single point. (If
I = f^iT"iZi is a non-trivial interval, it follows from (i) that <f> is constant on /.
Furthermore TkI iovk^l is also a subset of some A with A e ^ S for all n, which
implies that <f> is constant on TkI, too. This gives that gfc is constant on / for all k.)

We show that m has no atoms: For j c e i w e have

m({x}) = m{PklM) = m{gk{x) • l{T^}) = gk(x)m({rkjc}). (1)

Suppose first that x is not periodic. Choose Z, e 0 ^ such that x e Z,. Then Z,+i c Zf.
As AT is dense in X and Z| is compact, it follows from (ii) that
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Hence for/ > 1 we can find ay,6Zn, with Tn'+tt(y() = x, where/< =sk. Now it follows
from (1) that

exp(- 2 varr^-

because A: and y* are both in ZM) and var,<£ equals

sup{\<f>(x)-<f>{y)\:x,yeZ,Ze!?ti
(<£ is continuous on X and -V is dense in X). As x is not periodic and /i sA:, only
finitely many y< can be equal to a fixed yn. This implies m({yJ)->0 for i->oo and
the above inequalities give m({x}) = 0.

If JC eX is periodic with period p, we find a Z e ^ o for some r such'that T!(x) & Z
for 0 ̂ / ^ p - 1 . Choose some sequence (Z,)Ja.i as in (ii) with Zr = Z. Then 7

for 0 ̂ / =sp - 1 and all i S: r. By (ii) we find an n > r with

Hence there is a y e Z m i.e. y * T'x for 0 < / ^ p - 1 , and Tn+Sy -x for some s. As
y is not periodic, we know that m({y}) = 0. Now it follows from (1) that also

Now set qt = max [m(Z) = m(Z):Z e0>lo). We have q(-*• 0 for i-*oo, because MI
has no atoms and X is compact. Fix some x eX again. We show that there is a
neighbourhood Ux for A: and an integer nx with supi/.gn, < 1 . First we show that
for a measurable subset A of X

tk, / I t
U T'A =X^>m(A)2:d(k)'='r(inf g) >0. (2)

As Uf-i T'7^ = -̂ » there is a / with m(T*A)^ \/k. Hence

S . gfiy)' 1.

I U(y))

s:(inf g)'

As above, choose (Z,)/ai, ZjG^d, such that .t€Z,. Let k be the integer from (ii)
for these Zh

i

and let /J be one of the /i,'s of (ii) such that

~lqHeed(k)~l<\.
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Set U=Zm which is a neighbourhood of x in X. As

y

(2) implies that m(TnU)>:d(k), and one can estimate

yGT~nx

( d(k)g
u u

(sup gn)e~cd(k).p
u

Hence sup ugn<qne
cd(k)~x< I. This means that for every xeX we can find a

neighbourhood U and an integer n with sup^gn <1- Now apply (ii) of lemma 1
to get the desired result. Q

In order to show ||gn||oo<l for the class of <£'s specified by (i), one has to prove
that the piecewise monotonic transformation T satisfies (ii). We consider this
problem for the following class of transformations T on [0,1]: Let/:[0,1]->R be
continuous and monotonically increasing. Define T by T(x)=f(x) (mod 1). We
call such a transformation monotonic mod one. For the investigation of (ii) of
theorem 3 we use the Markov diagram M introduced in §2. We want to determine
M for T(x)=f(x) (modi).

Recall 9 = (/ i , . . . , JN) the partition of [0,1] into intervals of monotonicity of T,
and suppose N s 2. 0> is a subset of 3). For 2 =£ / < N - 1 we have 77, = [0,1], hence
the successors of such a /, are all // for 1 ^j^N. Next we define intervals Ait Bt

for / > 1 . Set A i = / i , Bi~JN. Define n ^ l as that integer such that TkAx is a
subset of an element of ^ for 0 ̂  k < rx -1 and T\41 is not. Set

l i l for 2</
and

= TA
n

where p is the smallest integer / with TArir\Jfr
i0. If ru • • •, rm and A,- for

l=s/=sn + - • -+rm + l are defined, set Rm = ri + - • «+rm, define r m + i > l such that
TkARm+x is a subset of some element of ^ for 0 < k ^ rm+1 - 1 and

q and p<q. Define

ARm+( = T'-'A^+i
and

ARm+1+i = TARni+t nJpt where i?w+1 = Rm + rm+1.

Similarly define sm ^ 1 and Sm = 5i + • • • +sm {So = 0) inductively such that
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and

where q is the largest, but not the only integer k with

The successors of Ai for /?*/?,„ and Bt for iV5m are then Al+l and ~
respectively. ARm has the successors i4Rm+i, all Jk with /* £ TARmt and £rm because
one can show that

where q is the largest integer k such that

Similarly BSm has the successors Bsm+i» all Jk with /fc c TBSm, and j4,m. Hence

(cf. chapter II of [7]).

C /

- B2 -* B3 -* B4 -* Bs -* B6 -* B

s, s2

FIGURE 1

In order to show (ii) of theorem 3 one can proceed as follows: We call SH = {Ah B,} c
3} a K-barrier, if from both elements of 03 there is a path in M of length less than
K to each element of 5s c£# and if

can be left only via an arrow

Then we have
or

LEMMA 5. Suppose that for the Markov diagram M of a monotonic mod one
transformation T there is a sequence Stit^O) ofK-barricrs for some constant K. Tlicn
Tsatisfies (ii) of theorem 3.

Proof. For / 2=1 let ZjG^o be such that Zj+iSZf. By lemma 3 there is a path
D\-*D2~*'' "*D, in M with-Dief? such that

• • r\T Dt \o)
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Furthermore, as Z,+i gZj, the path for Zj+i is the same as that for Z,, only with a
Di+l added. Hence we have an infinite path Di-+D2-*D3-* . . . in M with Dxz&
such that (3) holds for all /. We consider two cases:

If the set {D(\i > l}g Q) is finite, then there is a constant k such that for every n
and every E e 0* one can find a path

This gives

Tn+iZn 2 Tn+l(Zn n r""Ci n • • • n r-n- 'Ci + 1) = C/+i = E (cf. lemma 3).
Hence

[o, i ]= U H ?

If {Di\i > 1} is an infinite subset of 2) then, by definition of a barrier, there is a
sequence n, with Dni e %, Otherwise {Dj\j > 1} c % for some i and hence would be
finite. As there are paths from Dni e S3, to every element of 0> c 0 of length less
than K, one gets as above that

U Tn'+iZn, = [0,1].
y-i

This proves the lemma. D

Now theorem 3 and lemma 5 imply:

THEOREM 4. Let The a monotonic mod 1 transformation and suppose the Markov
diagram of T possesses a sequence of K-barriers for some K. Let $ :[0, l]-> U be of
bounded variation with

TJien (f> has an equilibrium state /u. satisfying (ii) of the theorem quoted in § 0.

We consider first the /3-transformation x -*(3x (mod 1), (3 > 1. For this transfor-
mation the Markov diagram found above for monotonic mod 1 transformations
satisfies At-Ai for all / and rt = 1 for all /. One can identify all A('s and the
successors of Ai are the elements of 0\ In this case set S3, -{Au BR}, which is a
barrier because Ari - A\ is a successor of BRt. Hence theorem 4 can be applied to
the /3-transformation x -*(3x (mod 1) (cf. Walters [13] and III, § 4 of [3]).

Now we consider T(x) = (3x+a (mod 1). For a - 0 we have r{ = 1 for all i. If p
and a are such that the sequence (r,) or the sequence (s,) is bounded, a slight
generalization of the above argument shows that the barrier property of lemma 5
is satisfied. The sequence (r<) is bounded, if and only if

Let e > 0 be such that Tk (0) < 1 - e for all k s= 0. One easily checks that

for all m,

https://doi.org/10.1017/S014338570000955X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000955X


38 F. Hofbauer and G. Keller

which then has the length larger then e. If k is such that /3fce>l then at least
TkARm+i cannot be contained in some element of 0\ hence rm+\ == fc. In particular,

holds, if the orbit of 0 is periodic. Hence theorem 4 can be applied to T(x) =
(3x+a (mod 1) if either the orbit of 0 or that of 1 is periodic. ^ -~

For every fixed a €(0,1), the set of /3 such that x>-»/3jt +a (mod 1) does not
satisfy the barrier property of lemma 5 seems to be dense in (1, oo). It would be
interesting, to find sufficient conditions for

(a,/3)e(0,l)x(l,oo),

such that this property is satisfied for

(mod 1).

Another class of piecewise monotonic transformations (X, T) which satisfy (ii)
of theorem 3, is thatwhere the initial points of all Jt are mapped to the initial point
of X by T and T/Ji is expanding. One can prove this with similar methods as
lemma 5 using the Markov diagram of T.

4. Absolutely continuous invariant measures
Misiurewicz ([9], [10]) and Szlenk ([11], [12]) have given sufficient conditions for
a piecewise monotonic C2-mapping T of [0,1] to admit an absolutely continuous,
invariant measure p.. Their main assumptions are that the critical points of T (i.e.
those for which T'(x) = 0) are not contained in the closures of their orbits and that
all periodic points are repellers. For transformations with negative Schwartzian
derivative Misiurewicz [10] also has given a description of the asymptotic cr-algebra
of(7».

Here we must restrict ourselves to the case where the critical orbits eventually
become periodic repellers. Using Szlenk's conditions (cf. [12]), it will be relatively
easy to show that the results of [3] summarized in § 0 apply.

Let T:[0, l]-*[0,1] be of class C2. Denote by Co the set of critical points of T,
i.e. Co = {x\T'(x) = 0}, and assume that

(Tl) card(LUor tC0)<co,
(T2) T"{c) * 0 and |T"(c)-T"(x)\ = O(\x -c\) for c e Co and JC e[0,1],
(T3) Con L U i TnC0= 0 , and

(T4) There exist ditd2>l1noeNsuch that if

Tn(x)zD:={y:\T'(y)\<di}

for some n >n0, then \Tn(x)\^d2.
The last condition is exactly the same as A.6 in [11] and [12]. From (Tl) it follows
that the orbits of critical points eventually become periodic, while (T4) forces all
periodic points to be repellers. Hence, by passing to an iterate Tm if necessary,
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one may assume further:

(T5) For each c e Co there is an H(c) e N such that c, Tc,... TH(c)c are distinct,
z = TH(c)c is a fixed point for T with T(z) positive, and

for some constant d3 and all i == 1.

Obviously (T2) and (T3) remain valid by passing from T to Tm, and it follows from
lemma 6 in [11] that, with some new constants, Tm also satisfies (T4). Furthermore,
in [12] Szlenk has shown that under (Tl), (T2) and (T5), the following condition
(T6) is equivalent to (T4):

(T6) There are constants y > 0 and a > 1 such that Tp(*) = x implies \Tp\x)\ sya p

for all p G N, A; G [0,1].

The idea of the following construction is to start with a 'good guess' of the
invariant density, i.e. with a density / which already has the expected singularities..
The measure /A will play the role of the reference measure m, i.e. P*m = m, where
the Perron-Frobenius-operator P is defined by means of the function

f(Tx)\T(x)\'

The problem is to choose / in such a way that ||gn||oo< 1 is satisfied for some n and
g is of bounded variation.

Let C+:={r'c|ceC0, l ^ i ^ H ( c ) - l ) and Cco:={rmc)c|ceC0}. By (Tl) and
(T3) the sets Co, C+, and Coo are finite and pairwise disjoint. Set

For e >0 and zeC define the following sets Ue(z) (one- or two-sided neighbour-
hoods of z):

(i) If z G Co set
Ue(z)-={x:\x-z\<e}.

(ii) If Z G C + s e t

t/e(z):=U U
ceC0

(iii) If z e Ceo set

:= U TWc)l/e(c).
ceC0

Furthermore, for i = 1,..., n0 (no from (T4)) we define

M e i : = U r ' [ / e ( c ) and Me := 0 Afe>i.
ceC 0 i - 1

Set rf:=4/4(^3 from (T5)).
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Choosing eo>0 small enough we may assume:
(El) The sets Ut0(z) (z e C) are pairwise disjoint intervals and disjoint from MtQ.
(E2) The sets Me<t (i = 1, • • •, no) are pairwise disjoint finite unions of intervals if

e ^EQ.

(E3) 0<T'x/T'y <;d and T'x • T'y >0 for x, y e Ueo(z), z e C+ uC«.
(E4) 0 < T"x/T"y <s§ for x, y e Ueo(c), c e Co.
(E5) 7T/,0(z)n(Mt0u Uyecouc+ £Uy)) = 0 for all z e C
Set K := minceCo i(21 T"(c)\)1/2, and define the density / by

\x-z\-1'2 itxeUe(z),zeC+

J\X)'~
K\ if x GiWej, / = 1 , . . . , n0

K otherwise,

where the constants az, Ki%e and a further constant «i 6 ÎJ are chosen such that

(a) f becomes continuous at the endpoints of the Ueo(z) different from z(ze Coo),
assuming the value K there (by choice of the

(b) g(x) = f(TxliT>(x)\->
 for x eM<°(by choice of the

(c) azd
nx ^ 2 for all z e Ceo (by choice of ni),

(d) (i) rH(c)+ '(x)eC/eo(rWc)c) for ceC 0 , xeUe(c), i*nlt (ii) /(x)S5^ for xe
Ucec t/« (c), (iii) \T'(x)\ < d\ for x e t/e (c), c e Co. (This can be achieved choosing
e^eo small enough.)

(e) Finally set y := inf |T"(A:)| > 0, where the infinum extends over all

x£ U Um(c).
ceCo

According to the definition of / we now decompose [0,1] into a finite number
of intervals on each of which g will be shown to be of bounded variation. Further-
more, one will see that there are constants 5 < 1 and NGN such that for each
:te[0,1] there is an n =n(x)^N with

gn{X)~f(Tnx)\(Tn)(x)\<d'

Hence g is of bounded variation, and, using lemma 1 with

there is an n e N with supx6[0. i] gn(x) < 1.
(1) xe(/t(c), ceC0:

(i) TzeC+:

" ^ |T"(y2)|

for some yi, y2 between A: and c. Hence g\u.ic) is continuous and
\K{2\T"{c)\Txn^l ((E4) and definition of K).
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(ii) Tz G Coo*. With «i from (c) we have

= g(x)gni(Tx) = g(x)
Tn*+Xx-Tz

Tx-Tz

1/2

\{Tn*)'(Tx)\

< g{x)d~"1 by (E3), (T5) and the choice of d,

^ 1 by (c), since gOO^t min a j 1 in analogy to (i).
zed*

Assuming w.I.o.g. that T"(c)> 0 and x ̂  c, it is easy to show (using (E4), (Tl), (T2))
that

2T'{x)2

is bounded on Ue(c) such that g has finite variation on Ue{c).
(2) xeC/e(z) ,ZeC+:

(i) TzeC+:
Tx-Tz

*-« |r(x)| |rcx)|
for some y between z and x. Hence g ^ ) is continuous and g(x)^d~* by (E3)
and (T5).

(ii) Tz e Coo: As in (ii) of (1) one shows that

for some yet / e (z)

2'

In both cases
1/2Tx-Tz

x—z

for some yu y2e Ue{z), such that g is of bounded variation on Ue(z) as

Tx-Tz 1/2

x—z
and

are.
(3)

(i) Tx e Uf0{z): analogously to (i) of (2).
\i) Tx£Ut0(z):

F - l

K\T\x)\
d~l (as in (i) of (2)),

as K>az\Tx-z\~l/2 and Tz=z. It can be shown as in (2) that g is of bounded
variation, observing that if Tx& Ut0(z) then x£ Ue(z) by (i) of (d).

https://doi.org/10.1017/S014338570000955X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000955X


42 F. Hofbauer and G. Keller

(4) xeMe,i,i = lt...,n0:

^ L X ) , where K0**K.

(5) x
g\{f(x) = K} is of bounded variation as the set {f(x) = K} is bounded away from
the set Co, and/(7*) is glued together from pieces of K, Kit \Tx -z\in (z e Co6 C+),
and a^\Tx-z\in (zeCco). Furthermore

Fix M2eN such that

min {K,

From (T4) one has the following alternative: either 3», no<n <n2: \{Tn)'(x)\>d2

or |(TM2)'(jt)| £= dl2-n°\(Tn°
We consider three cases:

since / a : min {/T, Jf,} by (ii) of (d).
(ii) \(Tn)'(x)\>:d2 and Tnx£Me for some /i 0 < /K / j 2 . Hence gnW&d? by

(ii) of (rf) since f(Tnx)>K.
(iii) |(rrt)'U)|s:i/2 and n e M e for some / i o <n<« 2 . Hence TmxeUe(c) for

some m < H2 + /io and c(=C0 therefore |(rm)'U)| >rf2 by (ii) of (f/) and (T4) and we
conclude that gm(x)^d2l*

We have shown that the hypotheses of the theorem quoted in § 0 are satisfied.
Hence we have

THEOREM 5. Let T: [0,1]-*- [0,1] be pieccwise monotonic and of class C2, such that
(Tl), (T2), (T3) and (T4) are satisfied. Ttien there is an absolutely continuous
T-invariant measure (JL on [0,1] satisfying (ii) of the theorem quoted in § 0.

Research for this paper was done when F. H. visited the Institut fur Angewandte
Mathematik, Universitat Heidelberg.
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