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Abstract. We show that equilibrium states u of a function ¢ on ([0, 1], T), where

T is piecewise monotonic, have strong ergodic properties in the following three
cases:

(i) sup ¢ —inf @ <h.,(T) and ¢ is of bounded variation.
(if) ¢ satisfies a variation condition and T has a local specification property.
(iii) ¢ =—log|T’|, which gives an absolutely continuous p, T is C?, the orbits

of the critical points of T are finite, and all periodic orbits of T are uniformly
repelling.

0. Introduction
In this paper we deal with piecewise monotonic transformations (X, T), i.e.

N
X=[0) 1]= U Ji:
i=1

where the J; are disjoint intervals and T/J; is continuous and strictly monotone.
We consider two related problems for such dynamical systems. The first one is to

find an equilibrium state . for a given function ¢ : X - R of bounded variation, i.e.
‘a T-invariant Borel probability measure u on X, for which the map

V—>h(u)+j & dv

attains its supremum (/i denotes entropy). The second one is to find a T-invariant
probability measure ., which is absolutely continuous with respect to some given
atom-free probability measure m with

meT '«m
(« denotes absolute continuity).
A useful method to attack both of these problems and to show ergodic properties
of the required measure p is the investigation of the Perron-Frobenius-operator

P, as it is done in [3] and other papers (cf. the references of [3]). Let & be the set

of all real - or complex - valued bounded measurable functions on X. For a given
bounded measurable

g:X -(0, ),
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the operator P: % - & is defined by

Pfx)=_ 2, sf(y).
ye x
The following theorem is basically proved in [3] (cf. § 1).

THEOREM. Let g:X - (0, ) be of bounded variation such that ||g,|lo<1 for some
n, where

gn(x)=gx)g(Tx) - -+ g(T" 'x).
Suppose there is a Borel probability measure m on X such that
J Pfdm = J- fdm

for all fe F. Then we have

(i) There is a function h:X =[0, ) of bounded variation such that {hdm =1
and Ph = h, which implies that the measure . = hmm is T-invariant and an equilibrium
state for log g.

(ii) For some k =1, the measure u on (X, ") splits up into finitely many ergodic
components, on each of which T is weakly Bernoulli with exponential mixing rate.
This implies central limit theorems and almost sure invariance principles for stochastic

processes
(fo Tnk)nZl on (X’ ﬂv)r

where f is of bounded variation.

The aim of this paper is to apply this theorem, in order to solve the problems
mentioned above. First we consider equilibrium states. For a given continuous ¢
on X, P. Walters [13] gives a useful method to find a Borel probability measure
m on X and a A >0 such that '

j Pfdm = J fdm

for all fe %, where g(x)=e®*/A. In § 1 we adapt this method to our situation,
where ¢ is of bounded variation. Then g =e®/A is also of bounded variation and
an equilibrium state of log g is also one of ¢. The above theorem gives us the
existence and ergodic properties of an equilibrium state of @, if we find an n with
llgnllo < 1. This problem is considered in §2 and § 3. Lemma 1 in § 1 is a useful
tool for this.

In order to show ||g.|lo <1, one needs results about the orbits of (X, T). Methods
to prove such results are developed in [6]. In this paper the orbits of (X, T') are
represented as one-sided paths of an oriented graph, which we shall call the Markov
diagram of T.

In § 2 we show the existence of an n with ||g.|lo <1 for all ¢ of bounded variation
with

sup @ —inf ¢ <hop(T)
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generalizing the example of III, § 5 in [3] (A0, denotes topological entropy). The
proof of this result relies heavily on the first half of the following estimate which
can be proved using the Markov diagram of T':

0 <lim inf (¢ ™" inf card T""{x}) =<lim sup (¢ ™" sup card T™"{x}) <o,

n-»co xefl n-»c0 xel

where Q is a topologically transitive subset of (X, T) and h = hop(T/ Q).
In § 3 we consider ¢ on X with ¥i=; var; ¢ <o, where

var; ¢ =sup {|¢ (x)— @ (y)|:x, y are in the same interval,
on which T" is monotone}.

Generalizing an idea of P. Walters [13), we find an n with |[g.fle <1, if (X, T)
satisfies a local specification property (for definition see (ii) of theorem 3). This
property can be proved for certain (X, T) with the aid of the Markov diagram of
T. It is shared by the B-transformation, so that we generalize the example of III,
§4 in [3]. -

In § 4 we deal with the second problem mentioned at the beginning of § 0. We
look for absolutely continuous (with respect to Lebesgue measure) invariant
measures u on (X, T), where T is C? and the orbits of the critical points of T
become periodic (cf. [9], [12]). Under additional assumptions we are able to find
a function g and a measure m equivalent to Lebesgue measure such that the
requirements of the above theorem are satisfied. The measure u, we get by (i) of
this theorem, is then the desired one. It would be interesting to know, whether
this approach also can be used to study the case, where one only requires the orbits
of the critical points to be bounded away from the critical points (cf. [10], [11], [12]).

1. The existence of m

Let T be a piecewise monotonic transformation on X ={0, 1] and ¢ : X - R be of
bounded variation. It is not difficult to show that

¢(x+)=liin¢(t) and o(x—)=lim o (1)
tdx t4x

exist for all x € X and that ¢ (x+) # & (x~) can happen only for countably many x.
Furthermore we suppose that ¢ (x) is either ¢ (x+) or ¢ (x—).

As in [13] we want to introduce a finer topology in X such that ¢ and T become
continuous and that the Perron-Frobenius-operator P becomes a continuous
operator on the Banach space of continuous functions. To this end let

c1<C2<" " <CN-1
be the points, which separate the J, set

V={x:1¢(x+)#o(x-)}u{0, 1}
and

(G

i=0

G T'VoU {T (ck+), T'(ck—): 1<k =N — 1}))\{0, 1},

j=0 j=1
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W is T-invariant and cogntable. If x € W, substitute x by x+ and x— in X. We
denote the set we get by X, The order relation is extended to X by

y<x—<x+ <z,

if y <x <z holds in X. The order topology makes X compact. Because X\W is
dense in X and ¢ (x+), ¢(x=), T(x+), T(x~—) exist (T is piecewise monotone), ¢
and T can be extended continuously from X\W to X. They are then continuous
functions on X, because their discontinuities in X are contained in W. The definition
of W 1mphes also, that T'(J;) is an open and closed interval in X (the bar denotes
closure in X). This implies that the operator P defined by

Bfx)= % e*f(y)

yeT x
maps C(X) into C(X). Furthermore P is continuous on (C(X), ||{l), hence the dual
operator P*iscontinuous on the dual space of C(X), thatis the Banach space of finite
Borel measures on X, with respect to the w*-topology. Applying the Schauder—
Tychonoff-theorem (cf. [2]) to the continuous map

y = P*u/P*p(1)
on the compact convex set of all positive Borel probability measures on X, one
gets a fixed point m, i.e.

m (I5f) =Am(f)
for all fe C(X), where A =P*m(1) =m (P1).
Set g(x)=¢*™/A. Then Pf(x)=Pf(x)/A, and [ Pfdm =[fdm for all feZF. In
the following sections we shall show under different circumstances, that

lIgnllo =sup ga(x)<1
xeX

for some n.
Set d = (||gn]l)'/" < 1. One easily checks that

Pfx)= X ga(y)f(y).

yeT "x
Hence it follows from lemma 2 of [3] that m(A)=d"* for all A € P§*, where

=\ T'® and @?={,....In)

Remark that g is the partition of X into intervals, on which T" is monotone.
Setting C =d ™", it follows that m(A) = Cd’ for all A e P{, because A is a subset of
some element of 2", where k is such that

n(k —-1)<j=nk.

In particular, m({x})=0 for all xeX. As W is countable, m is concentrated on
X\W =X and we can return from X to X. Hence all requirements of the theorem
in § O are satisfied, if we can show ||g.]lo <1 for some n.

These arguments show also that the theorem of § 0 is actually proved in [3],
because all proofs of [3] are still valid if one uses the result m(A)=Cd' instead of
m(A)sd'for A e P{(cf. lemma 2 of [3]) and ||ga]lo <1 instead of |gllo<1.
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We conclude § 1, showingin lemma 2 that the condition ||g, |l < 1 can be weakened
further. To this end we need lemma 1, which will be also useful in the following
Sections.

LEMMA 1. (i) Let Ay, . .., A be subsets of X such that

k
U A; = X,
=1
Suppose there are integers ny, na, ..., ng such that
sup g, <1
A ‘
for 1si<k. Then there is an n with lgallo < 1.

(ii) Suppose for every x € X there is a neighbourhood U, of x in X and an integer
ny such that

sup g, <1.
Uy

Then there is an n with lgnllo < 1.
Proof. (i) Set

A=max{ny,...,m} and v=max {supg.:1=isk}<l.
A
Then choose an integer r such that
(sup g)'y' <1
X

and set nn = 1.

For a fixed x € X let j,€{1,..., k} be such that x €A, Set n=m. X ju, ..., j;
and ry, ..., r; are defined, choose ji,, such that

T"l+"‘+rtx EA-

Ji+1

and set ;4 = n;, . Finally let s € N be such that
ritecctresn<rydeccdbrgg.

As ny=<1i for all i and n =7it, we have s =¢ and

H=r=r = <Ie1=n;,, <A,
Now we get

8n(6) = g (x)ge(T7x) + ++ g, (T Motx)g (T 1y

Sycycccy(supg)t T
=y'(sup g)",
because y <1, S26Ln—r—--—r,=jy and supg =1 (for sup g <1 nothing is to

shaw),
This can be done for all x € X, hence

lgnflo=v"(sup g)* <1.
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(ii) As X is compact, there are x, .. ., Xxx € X such that
k -
U U,=X.
=]
Now apply (i). a

LEMMA 2. Let g: X - (0, ) be of bounded variation, such that g(x) is either g(x+)
or g(x—). Suppose that

liminf gg(x+)=0 and liminfg.(x=)=0 forallxeX.
k-0

k-oCD
Then there is an n with ||gallo <1.

Proof. As g on X is continuous and an extension of g on X\W, it follows from
the density of X\W in X that

liminf g (x)=0 forallxelX.

Hence for a fixed x € X, there is a k with ge(x)=2 and, by continuity of g on X,
there is a neighbourhood U of x with g,(y)=2 for all y € U. The existence of an
n with ||lg.Jle <1 follows now from (ii) of lemma 1. O

Of special interest is the case where g =1/|T"|, because this gives absolutely
continuous invariant measures u.

2. Equilibrium states for ¢ with sup ¢ —inf ¢ <hop(T)
In this section we consider piecewise monotonic transformations T on X =[O0, 1]

and functions
¢:[0,1]-R
of bounded variation satisfying
sup ¢ —inf ¢ <hop(T).

In order to show ||g.|lo <1 for such ¢ we need some results of [4], [S§] and [6] for
the transformation 7. Recall that

g)':{-’h.-'yjN}

is the partition of X =[0, 1] into intervals on which T is monotone. If C-is a
subinterval of some Ji (1 sk =<N), then we call the non-empty sets among TC nJ,
for 1 =r =N the successors of C. They again are intervals contained in some J; € 2.
Let @ be the following set of subintervals of X: @ contains 2, and if C e 9 then
all successors of C belong to 9, too. (In [4]-[6] the letter D is used for the set 2.
Furthermore an isomorphic shift space is considered instead of (X, T'), but this
makes no essential difference.) Let M be the oriented graph whose vertices are the
clements of 2 and which has an arrow C->D (C, D e€9) ift D is a successor of
C. We call M the Markov diagram of T. Alternatively M can be considered as a
0-1 matrix with Mcp =1 iff there is an arrow C - D. It is shown in [4] that the
successors of different elements of @ often coincide, such that the oriented graph
M contains closed paths (cf. § 3, where M is explicitely determined for a special
class of T). In [6] the Markov diagram is used to investigate the non-wandering
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set of T. If the topological entropy ltop(T) of T, which is equal to the. logarit'hm
of the spectral radius r(M) of M, is greater than 0, one always finds an irreducible
submatrix M = M/9 (9 = D) of M with r(M)=r(M). Set

P ={D e @ : there is a path in M from some C'€ 9 to D}.
It is shown in [6] that the sets
F=U{D:DeP}and G=U{D:DecP\D}
are finite unions of intervals satsifying G = F, TF = F and TG < G. The set

Q= TEG)

i=0
is a T-invariant, closed, topologically transitive subset of (X, T').

As F is a finite union of intervals, T/F is piecewise monotonic again. Hence we
can set X =F. We consider the Markov diagram of (F, T/F) and call it again M
and its index set again 9. Let 9 denote again the irreducible subset of &, which
gives rise to the topologically transitive subset Q0 of F (in [6] it is shown that there
is a 1-1 correspondence between irreducible submatrices M of M with r(M)>1
and topologically transitive subsets Q of X with /,,,(Q2)>0). The proof of lemma
1 of [6] gives information about the structure of F. From this it follows that one
can choose the partition 2 of F into intervals where T is monotone in such a way
that ? = 9. In particular, this implies that every element of @ can be reached on
a path in M which begins in 9. This will be used in the proof of theorem 1 below.
LEMMA 3. (i) Let

Z=IhnT Nan - - AT "V ePd (J, eP).
Then

D; :=T‘-111 N NTJi, NJ;

is an element of D and D, is a successor of D;. Furthermore T"™'Z = D,.

(@) If Dyis in @ for 1=i=n, D1e€P, and D, is a successor of D;, determine
Jie P such that D, = J;. Then

D;i=T" A -ATIi_.1nJ; forl<i=n.

This implies that there is a 1-1 correspondence between elements Z € Pg with

T""'Z =D e D and paths of length n beginning at some element of P and ending
at D,

Proof. (i) As T is monotone on every Ji, we have
Dini=TThnAJin
=T(T A AT AT
=TD;NJi+1.

Because of T'Z < D;.1, we have D;., # @ and hence D, is a successor of D;. As
D,=7,eD this gives that all D; are in 9. The equation T""'Z =D, is a special
case of the formula

Di=T"'in AT ),
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which we prove by induction. For i =1 we have D; =J;, which is the definition of
D,. The induction step is as follows.

Diy=TDinJi = T(T'-I(Jl AN T-“-l)fi)) NJiv1

=T AT VAT L)
using the formula T'(A " T™'B)=T'ANB.
(ii) As D;e P, we have D, =J,. Suppose we have shown that

Di=T" "' Al
As Dy, is a successor of D, there is a J;.; € @ with

Din=TDinJ1.1# D.
But this gives (cf. (i))

D =TT - AnThAJi

proving (ii) by induction. O
The following lemma summarizes results of (4], [5] and [6].

LEMMA 4. (i) hp(Q, T)=log a, where a = r(M).

(i1) M has a left eigenvector (up)pes and a right eigenvector (Vp)pes for the
eigenvalue a such that ¥, upvp =1, up >0, vp >0. The matrix (Pcp)c,pes given by
Pcp =Mcpvp/ave is then a stochastic matrix with stationary probability vector

(7p)pes given by wp = upvp, i.e.

Y Pcp=1, Y. wcPcp = 7p, Y wp=1.
DeD CeD DeS

(iii) As M is irreducible, P is also irreducible. There is a q =1 such that P is
aperiodic.
Now we can prove
THEOREM 1. Set a = exp (hop(QY, T)). Then

(i) for every D € D we have
liminf (a™" card {Z e P§|T""'Z =D})>0;

(ii)

liminf (™" inf card T™"{x})=c for some ¢ >0.

n-»co xeF

Proof. (cf. the proof of theorem 4 in [6]). It follows from lemma 3, that
card {ZePS|T""'Z=D}= ¥ M"Y,
CeP
because

M&EY=Y v ¥ McMcc,** Mc,_p
Ce2 Ch-1€D
is the number of paths in M, which begin at C and end at D. Suppose first that

D e9. Then Mcp =0 for all C£ 9, because M is a maximal irreducible submatrix
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of M and from D €9 there is a path to all C€D in M. Hence
L M&E = T M.

Ce? CePnD

By lemma 4 we have M&5" = P&5 vca" ™ Jvp for C, D € 4. By standard res;l(t‘s)
of probability we have PY% converges to wp (k- o) for all C, D e@, l.)eatll.se
is an aperiodic Markov chain with stationary probability vector . This imphies

a~*MEE - mpvc/vp =upvc for k > .

Choose now a fixed j with 0=<j=q—1. Then

. ki - (i) —akyrlak)
) M (@k+) _ Y a' ¥ M&ea ™ *MED
Ce®? CePnD Eed

> ¥ oY MBupve
CePnd Eed

which is a positive constant for every j, because MYk # 0 holds for finitely many
E €9 (every element of 2 has finitely many successors). Hence

liminf(a™" card {Z GQ’SIT"_IZ = D})=¢cp >0.
If D29, there is a D' €9 and a j such that M¥)p =1. Then

im i -n (n) i ~i ~(n={) . ~(n—
liminfa™ ¥ Mcp=liminfa™a™ " ¥  NOPMD,
Ce? CePnD

?.a_’co, =Cp.

In order to show (ii) we remark that
card T "{x}=card {Z e 25" |T"Z =D}
where D € @ is such that x € D, because T" is bijective on such a Z. Hence

liminf (@ " inf card T™"{x})=zmincp >0, as |J D=F. 0
xeF De® De®

Remark. Theorem 4 of [6] shows that card P <da” for some d < and hence

lim sup (@ ™" sup card T™"{x}) <o,
xeF

using that ), g Up <.
Now we can show

THEOREM 2. Let T be a piecewise monotonic transformation on [0, 1] and let
¢ :[0, 1] R be of bounded variation such that sup ¢ —inf ¢ <hp(T). Then ¢ has
an equilibrium state w satisfying (ii) of the theorem quoted in § 0.

Proof, We consider a T-invariant F <[0, 1] as above with hep(F, T) =hop(T) and
restrict ¢ and T to F. By the results of § 1, for g =e‘b/)_t, it suffices to find an n
with g, |l < 1. Since g, is continuous on F and F isdensein F, we have||g, |l = SUPF g
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Set « = exp Mwop(F, T) and B =sup g/inf g =exp (sup ¢ —inf ¢). Then 8 <« and

1=m(P"1)= m(w;“ 8n (y))

X

= inf card T "{x} - inf g,
x€F F

=ca" sup g, * (inf g/sup g)" (by theorem 1)
F F F

=o(%) gl

leohes (£).

Hence

As B/a <1 one finds an n with

l(é)"<1.

C \«&

We show now that the bound h,,(T) for sup ¢ —inf ¢ is sharp. Take T(x)=
2x (mod 1) on X =[O0, 1]. For every

b>hyop(T) =log 2

we find a ¢ with sup ¢ —inf ¢ = b, such that P does not have the properties stated
in the theorem in § 0.
Set

O
¢= 2 ax*lg-*-1,,3-5,
k=0

where a, is a sequence of real numbers converging to 0. It is shown in [8] (the
two-shift is used there instead of T') that the operator P does not satisfy Ph =h
for a bounded h, if

[¢ o]
Y e"=1, wheres,=aop+* " +an.

n=0

For a fixed K set

k +
k+1

ak==-2 lOg if k=K

and
ar=~-b if0=sk=K-1,

Then ¢ is of bounded variation and

supd —infp =b forK =3.
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Furthermore

eo K-1 © (K+1)?
Se — ~(k+1)b | ,~Kb
kgo ¢ kgo ¢ ¢ k=xk (k +2)?
-b

e —-Kb 2 -
= +1
s7pmte T K+ 2 Gy

-b

..>1—e—_-3<1, for K->, because b>log2.
—e

Hence for every b >1log 2 there is a K such that

Y e’ <1, O
k=0

3. Local specification of T and a variation condition of ¢

In this section we consider piecewise monotonic transformations satisfying the’
property stated in (ii) of theorem 3 below. It can be called a local specification
property, because one gets specification as it is defined in § 21 of [1], if the n; and
k do not depend on (Z;);=1 and the sequence (11;+1—n;);=1 is bounded. In order to

show |lg.}lo <1 we only need a local property of ¢ and not a global one as in § 2.
Define

vari¢ =sup {lp(x)—dy): x, y € Z, Z e Pi).
Then we have

THEOREM 3. Let ¢: X - R be of bounded variation. Suppose

(i) Y7y var ¢ =ic <00,

(ii) for every sequence Z12Z,2Z32+ + + with Z, € P there are integers ny <n,<
n3<---and k, which may depend on (Z;);=1, such that

k , ‘
U T"Z, =X foralli=1.
=1

Then there is an n with ||g.]lo <1.

Proof. (cf. Walters [13]). For A =X denote by A the closure of A in X. For each
sequence (Z);=1 as in (ii) we may consider ()i=1 Z; as one single point. (If
I=(\i21 Z, is a non-trivial interval, it follows from (i) that ¢ is constant on I.
Furthermore T*I for k =1 is also a subset of some A with A € P} for all n, which

implies that ¢ is constant on T*I, too. This gives that g, is constant on I for all k.)
We show that m has no atoms: For x € X we have

m{x}) =m P 1) = mge(x) * Lireg) = ge(x)m (T x)). (1)

Suppose first that x is'not periodic. Choose Z; € ¢ such that x e Z.Then Z; . S Z..
As X is dense in X and Z, is compact, it follows from (ii) that

k L -
U Tz, =X.
j=1
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Hence for i =1 we can find a y, € Z,,, with T™*/(y,) = x, where j; < k. Now it follows

from (1) that
m{y ) =m{yNmAT e}y = m (x> g1 91/ gugriy (%)

= exp (— il var, ¢ — 2"¢"ij) m({x})?

= exp (—c = 2kl|pllo)m ({x1)?,
because x and y; are both in Z,, and var, ¢ cquals
sup {[6(x) o (y): x,y e Z, Z e Pg}
(¢ is continuous on X and X is dense in X). As x is not periodic and j; <k, only

finitely many y; can be equal to a fixed y,. This implies m({y;})->0 for i >0 and

the above inequalities give m({x}) =0. )
If x € X is periodic with period p, we find a Z e P{ for some r such'that T/ (x) ¢ Z

for 0=j =p —1. Choosec some sequence (Z;);=1 as in (ii) with Z, = Z. Then T/(x) 2 Z,
forO0sj=<p-1andall i =r, By (ii) we find an n >r with

U T2, =X sx.

s=]
Hence thereisa ye Z,, i.e. y # T'x for 0=j=p—1, and T""'y =x for some s. As
y is not periodic, we know that m({y}) =0. Now it follows from (1) that also
m{x})=0. |

Now set q; =max {m(Z)=m(Z):Z ¢ PL). We have q:-> 0 for i > 00, because m

has no atoms and X is compact. Fix some x € X again. We show that there is a
neighbourhood U, for x and an integer n, with supy, g., <1. First we show that
for a measurable subset A of X

k
Uria =)?=>m(A)zd(k):=-zf(infg)">O. (2)
i=1

AsUf-1 T'A =X, there is a j with m(T’A)=1/k. Hence

m(A)=m(P’l,\)=m( Y g,(y)'lf\()’))

yeT K

E:(infg,)m( z, 1,\()’))

yeT  'x
= (inf g)'m(T'A)
=(inf g)! {;ad(k).

As above, choose (Z)i=1, Zi € Pa, such that x € Z. Let k be the integer from (ii)

for these Z,,
c =) var; @,
{

and let n be onc of the ;s of (ii) such that
qaed (k) <1,
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Set U = Z,, which is a neighbourhood of x in X. As
k -
UT"U =X,
j=1
(2) implies that m(T"U)=d(k), and one can estimate

azn@=n@E"1)=m( T gilub)

yeT "x

= (inf g, )m(T"U) = (sup gn) exp ( - i var; qS) d(k)
u u {=1

= (sup gn)e “d(k).
U

Hence supy g, =qned(k)"*<1. This means that for every x e X we can find a

neighbourhood U and an integer n with supy g. <1. Now apply (ii) of lemma 1
to get the desired result. O

In order to show |g.llo <1 for the class of ¢'s specified by (i), one has to prove ..
that the piecewise monotonic transformation T satisfies (ii). We consider this
problem for the following class of transformations T on [0, 1]: Let f:[0, 1]-> R be
continuous and monotonically increasing. Define T by T(x)=f(x) (mod 1). We
call such a transformation monotonic mod one. For the investigation of (ii) of
theorem 3 we use the Markov diagram M introduced in §2. We want to determine
M for T(x)=f(x) (mod 1).

Recall # = (J4, ..., Jn) the partition of [0, 1] into intervals of monotonicity of T,
and suppose N =2. 2 is a subset of 9. For 2=<i=<N —1 we have TJ; =[0, 1], hence
the successors of such a J; are all J; for 1 =<j=<N. Next we define intervals A;, B;
for i=1. Set A;=J;, Bi=Jn. Define ri =1 as that integer such that T"A; is a
subset of an element of ? for 0=k =r;—1 and T"A, is not. Set

A;=T""A,=TA,_, for2=i=r
and

A,‘.’-] = TA" ﬁfp,

where p is the smallest integer j with TA, nJ;# 3. If r,-++,rm and A; for
Isi=srn+-:+r,+1 are defined, set R,, =ry+++ ++r,, define r,,.1 =1 such that
T*Ag_+1 is a subset of some element of ? for 0k <r,,.;—1 and

T Ag, 10 # D
for p=j=q and p <q. Define
AR,..H = Ti.'lARm.” for2=i STlm+1

and

ARmﬂ"'l: TARm+anP’ where Rm+1=Rm+rm+1-
Similarly define s,, =1 and S, =51+ * * +5m (So = 0) inductively such that
B$m+‘ = T‘—IBSM*-I.C_:Jk e@ f0r25iSsm+,
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and
Bsm-o‘l"‘l = TBSm*I an,

where q is the largest, but not the only integer k& with
TsmﬂBsm.p.] njk ;é @-

The successors of A; for i #R,, and B; for i#S,, are then A;.; and-B;.
respectively. Ar_ has the successors Ag, +1, all Jx with J, € TAg,, and B, because
one can show that

TAR, NJq=18B,,,
where q is the largest integer & such that
TARr, NJ # Q.

Similarly Bs,, has the successors Bg, +1, all /i with J, € TBs,, and A, . Hence

Q ={fz, ov oy JN—]}U{A{, Bi:iz= 1}
(cf. chapter II of [7]).

r, r; r3 74

Al"Az"As"Aa"As"As”Av"

¥

31*32*33"34"35"36"37"

31 Sz

FIGURE 1

In order to show (ii) of theorem 3 one can proceed as follows: We call B ={A4,, B;} =
@2 a K-barrier, if from both elements of & there is a path in M of length less than
K to each element of =9 and if

B ={As, Bulk =i,m =j)
can be left only via an arrow
A{*A‘H or B/"B;H.

Then we have

LeMMA 5. Suppose that for the Markov diagram M of a monotonic mod one
transformation T there is a sequence B, < D of K-barriers for some constant K. Then
T satisfies (ii) of theorem 3.

Proof. For i =1 let Z;e Py be such that Z;+1 S Z;,. By lemma 3 there is a path
Dy D3+ +- D, in M with D, e @ such that

Z =DN T—‘Dzﬁ e Y T-“-nD‘ (3)
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Furthermore, as Z;. < Z;, the path for Z;., is the same as that for Z, only with a
D+, added. Hence we have an infinite path Dy-»D,-> D3~ ...in M with D, € P
such that (3) holds for all i. We consider two cases:

If the set {D;)i = 1} = @ is finite, then there is a constant k such that for every n
and every E € ? one can find a path

D,>Cy>-: "’Cj+1=E inM Withiﬁk.
This gives
T"HZ 2T (Z, AT "Cin ++» "nT " 'C41)=Cjs1=E (cf. lemma 3).

Hence

[0,11=U Ec LkJ T"Z,.

Ee® j=1
If {Di}i =1} is an infinite subset of @ then, by definition of a barrier, there is a
sequence n; with D, € 8;. Otherwise {D;|j =1} = %, for some i and hence would be

finite. As there are paths from D, € %, to every element of ? =@ of length less
than X, one gets as above that

K
Uz, =[o,1].
i=1
This proves the lemma. O

Now theorem 3 and lemma 5 imply:

THEOREM 4. Let T be a monotonic mod 1 transformation and suppose the Markov

diagram of T possesses a sequence of K-barriers for some K. Let ¢ :[0, 11- R be of
bounded variation with

[+ o)
Y, var;¢p <00,
i=1

Then ¢ has an equilibrium state p satisfying (ii) of the theorem quoted in § 0.

We consider first the g-transformation x - x (mod 1), g8 > 1. For this transfor-
‘mation the Markov diagram found above for monotonic mod 1 transformations
satisfies A;=A; for all { and =1 for all /. One can identify all A,’s and the
successors of A; are the elements of 2. In this case set B, ={A,, Bg,}, which is a
barrier because A, =A; is a successor of Bg, Hence theorem 4 can be applied to
the B-transformation x - Bx (mod 1) (cf. Walters [13] and III, § 4 of [3]).

Now we consider T'(x)=px +a (mod 1). For @ =0 we have r,=1 for all i. If B
and a are such that the sequence (r;) or the sequence (s;) is bounded, a slight
generalization of the above argument shows that the barrier property of lemma S
is satisfied. The sequence (r;) is bounded, if and only if

. 1{T*(0)|k =0}.
Let £ >0 be such that T%(0)<1—¢ for all k =0. One easily checks that

TAg,+1=[T"~"'(0), 1] forallm,
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which then has the length larger then &. If k is such that 8¢ >1 then at least
T*Ag, .1 cannot be contained in some element of @, hence rn.1 <k. In particular,

1{T*(0)|k =0}

holds, if the orbit of 0 is periodic. Hence theorem 4 can be applied to T(x)=
Bx +a (mod 1) if either the orbit of 0 or that of 1 is periodic. R

For every fixed a €(0, 1), the set of 8 such that x+—>Bx +a (mod 1) does not
satisfy the barrier property of lemma 5 seems to be dense in (1, 00). It would be
interesting, to find sufficient conditions for

(a, B)€ (0, 1)%(1, c0),
such that this property is satisfied for
x—Bx +a (mod 1).

Another class of piecewise monotonic transformations (X, T) which satisfy (ii)
of theorem 3, is that'where the initial points of all J; are mapped to the initial point
of X by T and T/J, is expanding. One can prove this with similar methods as
lemma 5 using the Markov diagram of T.

4. Absolutely continuous invariant measures

Misiurewicz ([9], [10]) and Szlenk ([11], [12]) have given sufficient conditions for
a piecewise monotonic C2-mapping T of [0, 1] to admit an absolutely continuous,
invariant measure w. Their main assumptions are that the critical points of T (i.e.
those for which 7T'(x) =0) are not contained in the closures of their orbits and that
all periodic points are repellers. For transformations with negative Schwartzian
derivative Misiurewicz [10] also has given a description of the asymptotic o--algebra
of (T, ). '

Here we must restrict ourselves to the case where the critical orbits eventually
become periodic repellers. Using Szlenk’s conditions (cf. [12]), it will be relatively
easy to show that the results of [3] summarized in § 0 apply.

Let T:[0, 1]-[0, 1] be of class C?. Denote by C, the set of critical points of T,
i.e. Co={x|T'(x) =0}, and assume that

(T1) card (Un>o0 T"Co) <0,

(T2) T"(c)#0 and |T"(c)—T"(x)|=O(x —c]) for c € Co and x €[0, 1],
(T3) Coﬁ UnZI T"Co= @, and

(T4) There exist dy, d>>1, nge N such that if

Ta(x)eD ={y:|T'(y)| <di}

for some n > ng, then |T" (x)| = d>.

The last condition is exactly the same as A.6 in [11] and [12]. From (T1) it follows
that the orbits of critical points eventually become periodic, while (T4) forces all
periodic points to be repellers. Hence, by passing to an iterate T™ if necessary,

https://doi.org/10.1017/5014338570000955X Published online by Cambridge University Press


https://doi.org/10.1017/S014338570000955X

Equilibrium states for piecewise monotonic transformations 39

one may assume further:

(T5) For each ¢ & Cy there is an H(c)e N such that ¢, Tc, ... THE)¢ are distinct,
z = TH€)¢ is a fixed point for T with T'(z) positive, and

IT(T'e)| =ds>1
for some constant d3 and all i = 1.

Obviously (T2) and (T3) remain valid by passing from T to T", and it follows from
lemma 6 in [11] that, with some new constants, T also satisfies (T4). Furthermore,

in [12] Szlenk has shown that under (T1), (T2) and (TS), the following condition
(T6) is equivalent to (T4):

(T6) There are constants y >0 and a > 1 such that T”(x) = x implies |T*° @) =yaf
forallpeN, x [0, 1].

The idea of the following construction is to start with a ‘good guess’ of the
invariant density, i.e. with a density f which already has the expected singularities...
The measure fA will play the role of the reference measure m, i.e. P*m = m, where
the Perron-Frobenius-operator P is defined by means of the function

fx)
fTONT (x)]

The problem is to choose f in such a way that ||g./le <1 is satisfied for some n and
g is of bounded variation.

Let C,:={T'clce Co, 1=i<H(c)-1} and Coi={T"“¢|c € Cy}. By (T1) and
(T3) the sets Co, C, and C are finite and pairwise disjoint. Set

glx)=

C=Cou(CiuCy.
For £ >0 and z € C define the following sets U.(z) (one- or two-sided neighbour-
hoods of z):
(i) If z € Cop set
U, (z)={x:|x —z|<e}.
(ii) If z e C, set

Ue(z):=U U TiUe(C).

i=z1 ceCqy
Tle=z

(iif) If z € Co set

U.z)= U THU.(c).

ceEl g
T"(‘)Cﬂz

Furthermore, for i =1, ..., no (no from (T4)) we define

M=\ T7'U.lc) and M.=M,,

ceCo i=1

Set d:=d3’* (d, from (T5)).
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Choosing £0>0 small enough we may assume:
(E1) The sets U,,(z) (z € C) are pairwise disjoint intervals and disjoint from M,,.
(E2) The sets M, (i=1,- - -, no) are pairwise disjoint finite unions of intervals if
£ <Egg.
(E3) 0<T'x/T'y=dand T"x - T"y =0 for x, y € U,,(2), 2 € C+ U Cuo.
(E4) 0<T"x/T"y <3for x, y € U,.(c), c € Co.
(E5) TU.,(2)nM.,v Uyecouc. Ue(y)) =@ for all z € Cx.
Set K :=min.cc, 3(2| T"(c)])!/?, and define the density f by

lx=z]"?  ifxeU.(z),zeC.
)= alx—z|""? itxeU.(z),z€Co

K - ifxeM.,i=1,...,n0

K otherwise,

where the constants «,, K;. and a further constant 111 € N are chosen such that

(a) f becomes continuous at the endpoints of the U,,(z) different from z(z € Cy),
assuming the value K there (by choice of the a.),

b) glx)= —&%ﬂ_z for x € M,, (by choice of the Kj),

(¢) a.d™ =2 forall z € Cs (by choice of ny),

d) () TH®"(x)e U.(T"c) for c e Co, x e U.(c), i=ny, (ii) f(x)=K for x€
\Ucec Ue(c), (iii) |T'(x)| <d; for x € U, (c), ¢ € Co. (This can be achieved choosing

€ = eo small enough.)
(e) Finally set y :=inf |T'(x)|> 0, where the infinum extends over all

x¢ |UJ U.(c).

CECQ

According to the definition of f we now decompose [0, 1] into a finite number
of intervals on each of which g will be shown to be of bounded variation. Further-
more, one will see that there are constants § <1 and N €N such that for each
x €[0, 1] there is an n = n(x) <N with

flx)
gn(x)=7775 ——< 8.
fT)(T™)x)|

Hence g is of bounded variation, and, using lemma 1 with
={x|n(x)=1},

there is an n € N with sup,e[o, 1182 (x) <1.
(1) xeU.(c), ceCo:
(i) Tz e Cs:

o) =K AT ()
|7 (x)] |T"(y2)]

for some y;, y, between x and ¢. Hence glu, is continuous and g(x)=

3K 2|T"(c))""* <3 ((E4) and definition of K).

|Tx ~Tc|'"*=K
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\

(ii) Tz € Co:With ny from (c) we have

Tn1+1x - Tz 1/2 1
gm+l(x) = g(x)gm(Tx) =g(x) Tx — Tz |(T"1)’(Tx)l
nyy 112
=g(x) (Y G)) for some y € U, (Tz)

(T™)(Tx)
=g(x)d™™ by (E3), (T5) and the choice of d,

=2 by (c), since g(x)=3% min ;" in analogy to (i).

2€Cqo
Assuming w.l.0.g. that T"(c) >0 and x =g, it is easy to show (using (E4), (T1), (T2))
that
a;' fTzeCeo) K 12 T"(x)
[} —_ b4 [+ o] et _ - _ _ T )
gu){1 iﬂkal}zwxjw (lzThf”k ©)

is bounded on U, (c) such that g has finite variation on U, (c).
(2) xeU.(z),zeC,:
(i) TZ € C+:

Tx~-Tz|'* 1 |T'W'”?

glx)=

x=z | [T'G) " |T'(x)]
for some y between z and x. Hence gy is continuous and g(x)<d ™! by (E3)
and (TS).
(i) Tz € Cw: As in (ii) of (1) one shows that

Ty ‘
%}_-"—‘;%% | for some y € U, (z)

gn(x)=a7;

1

<and™M==,

In both cases
I ( Tx~Tz
X—2

1/2,

)

for some yy, y, € U, (2), such that g is of bounded variation on U,(z) as
Tx —Tz |2 1
xX—z | T (x)|

=TT @2 <HT oy ™2 <00

and

are.

() xeU,(z),z€Cu:
(i) Tx e U, (z): analogously to (i) of (2).
(i) Txe U, (2):

12
g'(x):a’ILle:zL)l <d™' (asin (i) of (2)),

as K =a,|Tx ~z|™"/? and Tz =z. It can be shown as in (2) that g is of bounded
variation, observing that if Tx U.,(z) then x& U, (z) by (i) of (d).
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4) xeM,,,i=1,..., ng

K
g(x)=K‘ <iby(b), where Ko:=K.

-1
() xe{f(x)=K}:
gl{f(x) =K} is of bounded variation as the set {f(x)=K} is bounded away from.
the set Cy, and f(Tx) is glued together from pieces of K, K, |Tx —z|"/? (z e Co U C.),
and a;'|Tx ~z|'/? (z € Cw). Furthermore

xe{f(x)=K}>x& M, >|(T") (x)|=y".
Fix n, e N such that
K
na=ngp.,Mo =2 —— ]
dir Y= R K
From (T4) one has the following alternative: either 3n, no=n <na: |[(T")(x)|=d.
or [(T")' (x)| =d 12 " |(T") (x)] = d 12" "oy,
We consider three cases:
K
n Na\? S
f(T™x)(T2Y (x))

ST

() (7Y ()| =d3 oy ™oz=2 - Hence g,,(x) =

K __
min {K, K;}

since f =min {K, K;} by (ii) of (d).
(i) (T"Y(x)|=d, and T"xgM, forsomeno=n<n, Henceg,(x)=d3'by
(ii) of (d) since f(T"x)=K.

(iii) |(T")'(x)|=d2 and T"x e M, for some no=n <n,. Hence T™x € U,(c) for
some m <nz+ng and c € Co therefore |(T™)'(x)| = d; by (ii) of (d) and (T4) and we
conclude that g,.(x)sd3".

We have shown that the hypotheses of the theorem quoted in § 0 are satisfied.
Hence we have

THEOREM 5. Let T: [0, 1]- [0, 1] be piecewise monotonic and of class C?, such that
(T1), (T2), (T3) and (T4) are satisfied. Then there is an absolutely continuous
T-invariant measure p on [0, 1] satisfying (ii) of the theorem quoted in § 0.

Research for this paper was done when F. H. visited the Institut fiir Angewandte
Mathematik, Universitdt Heidelberg.
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