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Abstract. We discuss recent progress in analytic modeling of stellar wind 
bow shocks and colliding winds. For thin, radiative shocked layers in steady-
state, the shape of the layer as well as its internal flux of mass and mo-
mentum are found from the conservation laws of mass, momentum and 
angular momentum. For the case that the shocked gas is well-mixed, the 
velocity distribution and mass column density of shocked material are also 
obtained. These solutions are extended to the problem of a jet bow shock, 
treated as a non-isotropic "wind" interacting with the ambient medium. 
We also examine the shell energetics for these simple analytic models. The 
constraint of conservation of momentum leads to an upper limit to the effi-
ciency of thermalization and radiation of the pre-shock wind kinetic energy. 
Calculations are presented of this thermalization rate as a function of the 
input momentum rates of the pre-shock winds. 

1. Introduction 

Bow shocks are seen in a wide variety of circumstances in astrophysics, and 
many examples are known in star forming regions. This paper will primarily 
be concerned with analytic, dynamical models of bow shocks resulting from 
the collision of two supersonic flows or "winds", which may be compared 
with a number of different applications. While the models are necessarily 
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Figure 1. Geometry of the wind/ambient collision. The pre-shock flows are shown in 
the bottom panel, while the top panel defines the spherical coordinate system with origin 
at the source of the wind. 

simple, in order to be analytically tractable, it is hoped that they will 
prove useful because they can easily be scaled and may provide insight to 
guide more detailed numerical studies. Because these calculations include 
full vector momentum conservation, they represent a step beyond previous 
analytic works based upon ram pressure balance arguments. 

Perhaps the simplest example of a bow shock is that due to the mo-
tion of a supersonic, isotropic stellar wind, when the wind-blowing star 
moves supersonically with respect to the local interstellar medium. If the 
post-shock cooling is sufficiently rapid, the shocked fluid will lie in a thin 
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layer that takes a steady-state, cometary form in the reference frame of the 

moving wind source (see Figure 1). 

This model is sufficiently generic that it has been applied to many cir-

cumstances, and has been solved numerically by several authors. It was 

initially proposed by Baranov, Krasnobaev and Kulikovskii (1971, here-

after BKK) to describe the interaction of the solar wind with the very local 

interstellar medium. More recently, Van Buren et al. (1990) and Mac Low 

et al. (1991) have applied such a bow shock model to the confinement of 

cometary, ultracompact HII regions surrounding moving Ο stars, while Ald-

croft, Romani &: Cordes (1992) have applied it to pulsar wind bow shocks. 

The source of the wind need not be a stellar object, and similar models 

have been calculated, using ram pressure arguments, for a photoevaporat-

ing clump embedded in a moving medium (Dyson 1975), and for comets 

(Hoopis & Mendis 1980). 

A new solution method for thin shell bow shocks in steady-state was 

given by Wilkin (1996), which yields the exact solution analytically to the 

above-described problem, including the shape of the bow shock and the 

mass column density and velocity of flow of the shocked material, assuming 

a mixed layer. This solution method is based upon exact, vector momentum 

conservation in the shocked layer, and will be described in §2. A very similar 

picture has been given for the bow shock due to a propagating jet, in 

which shocked material is imagined to be sprayed forward of the jet shock, 

mimicking a moving wind which interacts with the surrounding medium. 

The analytic solution for these bow shocks is given in §3. 

A closely related problem is that of the collision of two spherical winds, 
which yields a family of possible bow shocks depending on the relative 
strengths of the two winds. An extention of the solution method (Canto, 
Raga & Wilkin 1996) to consider angular momentum conservation allows 
the solution of this more complicated problem, discussed in §4. 

The extention of these models to non-axisymmetry is obviously a neces-

sity due to the many asymmetric observed bow shocks. Non-axisymmetric, 

ram pressure balance models of "proplyds", described as photoevaporating 

disks embedded in a stellar wind, have recently been developed by Henney 

et ai (1996); Henney (1996), see also Henney & Arthur, this volume. The 

extention of the analytic method to non-axisymmetric situations is given 

by Wilkin (1997a,b), and will not be discussed further here. 

2. The Stellar W i n d Bow Shock Model 

The stellar wind drives a shock into the ambient medium, while the super-

sonic wind is abruptly decelerated, leading to two layers of shocked gas. 

These layers are assumed to mix, and postshock cooling is assumed to be 
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efficient so that the dense shell has negligible thickness. The star moves 
with speed V* in a uniform medium of density pa. The isotropic stellar 
wind has mass loss rate and constant speed V^, yielding a cometary 
structure with the stellar trajectory as symmetry axis. The flow is assumed 
hypersonic, so that pressure forces are neglected. In this idealized model, 
the thin shell is fully described by three quantities: the shell radius R(0), 
mass surface density σ(0), and the tangential speed v*(0) of shocked mate-
rial flowing along the shell. 

Let the ζ axis be the axis of symmetry of the shell, with the stellar 
motion in the ζ direction (to the right in Figure 1). In the frame of the 
star, the ambient medium appears as a uniform wind in the — ζ direction. 
The stellar wind and the ambient medium collide head-on at θ = 0, and 
the radius of this starting point of the shell is found by balancing the ram 
pressures of the wind and ambient medium, pwV^ = PaV*, which yields 

This standoff distance sets the length scale of the shell. The shape of the 
shell is a universal function, which is scaled according to equation (1) to ac-
commodate all values of the four dimensional parameters (M^, V^, pa, V*). 

The fluxes of mass and momentum crossing an annulus of the shell, 
2πΦ 7 η(0), and 2πΦ*(0), are given, respectively, by 

Φτη = τοσνι, and Φ* = way2, (2) 

where the cylindrical radius w is Rsinö. In steady-state, the mass travers-
ing a ring of the shell at polar angle θ from the standoff point is given by 
the mass flux from the stellar wind intercepted by the solid angle of the 
forward part of the shell plus the contribution from the ambient medium 
striking the circular area of the projected cross section of the shell: 

2πΦ 7 η = MW^- + ππ2ραΥ*. (3) 

Here Ω = 2π(1 — cosö) is the solid angle from the axis to the annulus at Θ. 
Following Wilkin (1996), we may calculate the rate at which vector mo-

mentum is imparted to the shell by the stellar wind, by considering a wedge 
of small, constant width in the azimuthal angle Αφ about the symmetry 
axis (Fig. 1). The surface integral of the wind vector momentum flux onto 
the shell does not depend on the detailed shape of the shell, because the 
coasting wind is momentum-conserving. We perform the integral over a 
spherical surface, using f = zb sinö + ζ cos θ: 

Δφ = [ pwVw(Vw-n)dA 
J wedge 
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Φυ}Αφ = MWVW [(0 - sin 0 cos θ) π + sin20 ζ]Αφ/8π. (4) 

The momentum deposited by the ambient medium is in the —ζ direction, 
and depends only upon the circular cross section: 

ΦαΑφ = -w2

Poyl ζ Αφ/2. (5) 

The total momentum flux onto the Αφ wedge of the shell is the sum of the 
wind and ambient contributions. To conserve momentum in steady-state, 
the (tangential) momentum flux Φ* ΪΑφ traversing a Αφ azimuthal width 
of an annulus of the shell must equal the momentum flux ( Φ ω + Φα)Αφ 

received by the shell surfaces between the standoff point and the annulus: 

= [(# _ s i n e cos 0) ô + s i n 2 0 έ ] _ ^ _ p a V 2 ^ (g) 

where Φ* = Φ*ΐ is the vector momentum flux in the shell, and t is a 
tangential unit vector at constant φ. The momentum flux has magnitude 

2πΦ* = πΒ%ρανΙ^(θ - sin0cos0)2 + (π2 - sin 20) 2 , (7) 

where a tilde indicates a length in units of Ro- We now know the vector 
momentum flux at any point in the shell. The direction of flow is that of 
this momentum flux, so the shell shape is given by the trajectory equation 

dw v w $t,w θ — sin θ cos θ 

It can be shown (Wilkin 1996) that the exact integral to this equation is 

R(0) = R 0 esc 0^3(1 - 0 c o t 0 ) . (9) 

This formula for R(0), together with the momentum flux Φ*(0) of equa-
tion (7), is the solution of the equations of BKK with the desired initial 
conditions R(0) = Ro, and R'(0) = 0. With the previously known mass 
integral, we obtain the remaining shell properties. Referring to equations 
(2), the tangential velocity in the shell is ν* = Φ^/Φ™, while the mass 
surface density is given by σ = Φ^/τσΦ^. Both the mass surface density 
and the tangential velocity depend upon the nondimensional parameter 
α = V * / V „ . 

The total amount of incident kinetic energy thermalized in the bow 
shock per unit time is given by the sum of the incident kinetic energy 
fluxes in the center of mass frame. This must be the ambient frame, since 
in any other frame, the ambient medium deposits an infinite amount of 
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momentum per unit time, because the cylindrical radius of the bow shock 

formally diverges far back in the tail. Letting primes indicate velocities in 

the ambient frame, so that = Vw r + V* z, the rate of thermalization of 

incident kinetic energy is given by (Wilkin, Canto &; Raga 1997) 

Èth = f ^ K , | 2 ( v ; - K z ) - n d A 
J shell * 

= \mw(vZ + v?) (10) 

This sets an upper limit to the rate at which energy can be radiated by the 

bow shock in steady-state, in the absence of other energy sources (i.e. ra-

diation from the wind source). It is interesting that this very simple result 

was not noticed in the previous numerical calculations of the bow shock. 

One would also like to describe the bow shock kinematics in the ambient, 

rather than stellar, frame. At any angle 0, the ratio of sideways (V^) to 

forward (V^) velocity, and therefore sideways to forward momentum, is 

given by 
Vjj _ 0 - s i n 0 c o s 0 

VI ~ sin 20 + 2 a ( l - c o s 0 ) ' ( } 

which has the limit of π/4α as 0 —» π. Clearly any ratio of sideways to for-
ward momentum is possible, for some value of a, even for large 0, in the tail 
of the bow shock (See Figure 2). This may be relevant to the application of 
bow shock models to the ends of molecular outflows, because it is known 
that most of the momentum in such outflows is in the forward direction. 
Lada & Fich (1996) argued that this constraint excluded bow shock mod-
els, because they only considered the immediate post-shock velocity, rather 
than the tangential velocity in the shell after radiative relaxation and mix-
ing with previously shocked material. We see that for values of a greater 
than unity, the momentum will be primarily in the forward direction. 

3. Application to Jet Bow Shocks and Molecular Outflows? 

The thin shell bow shock model has been applied in modified form to the 

problem of jet-driven molecular outflows in star forming regions. Raga & 

Cabrit (1993) considered internal working surfaces in a jet due to a time-

dependent jet velocity, while Zhang & Zheng (1997) treated the terminal 

bow shock at the end of the jet. In these studies, the shocked fluid is as-

sumed to be sprayed forward of the jet shock as a "wind" which inter-

acts with the surrounding material. This "wind" is no longer taken to be 

isotropic in the reference frame of the bow shock, but is assumed to extend 

from the symmetry axis only to an angle 0o < π (Zhang & Zheng), or in 

the case of Raga & Cabrit, to extend from 0 = π/4 to 3π/4. Zhang & 
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Θ, radians 

Figure 2. Ratio of sideways (V^) to forward (V^) velocity for shocked gas in the ambient 
reference frame for the moving bow shock. 

Zheng solved numerically for the shape of the bow shock and the kinemat-

ics of shocked material, pointing out that such bow shocks can have a large 

amount of momentum in the forward direction. 

The formalism discussed in §2 can also be applied to this problem as 

well, although we only give the solution for the case considered by Zhang 

& Zheng. The solution is unchanged for θ < 0o, except that M^ must be 

replaced by 4πΜ ΐ / ;/Ωο, where Ωο = 2π(1 — cosöo) is the solid angle of the 

shocked jet "wind". For larger angles, the trajectory equation is the same 

as equation (8), except that θ is replaced by 0Q, a constant. Integration 
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z / D 

Figure 3. Solutions to the two-wind collision problem. The two wind sources axe sepa-
rated by a distance so that the weaker source is at the origin, while the stronger source 
is off the right edge of the graph at z/D = 1. Moving from right to left, the solutions 
correspond to β = 1, 0.5, 0.25, 0.125, 0.0625, 0.03125. 

then yields the shape 

R = R0^3[sin2 0O + cot 0(sin0 o cos0O ~ 0O)]. ( 1 2 ) 

Zhang & Zheng found that the ratio of forward to sideways velocity in 
the ambient frame approached a constant for large 0. Indeed, this velocity 
ratio is given by equation (11) with 0 replaced by 0o if 0 > 0o- Once the 
shocked fluid element is beyond the maximum wind angle, its trajectory 
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Figure 4- Efficiency of thermalization of pre-shock wind kinetic energy. Contours of 
equal thermalization efficiency eth are shown in terms of the ratio of wind momentum 
loss rates, β, and the ratio of wind speeds. 

is a straight line, and the solution is a momentum-conserving snowplow in 
which the gas decelerates as it sweeps up the surrounding material. 

4. Two W i n d Collision in Binaries 

The problem of the collision of two spherical winds has been solved by 
the same approach, for the case of a radiative, thin shell (Canto, Raga, 
& Wilkin 1996). The ratio of momentum loss rates of the two stars is 
the fundamental parameter determining the shape of the bow shock, and 
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several examples are shown in Figure 3. The solution method has been 

extended by including the consideration of angular momentum (about the 

origin). Although this may seem redundant with conservation of vector 

momentum, the benefit is that it provides a general, although implicit, 

integral to the trajectory equation (8) for more general wind collisions. If 

we define an angular momentum flux <&j = $mRvQ, the radius of the shell 

is given implicitly by 

Φ 7 = Φ^ζ - Φζπ, (13) 

where the flux functions refer to the flow in the shell, so they are determined 

by adding the contributions from the two winds. 

Conservation of momentum implies that not all of the wind pre-shock 

kinetic energy can be thermalized and radiated. The maximum amount that 

may be thermalized and is available for radiation is given by the kinetic 

energy in the center of mass frame. We have calculated the rate at which 

energy is thermalized in the shocks and post-shock mixing. This is displayed 

in Figure 4, as the efficiency by which the total of the two wind kinetic 

energies are intercepted by the shell and thermalized. This represents an 

upper limit to the steady-state radiative luminosity of the bow shock. 
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