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Abstract

Connections between annihilators and ideals in Frobenius and symmetric algebras are used to provide a
new proof of a result of Nakayama on quotient algebras, and an application is given to central symmetric
algebras.
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1. Introduction

Throughout this paper, R will denote a commutative ring with identity element 1 and
A will denote an associative unital R-algebra which is a finitely generated projective
R-module. For any algebra A, the centre of A will be denoted by Z(A).

D 1.1. The algebra A is called a Frobenius algebra if it is finitely generated
and projective as an R-module and there exists a left A-module isomorphism
ϕ : A � A∗, where A∗ denotes the ring homR(A, R) as a right R-module. Note that A∗ is
an (A, A)-bimodule via (a · λ)(b) = λ(ba) and (λ · a)(b) = λ(ab) for any a, b ∈ A, λ ∈ A∗.
If there exists a two-sided A-module isomorphism ϕ : A � A∗, then A is called
symmetric [1, 3].

There has been a resurgence of interest in Frobenius algebras in recent years due
to applications in coding theory (see, for example, [6, 7]). In this note we consider
the connections between hyperplanes and ideals in Frobenius and symmetric algebras
over commutative rings. This allows us to develop a succinct, coordinate-free proof
of a result of Nakayama [4] that determines when the quotient of a symmetric algebra
over a field is again symmetric. As a corollary, we show the class of central symmetric
algebras is identical to the class of central simple algebras.
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D 1.2. A form f on A is a bilinear mapping f : A × A→ R. The form is
called associative if f (ac, b) = f (a, cb) for all a, b, c ∈ A. It is called right nonsingular
if b 7→ f (·, b) is an R-module isomorphism from A to A∗ and left nonsingular if
a 7→ f (a, ·) is an R-module isomorphism. When both conditions hold, we say the form
is nonsingular.

R 1.3. Some references will refer to such forms as ‘nondegenerate’. We shall
need a distinction between this and a weaker condition also called nondegenerate,
so we shall follow the convention in [5]. The weaker condition states that f is
nondegenerate if f (a, b) = 0 for all a ∈ A implies b = 0 and f (a, b) = 0 for all b ∈ A
implies a = 0. Over a field these conditions are easily seen to be equivalent using a
dimension argument.

P 1.4. A finitely generated projective R-algebra A is Frobenius if and only if
there exists a nonsingular associative bilinear form f : A × A→ R, and is symmetric
if and only if there exists such a form which is also symmetric.

P. Assume first that A is a Frobenius algebra. Since A is Frobenius there exists
a left A-module isomorphism ϕ : A � A∗. We define f (a, b) = ϕ(b)(a). The form f
is right nonsingular since ϕ is an isomorphism. Left nonsingularity holds for the
same reason applied to the transpose mapping ϕ′ defined in [2, page 2]. Since
f (a, cb) = ϕ(cb)(a) = [cϕ(b)](a) = ϕ(b)(ac) = f (ac, b), we see that f is associative.

For the converse, assume there is an associative nonsingular form f . Define
ϕ : A→ A∗ by ϕ(b)(a) = f (a, b). Then, by definition, ϕ is an isomorphism as desired.

If ϕ is a two-sided A-module isomorphism, then f (a, b) = ϕ(b)(a) = (b · ϕ(1))(a) =

ϕ(1)(ab) using the left module isomorphism, and f (b, a) = ϕ(a)(b) = (ϕ(1) · a)(b) =

ϕ(1)(ab) using the right module isomorphism, so f (a, b) = f (b, a). Conversely, if
such a form is symmetric, the left module structure of ϕ : A � A∗ is straightforward
from associativity and the right module structure is shown by (ϕ(b) · a)(x) = ϕ(b)(ax) =

f (ax, b) = f (b, ax) = f (ba, x) = f (x, ba) = ϕ(ba)(x) for all a, b, x ∈ A. �

2. Hyperplanes and ideals

We begin by defining the notion of a ‘hyperplane’ with respect to an associative
bilinear form on an R-algebra A. In the case where A is an algebra over a field, this
notion coincides with the usual notion of a hyperplane as a subspace of codimension
one. We then determine the maximal left and right ideals in a hyperplane. We
conclude by exploring the connections between annihilators of ideals and intersections
of hyperplanes. In particular, we see why results for fields only partially generalise
due to different versions of the nondegeneracy hypothesis for forms on a module over
a ring.

D 2.1. Given an R-algebra A with associative bilinear form f , we can
associate two (not necessarily distinct) hyperplanes to each nonzero c ∈ A. A (left)
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hyperplane with respect to f is a set

cH = {x ∈ A : f (x, c) = 0} (c , 0, c ∈ A),

and a (right) hyperplane with respect to f is a set

Hc = {x ∈ A : f (c, x) = 0} (c , 0, c ∈ A).

Hyperplanes are R-submodules of A. If the form f is symmetric, then cH = Hc for all
c ∈ A. In general, 1H = H1 since associativity implies f (1, a) = f (a, 1) for all a ∈ A.

More generally, if S ⊆ A, we may define HS = {x ∈ A : f (s, x) = 0 ∀s ∈ S }. The set
S H is defined similarly. These are intersections of hyperplanes. If S is a right ideal in
A, then HS will be a left ideal, and if S is a left ideal, then S H will be a right ideal.

D 2.2. The hyperplane Hc (respectively, cH) is nondegenerate if it contains no
nontrivial left (respectively, right) ideals. It is symmetric if it contains all commutators
of A.

P 2.3. If an R-algebra A is Frobenius, then A admits an associative bilinear
form f having a pair of nondegenerate hyperplanes cH and Hc, for some c ∈ A. If the
algebra A is symmetric, then A admits an associative bilinear form f having a pair of
symmetric nondegenerate hyperplanes cH and Hc, for some c ∈ Z(A).

P. Let f be an associative nonsingular bilinear form as guaranteed by
Proposition 1.4. Consider the hyperplane H1. If Ax ⊆ H1, we have 0 = f (1, Ax) =

f (A, x) by associativity, whence x = 0 since f is nonsingular. Thus H1 contains no
nontrivial left ideals. Also xA ⊆ 1H implies that 0 = f (xA, 1) = f (x, A), so that x = 0.
Therefore 1H = H1 is nondegenerate.

Now assume that A is a symmetric algebra and again consider H1. Then

f (1, yx − xy) = f (1, yx) − f (1, xy) = f (y, x) − f (x, y) = 0

since f is symmetric, and so H1 is symmetric. �

As the following proposition shows, the condition c ∈ Z(A) is inextricably linked to
the condition that Hc (or cH) is symmetric.

P 2.4. Let A be a symmetric R-algebra, f a nonsingular associative
symmetric form on A and c ∈ A. Then Hc or cH is symmetric if and only if c ∈ Z(A).

P. For all x, y ∈ A,

f (c, yx − xy) = 0 ⇐⇒ f (c, yx) = f (c, xy)

⇐⇒ f (cy, x) = f (xy, c) = f (x, yc) = f (yc, x)

⇐⇒ f (cy − yc, x) = 0

⇐⇒ cy − yc = 0 (∀y ∈ A)

⇐⇒ c ∈ Z(A).

The proof for cH is analogous. �
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Notice that the proof of Proposition 2.3 did not use the full force of nonsingularity,
but rather only nondegeneracy of the form f . We next obtain partial converses to the
statements in Proposition 2.3; these are not full converses when nondegeneracy is not
equivalent to nonsingularity.

P 2.5. Let A be an R-algebra with an associative bilinear form f . Let Hc

and cH be a pair of nondegenerate hyperplanes with respect to f , for some c ∈ A.
Then f is nondegenerate. If the hyperplanes are also symmetric and c ∈ Z(A), then
there exists an associative nondegenerate symmetric form on A.

P. If x ∈ A is such that f (a, x) = 0 for all a ∈ A, then f (c, Ax) = f (cA, x) = 0; since
Hc is nondegenerate, Ax = 0, so x = 0, which is to say that b 7→ f (·, b) is injective. Also
if x ∈ A is such that f (x, a) = 0 for all a ∈ A, then f (xA, c) = f (x, Ac) = 0; since cH is
nondegenerate, xA = 0, so x = 0. Thus the form f is nondegenerate (but may not be
nonsingular).

Now assume that the nondegenerate hyperplanes Hc and cH are also symmetric and
c ∈ Z(A). Then f is nondegenerate as above. We first check that these hyperplanes
are equal. Since c ∈ Z(A), we have f (x, c) = 0 if and only if f (xc, 1) = f (cx, 1) =

f (c, x) = 0, and so we obtain cH = Hc. For all x, y ∈ A, define g(x, y) = f (x, yc).
Then g is also associative. We next check that g is nondegenerate. If g(x, y) = 0
for all y ∈ A, then xA ⊆ Hc and x = 0 since Hc = cH is nondegenerate. Similarly, if
g(x, y) = 0 for all x ∈ A, then Ay ⊆ cH = Hc and so y = 0. Finally, we must check
that g is symmetric. Since Hc is symmetric, we have f (xy − yx, c) = 0, from which
we obtain f (xy, c) = f (yx, c), or f (x, yc) = f (y, xc). Now by definition of g, we have
g(x, y) = g(y, x) and thus g is symmetric. �

E 2.6. As an example where nondegeneracy is weaker than nonsingularity, we
let R = Z and A be the group ring Z[Z2] = Z ⊕ Zg, where g2 = 1. Using {1, g} as a
basis, the form given by the matrix

(1 2
2 3

)
is nonsingular since its determinant is a unit

and so it induces an isomorphism with A∗. On the other hand, the form given by the
matrix

(2 2
2 3

)
is nondegenerate since its determinant is 2, a nonunit (but also nonzero),

just as it is if viewed as a form over Q. But it is not nonsingular. Specifically, the
linear functional ψ(x + yg) = x is not in the image of the mapping induced by the form
f since f (x + yg, b1 + b2g) = 2b1x + 2b2x + 2b1y + 3b2y cannot equal x for any choice
of b1, b2 ∈ Z.

C 2.7. For a field K, a K-algebra A is Frobenius if and only if A admits an
associative bilinear form f having a pair of nondegenerate hyperplanes cH and Hc, for
some c ∈ A. The algebra A is symmetric if and only A admits an associative bilinear
form f having a pair of symmetric nondegenerate hyperplanes cH and Hc, for some
c ∈ Z(A).

L 2.8. Let A be an R-algebra with a nondegenerate associative bilinear form f
and let c ∈ A. The hyperplane Hc contains HcA as its largest left ideal. Assume further
that f is symmetric. Then HcA is nontrivial if and only if c is a (right) zero divisor.
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P. Suppose J is a left ideal contained in Hc = {x : f (c, x) = 0}. For all a ∈ A, we
have f (c, aJ) = f (c, J) = 0, so f (cA, J) = 0 and J ⊆ HcA. Since HcA is itself a left ideal,
it is the largest one.

Suppose now that f is symmetric and 0 , x ∈ HcA. Then for all a ∈ A, we
have f (ca, x) = 0, which implies f (xc, a) = f (x, ca) = 0 since f is symmetric. By
nondegeneracy, we obtain xc = 0 and c is a right zero divisor. Conversely, if bc = 0
with b , 0, then for any a ∈ A, f (a, bc) = 0, which implies f (Ab, c) = 0, so that
Ab ⊆ Hc. As above, this left ideal is contained in HcA, showing that HcA is nontrivial. �

Let J be a two-sided ideal in a Frobenius algebra A. By associativity, we can write
f (x, J) = f (xJ, A), so that, using the nondegeneracy of f , we have xJ = 0 if and only
if f (x, J) = 0. Similarly, Jx = 0 if and only if f (J, x) = 0. Thus we can use the form f
to express the right annihilator r(J) and left annihilator l(J) of J as follows:

r(J) = {x ∈ A : f (J, x) = 0} = HJ ,

l(J) = {x ∈ A : f (x, J) = 0} = JH.

These will play a crucial role in determining when a quotient of a symmetric algebra
over a field is again symmetric.

L 2.9. Let J be a two-sided ideal in a symmetric algebra A. Then the left and
right annihilators are equal; that is, l(J) = r(J).

P. We have x ∈ r(J) if and only if f (J, x) = 0 if and only if f (x, J) = 0 (by
symmetry) if and only if x ∈ l(J). �

3. Quotients of algebras

We ask under what conditions a quotient of a symmetric algebra over a field is
Frobenius or symmetric. This was done by Nakayama in the 1930s using matrix
arguments [4], but we present a coordinate-free approach here.

Throughout this section, we shall assume that A is a Frobenius algebra over a field K
with nondegenerate associative bilinear form f . We again point out that nonsingularity
and nondegeneracy are equivalent concepts when the base ring is a field.

L 3.1. Let H be a maximal proper K-submodule of A. Then H is a right
hyperplane Hc for some c ∈ A. Conversely, any right hyperplane Hc is a maximal
proper submodule. The analogous result holds for left hyperplanes as well.

P. Let H be a maximal proper K-submodule of A and set H⊥ = {x ∈ A :
f (x, H) = 0}. Choose 0 , c ∈ H⊥. Then A , Hc = {x ∈ A : f (c, x) = 0} ⊇ H. By
maximality of H, we have Hc = H. Conversely, let y < Hc. Then Hc + Ky = A
since given any α ∈ A, there exists r ∈ K such that α − ry ∈ Hc. Specifically, if
r = f (c, α)/ f (c, y), then f (c, α − ry) = 0. Therefore Hc is maximal. �

T 3.2. Let A be a symmetric K-algebra and let J be a two-sided ideal of A.
Then A/J is Frobenius if and only if r(J) is a principal ideal generated by some c ∈ A,
where Ac = cA. This quotient is also symmetric if and only if r(J) = cA where c ∈ Z(A).
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P. Suppose first that Ā = A/J is a Frobenius algebra. Let H̄ be a nondegenerate
hyperplane in Ā. Let H′ = {x ∈ A : x̄ ∈ H̄}. Then H′ is a hyperplane in A, for if there
exists a proper submodule H̃ properly containing H′, then H̃/J would be a proper
submodule of Ā properly containing H̄, contradicting the maximality of H̄. We claim
that J is the largest left or right ideal in H′. If not, assume that I is a (left or right)
ideal in H′ not contained in J. Then I + J ⊆ H′ so we may assume that I properly
contains J. But then I/J is a nonzero (left or right) ideal in H̄, contradicting the
nondegeneracy of H̄. Now H′ = Hc for some c ∈ A by Lemma 3.1, and by Lemma 2.8,
this implies that J = HcA. From this it follows that J = r(cA). But since A is symmetric,
we have J = {x ∈ A : f (x, cA) = 0} as well, and so also J = l(cA). Then we know
that we have r(l(cA)) = cA = r(J) since a Frobenius algebra over a Frobenius ring is
a quasi-Frobenius ring [2, Corollary 20]. Since r(J) is a two-sided ideal, we have
Ac ⊆ AcA = cA. By an analogous argument, the left annihilator l(J) is the principal
left ideal Ac, which is also two-sided, giving the reverse inclusion. Therefore Ac = cA.

Conversely, assume that r(J) = l(J) = Ac = cA. Let f be the associative,
nondegenerate, symmetric bilinear form on A given by Proposition 1.4. Define
f̄ : Ā × Ā→ K by

f̄ (x̄, ȳ) = f (xy, c) = f (x, yc).

To see that f̄ is well defined, let x̃ = x + j1 ∈ x + J, ỹ = y + j2 ∈ y + J. Then

f (x̃ỹ, c) = f ((x + j1)(y + j2), c) = f (xy, c) + f ( j1y, c) + f (x j2, c) + f ( j1 j2, c). (3.1)

Since c annihilates the two-sided ideal J on both the right and left, and j1, x j2, j1 j2 are
all in J, we have f (x̃ỹ, c) = f (xy, c) as desired.

To complete the proof that Ā is Frobenius, we check that f̄ is nondegenerate.
Indeed,

f̄ (x̄, ȳ) = 0 ∀ȳ ⇐⇒ f (x, yc) = 0 ∀y

⇐⇒ x ∈ HAc = J ⇐⇒ x̄ = 0

and

f̄ (x̄, ȳ) = 0 ∀x̄ ⇐⇒ f (x, yc) = 0 ∀x

⇐⇒ yc = 0 ⇐⇒ y ∈ HcA = J ⇐⇒ ȳ = 0.

Finally, we have that Ā is symmetric if and only if f̄ (x̄, ȳ) = f̄ (ȳ, x̄). We note that

f̄ (x̄, ȳ) = f̄ (ȳ, x̄) ∀x ∀y ⇐⇒ f (xy, c) = f (yx, c) ∀x ∀y

⇐⇒ xy − yx ∈ Hc ∀x ∀y

⇐⇒ c ∈ Z(A) by Proposition 2.4.

Now the proof is complete. �

This theorem then allows the following characterisation of symmetric K-algebras
A, where K is a field, and Z(A) = K. To the best of the authors’ knowledge, this result
has not previously been observed.

[6] Symmetric algebras over rings and fields 471

https://doi.org/10.1017/S0004972713000798 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000798


C 3.3. Central symmetric algebras over a field are simple.

P. By Theorem 3.2, if A is a symmetric algebra and J is an ideal of A such that
A/J is symmetric, then r(J) = l(J) = Ac for some c ∈ Z(A). Let J = rad(A). Then if A
is an artinian K-algebra, A/J is a semisimple K-algebra, so is necessarily symmetric.
Combining these two facts, we see that if A is central symmetric, then r(J) = l(J) = Ac
for some c ∈ K. In particular, r(J) = l(J) = 0 or A. Then we must have r(J) = A, since
l(r(J)) = J, and l(0) = A, and of course J , A.

Thus A is semisimple, so we may write A as a direct sum of simple K-algebras,
A =

⊕
Mni (Di), where the Di are K-division algebras. The centre of A is

⊕
Z(Di) �

K, so A � Mn(D) where D is a K-central division algebra. �

E 3.4. The results of this section do not generally hold for rings since, as
pointed out in Example 2.6, a nondegenerate form need not be nonsingular. For
example, we can generalise the previous example by taking R = Z and A to be the
group ring Z[Z2 × Z2], where the copies of Z2 are generated by g and h. Let J be
the ideal generated by (1, h), so that A/J is isomorphic to the algebra of Example 2.6.
To make the proof of Theorem 3.2 work, we need to check that the induced bilinear
form f̄ is nonsingular (that is, it has a determinant which is a unit). It is easy to make
examples where this does or does not happen, depending on the given symmetric form
on A, but this does allow some application of the results of Section 2 outside of the
field case.
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