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Supraglacial lakes play a central role in storing melt water, enhancing surface melt and
ultimately in driving ice flow and ice shelf melt through injecting water into the subglacial
environment and through facilitating fracturing. Here, we develop a model for the drainage
of supraglacial lakes through the dissipation-driven incision of a surface channel. The
model consists of the St Venant equations for flow in the channel, fed by an upstream lake
reservoir, coupled with an equation for the evolution of channel elevation due to advection,
uplift and downward melting. After reduction to a ‘stream power’-type hyperbolic model,
we show that lake drainage occurs above a critical rate of water supply to the lake due
to the backward migration of a shock that incises the lake seal. The critical water supply
rate depends on advection velocity and uplift (or more precisely, drawdown downstream of
the lake) as well as model parameters such as channel wall roughness and the parameters
defining the relationship between channel cross-section and wetted perimeter. Once lake
drainage does occur, it can either continue until the lake is empty, or terminate early,
leading to oscillatory cycles of lake filling and draining, with the latter favoured by large
lake volumes and relatively small water supply rates.

Key words: ice sheets, river dynamics

1. Introduction

Large areas of the Greenland ice sheet experience surface melt water drainage (Poinar
& Andrews 2021), while surface drainage is confined to lower elevations in Antarctica
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(Lenaerts et al. 2016; Kingslake et al. 2017; Stokes et al. 2019). Surface melt drives the
evolution of subglacial drainage systems in Greenland (Das et al. 2008; Chandler et al.
2013; Cowton et al. 2013), which in turn control sliding speed (Shepherd et al. 2009;
Schoof 2010; Palmer et al. 2011; Tedesco et al. 2013). Accumulation of surface water
can also enhance surface melting by reducing albedo (Lüthje et al. 2006; Tedesco et al.
2012) and cause the break-up of floating ice shelves (Scambos et al. 2004, 2009; Banwell,
MacAyeal & Sergienko 2013; Lai et al. 2021), while the injection of surface melt under
a floating ice tongue can drive convection in fjords (Straneo et al. 2011; Mortensen et al.
2020), and enhance as well as localize melting at the base of the ice tongue (Dallaston,
Hewitt & Wells 2015; Washam et al. 2019).

Lakes situated in local depressions on the ice surface are common features of drainage
systems in both Greenland and Antarctica. These lakes store water, enhance surface melt
and, in the case of Greenland, can cause short-lived acceleration of ice flow through abrupt
drainage to the bed by hydrofracturing (van der Veen 2007; Shepherd et al. 2009; Stevens
et al. 2015; Christoffersen et al. 2018). Much research has focused on the latter effect, even
though a significant fraction of surface lakes in Greenland either drain slowly or not at
all (Koenig et al. 2015; Lampkin et al. 2020; Law et al. 2020; Benedek & Willis 2021;
Dunmire et al. 2021; Poinar & Andrews 2021), while there are no known surface lakes on
the grounded part of the Antarctic ice sheet that drain to the bed (Bell et al. 2018).

Motivated by field observations made in Antarctica, we consider the case of lakes
draining purely through channels incised into the surface of a grounded ice sheet (as
opposed to a floating ice shelf). On a grounded ice sheet, the surface depression occupied
by a lake is usually generated by ice flow over suitably uneven bed topography under
the ice sheet, and lakes are often observed to occupy the same position for long periods
of time (that is, over many summer melt seasons). However, a combination of remote
sensing imagery and ground-based radar (Schaap et al. 2020) suggests that such surface
lakes can also drain relatively quickly through near-surface channels, and can do so after
a lengthy periods of apparently steady lake levels. The same observations also suggest
that drainage can occur in winter, when there is presumably little to no water input over
winter. The question that arises is: What controls lake drainage through such a channel?
Similar overland drainage may also be relevant to higher elevations in Greenland (Benedek
& Willis 2021), where few lakes drain through hydrofracture (Poinar & Andrews 2021).
However, we neglect seepage into a firn aquifer in our work (Forster et al. 2013; Meyer &
Hewitt 2017), which may be relevant for some of these Greenlandic lakes.

There have only been a handful of attempts to model lake drainage along glacier and
ice sheet surfaces through thermal erosion of a channel through an ice dam (Walder &
Costa 1996; Raymond & Nolan 2000; Mayer & Schuler 2005; Vincent, Auclair & Le
Meur 2010; Kingslake, Ng & Sole 2015; Ancey et al. 2019). Most of these consider
drainage along more steeply angled glacier surfaces, where flow is likely to be Froude
supercritical. In all of these previous studies except Kingslake et al. (2015), surface lakes
are considered as natural hazards, with the ultimate aim of computing hydrographs for
rapid surface drainage. In addition, and in contrast with models for drainage along the
glacier bed (Nye 1976; Spring & Hutter 1981; Clarke 1982; Ng 2000; Kingslake & Ng
2013; Stubblefield et al. 2019; Schoof 2020) none of the surface drainage models listed
resolve channel incision (and therefore channel slope) as a function of position along the
flow path, but instead take the form of ‘lumped’ models intended to describe conditions
near the channel intake only.

Although the model we develop is in principle applicable to the outburst floods studied
previously, our main goal differs substantially from these prior studies. We are interested
primarily in whether water input to a lake, causing the lake to overflow, necessarily leads
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to lake drainage by channel incision, and whether drainage can be partial or must continue
until the lake basin is completely empty. In a lake with a water supply, it is natural to
assume that channel incision on its own should drain the lake completely, since the water
input should ensure there is discharge in the channel and therefore continued erosion of the
ice dam. On a moving ice sheet, however, advection will also carry the channel downstream
and can potentially re-build the seal of the lake.

As a result, we focus on systems in which incision of the channel is quite slow, and
competes with horizontal advection and vertical uplift of the ice surface due to the flow
of the ice sheet over bed topography. As pointed out, these latter two processes are
responsible for shaping the surface depression occupied by the lake to begin with (Schoof
2002), but they have rarely been considered in the context of surface lake dynamics
(Darnell et al. 2013) and are not incorporated in the existing models for rapid lake drainage.

Among other consequences, the incorporation of advection forces us to employ a partial
differential equation-based model, resolving position along the channel as well as time.
The model we derive bears close resemblance to so-called stream power models for fluvial
landscape evolution in non-glacial contexts (Luke 1972). The latter typically incorporate
uplift (e.g. Whipple & Tucker 1999; Royden & Perron 2007; Kwang & Parker 2017), but
the additional effect of horizontal advection is not commonly considered as part of fluvial
landscape evolution.

The paper is organized as follows: in § 2.1 we define a basic model consisting of the
St Venant equations for a surface stream coupled with an evolution equation for channel
depth, based on local dissipation driving channel incision. In §§ 2.2–2.4, the model is
reduced based on a small ratio of water depth in the channel to lake depth, and water
velocities being much larger than ice velocities, while the local Froude number is assumed
to remain subcritical. This results in a nonlinear hyperbolic evolution equation for channel
evolution, coupled to an evolution equation for lake volume (§ 3.1). The formation of
shocks in the model and how they control discharge from the lake is studied in §§ 3.2–3.5,
with boundary layer solutions of the full model around the shocks relegated to Appendices
A–B. Numerical solutions by the method of characteristics (Appendix E) are given in § 4,
where we show that lake drainage occurs above a critical value of water supply to the lake
(§ 5), which can result either in complete lake drainage, or in oscillatory cycles of lake
drainage and refilling (§ 6).

2. Model

2.1. Model formulation
We consider a surface melt water stream with cross-sectional area S, with the base of the
stream channel at an elevation b, and denote the mean velocity in a given cross-section of
the stream by u. Let x be distance along the stream and t time, and let S, u and b depend
on x and t (figure 1). Assuming a Darcy–Weisbach law governing shear stress at the walls
of the channel, we express conservation of mass and momentum using a St Venant model
as (e.g. Fowler 2011, Chapter 4)

ρw [St + (uS)x] = ρim, (2.1a)

ρwS(ut + uux) = −ρwfu2P(S)

8
− ρwgS [bx + h(S)x] , (2.1b)

where subscripts x and t denote partial derivatives, m is melt rate at the channel wall,
expressed as an area of ice melted per unit time and unit length of channel, P(S) is the
wetted perimeter of the channel and h(S) is the elevation of the water surface above the
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Lake
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Water surface

Unincised ice surface
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x = xm (t)

x = xs (t)

x = xp (t)

Channel base

Flowing section

h0

x
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b(x, t)

Figure 1. Geometry of the problem: water surface in blue, channel/lake bottom in black, ice surface as dashed
black line. Some of the symbols used here (bm, xm xs and xp) are defined in the context of a leading-order model
in §§ 2.2–3.

bottom of the channel; g is acceleration due to gravity; ρi and ρw are the densities of ice
and water, respectively, and f is a friction coefficient depending on wall roughness in the
channel. Note that by equating the source term m with melt rate, we ignore seepage into or
out of a firn aquifer, or substantial water input from tributary streams.

To simplify matters, we assume that the cross-sectional area can grow or shrink but
retains a shape determined by its size alone. Our main interest is in downward incision
of the channel, which we assume to be a slow process compared with the adjustment
of channel shape, since we will assume below that water depth is much less than the
typical amplitude of channel elevation b. Consequently, we treat P and h as non-decreasing
functions of S, whose form depends on the geometry of the cross-section. At a minimum,
we know that water depth must vanish when cross-sectional area does, so h(0) = 0.

The simplest way to parameterize the cross-sectional shape of the channel is to treat it
as a semi-circle (figure 2). In that case, the radius r of the cross-section is r = (2π−1S)1/2

and
P(S) = πr = (2πS)1/2, h(S) = r = (2π−1S)1/2. (2.1c)

Alternatives would be to assume the channel is triangular with a fixed angle θ between the
channel sides and the vertical

P(S) = 2S1/2

sin(2θ)1/2 , h(S) = S1/2 cos(θ)

sin(2θ)1/2 (2.1d)

or to fix a width W that is much greater than water depth, and to put (as is done in Fowler
2011)

P(S) = W, h(S) = S
W

. (2.1e)

Generically, this suggests we consider

P(S) = c1Sα, h(S) = c2Sβ, (2.1f )

with c1, c2 > 0, α ≥ 0, β > 0 (we admit that width and therefore wetted perimeter may
not depend on S, but water depth must, so β cannot vanish while α can): (2.1c)–(2.1d) have
α = β = 1/2 while (2.1e) puts α = 0, β = 1. In fact, the examples above suggest that the
product of wetted perimeter and water depth scale as the cross-sectional area, in which
case α + β = 1, and that the exponents are not only positive but also satisfy 0 ≤ α < 1,
0 < β ≤ 1.

We assume that energy dissipated by the flow is instantly transferred to the wall of
the channel and turned into latent heat, and that this is the dominant mechanism of
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(a) (b) (c)

Air

Ice Water

S S
SP

P P ≈ W
h h

h

b b
b

Figure 2. Cross-section shapes: (a) semi-circle (α = β = 1/2), (b) triangular (α = β = 1/2) and
(c) fixed-width slot (α = 0, β = 1). Water with cross-sectional area S is shown in blue, wetted perimeter in
heavy black. The qualitative nature of solution computed in § 4 depends on whether α = 0.

channel incision. A more sophisticated model could track the temperature of the water
and use a heat transfer model (see also the discussion in Evatt et al. 2006; Ogier et al.
2021); here, we assume that heat transfer is highly efficient at the length scales under
consideration. Letting L be the latent heat of fusion per unit mass of water, we put

ρiLm = ρwfu3P(S)

8
, (2.1g)

the right-hand side being the rate at which work is done per unit length of channel by water
moving at velocity u against the friction force ρfu2P(S)/8 on the channel wall. In order
to model how fast the channel cuts into the ice, we assume that downward incision can be
estimated by distributing melt equally over the wetted perimeter, leading to an incision rate
of m/P. Future work will need to address both the channel shape parameterizations and the
distribution of melt over the channel wall: related work on englacial channels (Dallaston
& Hewitt 2014) may serve as a template.

In addition, we assume that the ice surface is moving horizontally at a velocity U and
is subject to localized uplift or drawdown at a prescribed rate w(x) due to flow of the
glacier or ice sheet over bed topography (e.g. Schoof 2002), where we will later assume
for simplicity that U is constant in space as well as time, as is appropriate for instance for
rapidly sliding ice. Then

bt + Ubx = w − m
P(S)

. (2.1h)

We assume that the base of the channel is incised into an ice surface at elevation s,
with b ≤ s. In assuming that w is constant in time, we are assuming not only that we
can ignore localized, enhanced ‘creep closure’ around a deeply incised channel (Jarosch
& Gudmundsson 2012) as well as snow accumulation at the base of the channel during
winter, but also that s is in steady state (Schoof 2002), and itself satisfies

Usx = w. (2.1i)

We will generally use b(x, 0) = s(x) as an initial condition, representing a channel that is
only just beginning to incise into the ice surface. A modification of the present model to a
dynamically evolving ice surface s will be presented elsewhere.

We envisage the channel draining a reservoir at its upstream end. For simplicity, we
assume that the seal point of the lake (the maximum in b) is some distance downstream of
x = 0, and that we can relate lake volume directly to water level h at x = 0, and put

V̇ = q0(t) − (uS)|x=0 , V(t) = VL(h(S(0, t))), (2.1j)

with the dot on V̇ denoting an ordinary time derivative, q0 being a prescribed rate of
inflow to the lake due to surface melting in some larger upstream catchment. Also, VL is
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an increasing function of h, dictated by the bathymetry of the lake. The bathymetry in turn
is presumably determined by U and w, but we do not consider that in detail here, nor do we
consider the possibility that surface loading due to the lake could affect the motion of the
ice. As with an evolving ice surface s, the latter complication will be studied in a separate
paper.

Note that (2.1j) places the upstream boundary of the model at a fixed position
x = 0 rather than the moving seal location x = xm indicated by figure 1. The latter
would certainly be appropriate, but a fixed upstream domain boundary x = 0 causes no
inconsistencies here: we will find shortly that melt rate m = 0 upstream of the lake seal
at leading order, so that the channel bed elevation b predicted by (2.1h) simply follows
the unincised ice surface s up to the seal, and in addition, water flux uS is independent
of position at leading order, so (uS)|x=xm = (uS)|x=0. Extending the domain upstream of
xm allows for a simpler presentation of the physics of seal migration in the leading-order
version of the model that we will derive next, since those physics are simply those of a
shock (or slope discontinuity) that can equally form further downstream in the channel.

Before we continue, we note some important limitations of the model. First, by assuming
a fixed flow path and not modelling tortuosity, we are not considering the effect of
meanders on flow and channel incision, even though meandering is known to be a common
feature of glacier surface streams (e.g. Karlstrom, Gajjar & Manga 2013; Fernández &
Parker 2021). Second, the one-dimensional nature of the model implies not only that there
is a single outflow from the lake, which is ultimately likely as two competing outflow
channels are presumably prone to instability, with the larger channel persisting while the
smaller is abandoned. It also implies that, if flow in the channel were to cease temporarily
due for instance to seasonal variations in water supply q0, the same channel will be
re-occupied when flow recommences. We return to this in § 7.

In addition, we also neglect surface lowering due to melt driven by insolation or a warm
atmosphere, or freezing due to heat fluxes into the ice. This may be reasonable for the
incision of the channel relative to the rest of the ice surface s, but is more questionable
for the lake itself. Here, enhanced absorption of incoming radiation in the lake water is
likely to lead to preferential melting of the deeper portions of the lake (see also Buzzard,
Feltham & Flocco 2018). By the same token, we also neglect the possibility that the lake
water could be warmed relative to the melting point by incoming solar radiation (see also
Raymond & Nolan 2000). That said, by omitting externally driven melting, our model
allows us to focus purely on the coupled effects of ice and water flow in the erosion of the
channel and its effect on lake drainage.

2.2. Non-dimensionalization and a reduced model
We assume that a length scale [x] can be determined from the uplift field w(x), and that
scales for vertical and horizontal ice velocities [w] and [U] are also known. In terms of
these, we define scales [t], [S], [u] and [b] through

ρwg[b][S]
[x]

= ρwf [u]2P([S])
8

,
ρwf [u]3

8ρiL = [w] = [U][b]
[x]

, [U][t] = [x]. (2.2a–c)

Our choice of scales here reflects the following: we are interested in significant channel
incision over a single advective time scale [t] = [x]/[U] for the ice surface, so that uplift,
advection and incision of the channel naturally compete with each other. Given a natural
surface topography scale [b] = [w][x]/[U], the advective time scale sets a dissipation rate
and therefore a water flux scale [u][S] (effectively, as a distinguished limit). Setting the
dissipation rate based on the advective time scale may seem contrived, since it should
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really be set by surface slope and water flow rates. The latter are controlled by water
supple, and are not physically controlled by surface advection. We assume that we are
in a parameter regime in which water supply produces a melt-driven incision rate that
is comparable to uplift and advection. The alternative would be a much faster melt rate
(which the model we construct can still capture if we prescribe a large dimensionless water
supply). In that case, however, lakes generally cannot persist as the uplift that is necessary
to create a lake seal cannot compete with the incision rate of the channel.

It is possible to construct the same problem as below for a much shorter channel incision
time scale, corresponding to greater dissipation and therefore water fluxes; that, however,
precludes the generation of a lake, which requires the lake seal to be generated through
uplift of the ice surface.

From these scales we obtain the dimensionless groups

ν = h([S])
[b]

, Fr2 = [u]2

gh([S])
, ε = g[b]

L , δ = [U]
[u]

. (2.3a–d)

These have straightforward interpretations: ν is the ratio of water depth to ice surface
topography, the Froude number Fr is the usual square root of the ratio of kinetic to
gravitational energy, ε is the ratio of gravitational potential energy to latent heat and δ

is the ratio of ice to water velocity. With the possible exception of Fr, we expect all of
these parameters to be small: if water moved at speeds comparable to the ice, then surface
drainage would presumably be of no interest, while the surface topography scale would
have to be around 30 km with a terrestrial gravitational field g ≈ 10 m s−2 in order for
gravitational potential energy and latent heat L ≈ 3.35 × 105 J kg−1 to be comparable.
We also expect the water depth in a glacially dammed lake to be larger than the flow depth
in the stream draining it, except possibly during a very rapid outburst flood or for shallow
lakes.

In fact, for realistic values of [U] = 100 m a−1, [b] = 10 m, [x] = 1 km, g = 9.8 m s−2,
f = 0.05, we obtain, with h(S) and P(S) given by (2.1c)

[u] = 1.2 m s−1, [S] = 0.47 m2, (2.4a,b)

values that are realistic for surface streams with gentle [b]/[x] ≈ 0.01 slopes. With the
choice of scales defined through (2.3a–d), we define dimensionless variables through

x = [x]x∗, t = [t]t∗, u = [u]u∗, S = [S]S∗, b = [b]b∗, (2.5a–e)

and define

P∗(S∗) = P(S)

P([S])
, h∗(S∗) = h(S)

h([S])
, (2.6a,b)

and also put U = [U]U∗, w = [w]w∗. Then, in dimensionless form, dropping the asterisks
on the dimensionless variables immediately, the model becomes

δSt + (uS)x = εu3P(S), (2.7a)

νFr2S(δut + uux) = −u2P(S) − Sbx − νSh(S)x, (2.7b)

bt + Ubx = w − u3, (2.7c)

with P(S) = Sα and h(S) = Sβ .
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(a)

0 0

0

q = 0

bx

0

bx

q = 1
M

(–
b x,

 q
)

(b)

q = 0

q = 1

Figure 3. Melt rate M(−bx, q) against bx for q = 0, 0.25, 0.5, 0.75, 1 for (a) α = 0.5, (b) α = 0; M = 0
when bx > 0. Note that, although the two panels look similar, M in panel (a) is strictly convex for bx < 0
and continuously differentiable at bx = 0, which has significant implications for shock formation in the
model (2.11).

Following the discussion above, we assume that δ � 1, ν � 1 and ε � 1. At leading
order in these small parameters, we obtain from (2.7)

(uS)x = 0, u2P(S) = −Sbx, bt + Ubx = w − u3. (2.8a–c)

Water flux along the channel is constant in space, velocity is controlled by a balance of
friction at the channel wall and the downslope component of gravity acting on the water
in the channel and the channel bottom evolves due to advection, uplift and melting driven
by local dissipation of heat in the flow of water.

The reduced model is subject to the caveat that the local Froude number Frloc =
Fr u/(βSβ)1/2 remain less than unity. Where Frloc > 1, the channel becomes unstable to
bedform formation at short wavelength, while for Frloc > 2/(1 − α), roll waves form in
the flow (see § 3 of the supplementary material available at https://doi.org/10.1017/jfm.
2023.130, also §§ 4.4.4–4.5.2 and chapter 5 of Fowler 2011). A reduced model that does
not explicitly resolve these phenomena but focuses on channel incision at the larger scale
may still be possible, but would presumably require a multiple scales expansion (Holmes
1995). We leave this to future work.

Persisting with (2.8a–c), we find that q = uS is independent of position, and we will
assume below that q > 0, so the lake at the upstream end of the domain drains through
the channel, but is not filled through a reverse flow. With fixed q, u depends on flux q and
slope −bx through (2.8a–c)2 as

u3q−1P(u−1q) = −bx, (2.9)

where we assume that bx < 0 and q > 0. With channel geometry given by (2.1f ),
specifically P(S) = Sα in dimensionless form, we obtain a dimensionless melt rate

M(−bx, q) := u3 =
(
−q1−αbx

)3/(3−α)

. (2.10)

The function M here is a monotonically increasing and convex function of −bx for α ≥ 0,
strictly so if α > 0, and a monotonically increasing function of q for α < 1 (see also
figure 3). Our assumptions about channel geometry can be relaxed significantly while
allowing these properties to be preserved: as shown in § 2 of the supplementary material,
monotonicity is assured if hydraulic radius S/P(S) is an increasing function that vanishes
when S = 0, while (strict) convexity follows if P is (strictly) concave.
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The drainage of glacier and ice sheet surface lakes

At face value, substituting in (2.8a–c)3 yields the single evolution equation for b,

bt = w − Ubx − M(−bx, q). (2.11)

Note that this is effectively the stream power equation for landscape evolution in Luke
(1972), Fowler, Kopteva & Oakley (2007) and Kwang & Parker (2017).

Our assumption that bx < 0 is, however, not always satisfied. Where such reverse slopes
occur, the reduced model breaks down: water depths become large, flow velocities become
small and melt rates vanish at leading order, and we therefore more generally put M = 0
when bx > 0, replacing (2.10) by

M(−bx, q) = q3(1−α)/(3−α) [max (−bx, 0)]3/(3−α) , (2.12)

to account for this. That in itself does not, however, suffice, since local maxima in the
stream bed can induce ponding even on downward slopes further upstream. We deal with
this next.

2.3. Ponding
Ponding occurs at a point x when there is a downstream point x′ > x at which the base
of the channel is higher than at x, b(x′) > b(x). The appropriate modification of (2.11) to
account for ponding is therefore via a ‘ponding function’ c

bt = w − Ubx − c(x, t)M(−bx, q), (2.13a)

c(x, t) =
{

1, if b(x, t) ≥ supx′>x b(x′, t),
0, otherwise. (2.13b)

Note once more that the introduction of the ponding function is redundant where bx > 0 in
ponded sections, since in that case M(−bx, q) = 0 by definition. It is also worth pointing
out that, if there is no flow (q = 0), the ‘ponded’ sections of the bed (given by the set
{x : b(x, t) < supx′>x b(x′, t)}) may not be fully submerged by stagnant water, but this does
not alter the evolution problem (2.13a) further since the absence of flow already ensures
that M = 0.

We assume additionally that ponded sections of channel store negligible quantities of
water, so that we can continue to treat q as independent of position x. Formally, we can use
a rescaling as described in Appendix A to show that negligible storage corresponds to the
parameter regime δ � ν1/β . In that case, the lake generally stores much more water than
the ponded sections, since drainage of the lake affects flux q, while drainage of a ponded
section does not. Physically, this occurs because the lake is much wider than the channel,
as it occupies a depression in the unincised ice surface s (figure 1). Since we assume s to
be in steady state, the lake basin shape is unaffected by the evolution of b, although the
water level within that basin does depend on channel evolution as we describe immediately
below in § 2.4. To make the model self-consistent, we also avoid the possibility of multiple
such lakes by insisting that the uplift function w have a single root at some location x̄m,
with w < 0 downstream of that. The only depression in the unincised ice surface given by
Usx = w is then upstream of x̄m.

We still need to deal with mass conservation equation (2.1j) for the lake to determine
the flux q(t), which is constant along the channel, but can change over time. Note that we
have not rendered (2.1j) in a leading-order, dimensionless form yet. We do so next.
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2.4. Outflow at the lake
As we have to revisit the non-dimensionalization of the problem, we temporarily
reintroduce asterisks on dimensionless variables. We assume that the lake at x∗ = 0 is
contained in a depression in the unincised ice surface, with the water level in the lake
controlled by ponding at the upstream end of the channel (that is, by the highest point in
the channel bed). Water level in the lake therefore scales with ice surface topography [b].
To account for this, define a dimensionless water depth scaled with [b] as

ĥ∗ = ν−1h∗(S∗) = h(S)/[b], (2.14)

as is appropriate for ponded sections, see Appendix A; note that this differs from the
scaling for water depth in channel further downstream. Then

h∗
0 = ĥ∗(0, t∗) + b∗(0, t∗) (2.15)

is the dimensionless water level of the lake, relative to the same datum as channel bottom
elevation b∗. We define a dimensionless lake volume function and a dimensionless water
supply function through

V̂(h0(t∗)) = VL(h(S(0, t)))
[u][S][t]

, Q∗(t∗) = q0(t)
[u][S]

, (2.16a,b)

where the variables on the right-hand sides of both equalities are dimensional. We assume
formally that V̂ and Q are O(1) functions. By this, we mean that lake volume is comparable
to (or less than) the volume [u][S][t] typically carried by the channel in a single channel
evolution time scale [t], and inflow into the lake is comparable to or less than the flux scale
[u][S] that causes significant channel incision over the advective time scale of the ice.

We immediately revert to dropping asterisks on dimensionless variables. As in the
previous section, water surface elevation b + ĥ must be constant up to the lake seal
(the end of the ponded section that extends downstream from the domain boundary at
x = 0, the latter being upstream of the lake seal unless the lake drains completely). Water
surface elevation also cannot exceed seal height at leading order (Appendices A and B.2).
Consequently, we find that water level at the upstream end of the domain is either at the
height of the seal point if water is flowing, or below that seal height, in which case no
water is flowing. We denote the seal height by bm(t), so that

h0 ≤ bm(t) := sup
x>0

b(x, t). (2.17a)

Similarly, we will use xm to denote the seal location, defined such that bm(t) = b(xm(t), t).
With uS = q constant throughout the domain, water balance of the lake ˙̂V = Q −

(uS)|x=0 can therefore be written as

γ ḣ0 = Q(t) − q, (2.17b)

q =
{

0, if h0 < bm,

max
(
Q − γ ḃm, 0

)
, if h0 = bm,

(2.17c)

where γ (h0) = dV̂/dh0 is storage capacity in the lake (given by its surface area), and
overdots again denote time derivatives. Flux q in the channel is the difference between
inflow into the lake and the rate at which water is retained in the lake, and the latter is
controlled by how the high point in the channel itself evolves due to uplift, advection and
incision.
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The drainage of glacier and ice sheet surface lakes

3. Characteristics, shocks and the dynamics of the lake seal

3.1. Characteristics
If we treat c(x, t) and q(t) momentarily as known, then (2.13a) can be recognized as being
of Hamilton–Jacobi form (Luke 1972),

bt = −H(x, t, bx, q), (3.1)

where the Hamiltonian H is given by

H(x, t, p, q) = Up + c(x, t)M(−p, q) − w(x), (3.2)

replacing bx (itself a function of x and t) with p for clarity in the meaning of derivatives of
H.

The method of characteristics (Courant & Hilbert 1989, § 3) allows us to write the
problem (3.1) in the form of Charpit’s equations as follows: we define characteristics as
curves of constant σ in the transformation (σ, τ ) �→ (x, t) given by

xτ = Hp = U − cM−p(−p, q), t(σ, τ ) = τ, (3.3)

where Hp(x, t, p, q) is the partial derivative of H with regard to its third argument, with x,
t and p all treated as functions of σ and τ , while M−p(−p, q) is the partial derivative of M
with respect to its first argument. Equation (3.3) underlines a key difference from classical
stream power models: here, characteristics can travel downstream as well as upstream,
with major implications for breaching the lake seal and controlling flux q.

Along a given characteristic, b(σ, τ ) and p(σ, τ ) = bx evolve as

bτ = −H + Hpp = w − c[M−p(−p, q)p + M(−p, q)], pτ = −Hx = wx, (3.4)

subject to the given initial and boundary conditions. We take these to be b(x, 0) = bin(x) at
t = 0 and b(0, t) = bin(0) at x = 0, so elevation at the upstream end of the domain remains
constant throughout. Prescribed b at the upstream end of the domain is appropriate for
characteristics entering the domain there (as is always the case when there is a ponded
section at that upstream boundary, in which case the characteristic velocity xτ = U there).

There are also situations in which the characteristic velocity xτ can become negative
at the downstream end of a fixed domain, requiring additional boundary conditions there.
In practice, surface channels either terminate abruptly at near-vertical cracks (or moulins)
in the ice, or at the downstream margin of the ice sheet. Neither situation is adequately
described by our model, and we use the following, somewhat unsatisfactory device instead:
we fix a downstream domain boundary at some x = L with suitably large L, and truncate
any characteristic that reaches that location from upstream. Conversely, if the characteristic
velocity at x = L becomes negative, we do not introduce new characteristics at x = L but
allow the domain to shrink at the characteristic velocity. Implicitly, we are assuming that
none of the ‘missing’ characteristics are able to reach the lake seal, and that the omitted
physics at the downstream end of the domain does not change the ponding function c by
creating a local maximum in b somewhere downstream.

As already pointed out, the problem (3.1)–(3.2) is a modification of ‘stream power
models’ for landscape evolution (Luke 1972). The main differences are the control of
water flux q through lake drainage rather than simply a prescribed precipitation rate, the
inclusion of the ponding function c, and the presence of the advection term Up. The
latter leads to a convex but non-monotone Hamiltonian, which allows characteristics to
propagate downstream as well as upstream. As we will see in § 3.3, this feature of the
model is key to understanding whether the seal of a lake is breached by incision of the
channel or not.
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Before we proceed further, there are a couple of technical points to make. First, note
that we do not attempt to differentiate the piecewise constant function c when forming
the derivative Hx in (3.4). Instead, we treat discontinuities in c separately as described in
detail in § 3.3 and Appendix D. Of these, only the discontinuity at the upstream end of a
ponded section described in Appendix D poses any real difficulties: near the downstream
end of a ponded section (§ 3.3), c is obsolete because M and c both vanish when bed slope
bx is positive.

Formally, the inclusion of c actually turns the model into a hyperbolic system not only
in terms of b, but also of a second variable b̆(x, t) = supx′>x b(x′, t). Assuming that b has
an integrable derivative, b̆ satisfies (we are grateful to one of the referees for pointing this
out)

b̆x = min(bx, 0)H(b̆ − b), (3.5)

where H is the usual Heaviside function (with H(0) = 1), with b̆ = b at the downstream
end of the domain. The characteristics of b̆ are then lines of constant t, and in terms of b
and b̃,

c = H(b − b̆). (3.6)

The auxiliary variable b̆, however, only affects the solution through discontinuities in c,
and on either side of such a discontinuity, (3.1) and hence (3.3)–(3.4) hold with constant
c = 0 or c = 1.

Second, it is worth pointing out that the Hamiltonian structure of the problem furnishes
a simple evolution equation of H along characteristics

Hτ = Hxxτ + Hppτ + Hqqτ = HxHp − HpHx + Hqqτ = Hqqτ ; (3.7)

the only situation where this fails is when cM and hence H change discontinuously.
With our choice of constant upstream boundary conditions (so bt = −H = 0 at the

upstream end of the domain), an important corollary of (3.7) is that b always remains in
steady state upstream of the seal of the lake, since Hq = cMq = 0 in a ponded section with
c = 0, and hence bt = −H remains zero along characteristics entering the domain from
upstream, at least before they reach the seal of the lake. As we will see later, the ability of
such characteristics to fill the entire domain ultimately determines much of the dynamics
of the system.

Next, we give a comprehensive account of shocks (that is, discontinuities in slope
bx along which characteristics intersect), and of discontinuities in c (which need not
correspond to shocks). Figure 4 provides an overview of the different possibilities. We
treat cases (a–c) in the figure in §§ 3.2–3.3 and derive formulae for flux q in terms of shock
geometry at the lake seal in § 3.4. We relegate the analysis of the upstream end of ponded
sections as shown in figure 4(d) to Appendix D, where we show that the discontinuity in
c at such a location cannot generate a shock but may give rise to an expansion fan. The
material below is fairly dense and, at this stage, abstract. On a first reading, it may be
preferable to skip to § 4 to understand the zoology of features of the solution before filling
in the theoretical background in §§ 3.2–3.4 and Appendix D.

3.2. Knickpoint shocks
Equation (3.1) breaks down when characteristics intersect at shocks. Intersections require
characteristics to travel faster upstream of the shock than downstream. The melt rate M
is convex in slope p, and for c = 1 on either side of a shock in a flowing section, so is
the Hamiltonian H. Denoting by superscripts + and − limits taken from above and below
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x = xs

(a) (b) (c) (d )
x = xs

x = xpx = xs

bx
– < 0

b
x

bx
– > 0

bx
– < 0

bx
+ < 0

bx
+ < 0 b(xp) = bp

b–
xx < 0

bx
+ < bx

–

bx
– = bx

+ = 0

Figure 4. Different flavours of shocks and discontinuities in c: (a) ‘knickpoint’ shocks in flowing sections
(§ 3.2), (b) seal shocks (§ 3.3), (c) smooth seals (§ 3.3) and (d) upstream ends of ponded sections, which can
correspond to expansion fans but not to shocks (Appendix D).

the shock at x = xc(t), respectively, we must have b+
x < b−

x < 0 for a shock in a flowing
section (figure 4a). These shocks represent ‘knickpoints’ in standard geomorphological
parlance (Luke 1972; Royden & Perron 2007).

We require that b remain continuous across any shock or discontinuity in c (see
Appendix B for the boundary layer structure of the full model around the different types of
shock). Differentiating both sides of b−(xc(t), t) = b+(xc(t), t) with respect to t, we obtain
b−

t + b−
x ẋc = b+

t + b+
x ẋc, where the overdot denotes differentiation with respect to time.

Solving for shock velocity ẋc, using (3.1) to substitute for b−
t and b+

t , we obtain (see also
Royden & Perron 2007)

ẋc = H(xc, t, b+
x , q) − H(xc, t, b−

x , q)

b+
x − b−

x
= U + c+M(−b+

x , q) − c−M(−b−
x , q)

b+
x − b−

x
, (3.8)

where of course c+ = c− = 1 for a shock in a flowing section; we retain c+ and c− for later
convenience. By the mean value theorem, a strictly convex H corresponds to ẋc somewhere
between the characteristic velocities on either side, with characteristics terminating at
the shock from both sides as expected. In fact, knickpoint shocks between two parts of
a flowing section can occur only if α > 0 in (2.12), so H is strictly convex for p < 0. For
α = 0, the characteristic velocity Hp = U − q in a flowing section is independent of slope
and characteristics do not cross.

3.3. The downstream end of a ponded section
Shocks between a ponded section upstream and a flowing section downstream (c− = 0,
c+ = 1, b−

x > 0, b+
x < 0, see figure 4b) are equivalent to knickpoint-type shocks. Equation

(3.8) still holds, where now c−M(−b−
x , q) = 0 (as pointed out before, the discontinuity in c

is a red herring here since M(−b−
x , q) = 0 for b−

x > 0 anyway). The important distinction
with the knickpoint shocks of § 3.2 is that shocks between ponded and flowing sections can
form even if M is not strictly convex (that is, for α = 0), since the characteristic velocity
x−
τ = U upstream of the shock is larger than its counterpart x+

τ = U − M−p(−b+
x , q)

downstream, and characteristics terminate at the shock from both sides.
The seal of the lake may take the form of a knickpoint between ponded and flowing, and

its motion then controls the flux q as described in § 3.4 below. We refer to ‘breaching’ of
the seal as incision into a seal that was previously in steady state, leading flux q to increase
and the lake to drain, and this requires a shock to pass the steady seal location as we will
show in § 4.

The transition from ponded to flowing need not correspond to a shock, however. A
continuous slope with b−

x = b+
x = 0 is possible if the transition point xs(t) is a local

maximum of b such that characteristics enter from one side and exit on the other, with no
jump in b or bx = p, and with a continuous melt rate cM and Hamiltonian H (figure 4c).
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We refer to this as a smooth seal. The simplest situation in which to understand this
is that of a steady state upstream of the seal (which we generally expect to be the
case for the lake seal as discussed after (3.7)), in which case a smooth seal will also
be stationary. Characteristics will then pass through the seal provided the characteristic
velocity downstream remains positive

x+
τ = U − M−p(0−, q) > 0. (3.9)

For α > 0, M−p(0−, q) = 0, and (3.9) is always satisfied: in order to breach the lake seal in
that case, a knickpoint must form downstream and migrate to the seal location. Conversely,
for α = 0, such knickpoints cannot form, but (3.9) is violated if q > U. In that case, a
shock forms at the seal itself, causing the lake seal to be breached.

Note that the argument above can be generalized to the case of non-steady smooth seals
by differentiating both sides of b+

x (xs(t), t) = b−
x (xs(t), t) with respect to time, and using

the fact that bxx < 0 on either side of xs(t). Details are provided in Appendix C.

3.4. The lake drainage flux q
Key to the model is to understand how the flux q evolves, which requires the evolution
of the seal point height ḃm in (2.17c). There are two scenarios. First, the seal point
xm can be a shock (note that this differs from figure 1, which shows a smooth seal).
Differentiate bm = b(xm(t), t) and use the fact that the shock velocity ẋm is given by (3.8)
with c−M(−b−

x , q) = 0, while b−
t = w(xm) − Ub−

x . We obtain

ḃm = b−
t + b−

x ẋm = w(xm) + b−
x M(−b+

x , q)

b+
x − b−

x
. (3.10)

Assuming lake level is equal to seal height with h0 = bm, (2.17c) then leads to the equation

q = max
(

Q − γ w(xm) − γ
b−

x M(−b+
x , q)

b+
x − b−

x
, 0
)

. (3.11)

The flux q is the sum of water supply to the lake Q, and of water discharged due to lowering
of the lake seal by uplift −γ w(xm) and melt-driven incision into the lake −γ M/(b+

x − b−
x ).

If that sum is negative, there is no outflow q from the lake, and the seal of the lake will
in fact temporarily rise above the level of the lake. Importantly, (3.11) determines the
flux implicitly, since q appears on the right-hand side as a result of the melt rate being
dependent on flux, and that melt rate in turn dictates the rate at which the lake seal is
lowered.

Alternatively, the seal can be a smooth transition point, with b−
x = b+

x = 0. Then

ḃm = bt + bxẋm = bt + Ubx = w(xm). (3.12)

In that case, (2.17c) leads to the explicit formula

q = max(Q − γ w(xm), 0). (3.13)

In what follows, we refer to Q − γ w(xm) as the ‘base outflow rate’ that results if there is no
incision into the seal due to melting (that is, if we simply put M = 0 at the seal in (3.11)).
A negative base outflow rate signifies that uplift at the seal occurs faster than the refilling
of the lake, and must be compensated by a positive incision rate of the seal in order for any
outflow to occur at all.
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1(a) (b)

0

Q
 –

 γ
w

(x
m

)

–1

1

0

–1
0 q 1 0 q 1

bx
– = 0

bx
– = 2

bx
– = 2

bx
– = 0

Figure 5. Values of base outflow rate Q − γ w(xm) corresponding to a given flux q as determined by (3.11),
for γ = 2, b+

x = −1 and b−
x = 0, 0.25, 0.5 . . . , 2 (the end member cases b−

x = 0 and b−
x = 2 being labelled

with arrows) for α = 0.5 (a) and α = 0 (b). Stable solutions are shown as solid lines, unstable as dashed lines.
In panel (a), stable q can be multi-valued for given Q − γ w(xm), while in panel (b), there are combinations of
Q − γ w(xm) and b−

x for which no solution for q exists (take for instance Q − γ w(xm) > 0 and b−
x = 0.2).

Only the case (3.11) of a shock at the seal is non-trivial, precisely because q appears on
both sides of the equation. Since M ≥ 0 for all q and M = 0 if q = 0, we can equivalently
write

Q − γ w(xm) = q + γ b−
x M(−b+

x , q)/(b+
x − b−

x ), if q > 0,

Q − γ w(xm) ≤ 0, if q = 0.

}
(3.14)

At this point, we have to distinguish between the cases α = 0 and α > 0, which give
qualitatively different results.

3.5. Flux for the variable channel width case α > 0
For α > 0 and p < 0, the function M(−p, q) defined in (2.12) is an increasing, concave
function of q with Mq(−p, 0) = ∞. The right-hand side of (3.14)1 therefore vanishes at
q = 0, decreases for small q, reaches a global minimum and then increases thereafter
(recall that b−

x > 0 and b+
x < 0 for a shock at the seal). The right-hand side of (3.14)1

is shown as a function of q in figure 5(a) for fixed b+
x and a variety of values of q+

x as
dashed and solid curves. The solution for q can be read off the graph by identifying where
the height of the curve reaches the prescribed value of base outflow rate Q − γ w(xm).

If the base outflow rate Q − γ w(xm) is positive, there is therefore a single positive root
for q (a single value of q for which the curve attains the prescribed value of Q − γ w(xm)).
That root q increases with base outflow rate Q − γ w(xm) and with storage capacity γ

(for fixed base outflow rate). By contrast, the solution for q can become multi-valued for
negative Q − γ w(xm) ≤ 0: no flow with q = 0 is then a valid solution of the original
problem (3.11), since no flow implies the absence of dissipation-driven seal incision, and
seal height will increase at or above the rate of lake filling. That does not mean that there
cannot be any flow, however. In addition, there are two non-zero solutions if the negative
base outflow Q − γ w(xm) < 0 remains above a critical value (figure 5a). Incision of the
seal by flowing water can then cause drainage of the lake at the right rate to maintain that
rate of incision.

For the melt rate M given by (2.12), that situation is possible when

Q − γ w(xm) ≥ − 2α

3 − α

(
3(1 − α)γ b−

x

(3 − α)(b−
x − b+

x )

)(3−α)/(2α)

(−b+
x )3/(2α), (3.15)

where the critical value is the minimum of the right-hand side of (3.14)2 with respect to q.
For even more negative Q − γ w(xm), q = 0 is the only solution.

961 A4-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

13
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.130


C. Schoof, S. Cook, B. Kulessa and S. Thompson

A multi-valued solution for flux q begs the question how outflow from the lake should
be computed: How does the lake choose which solution branch to follow? In common with
similar situations such as a glacier selecting a branch of a multi-valued sliding law during
a surge cycle (Fowler 1987, 1989), or the behaviour of the van der Pol oscillator in the
relaxation oscillation limit (Holmes 1995), we argue that multi-valuedness is simply the
result of a process that occurs on a fast time scale having evolved to equilibrium, and the
dynamics of that process needs to be resolved to pick the equilibrium that is reached.

An obvious fast time scale process is the adjustment of lake level. If q > 0, then lake
level attains seal height at leading order (Appendix A), but more accurately, there is a
small O(ν) difference between the two: the bigger the flux q, the more lake level exceeds
the seal height by, even if that amount remains small compared with the O(1) height
of the seal itself. More specifically, solving a boundary layer problem around the seal
(Appendix B.2 or, in more detail, in §§ 1.5–1.6 of the supplementary material) allows us
to compute (although not in closed form) flux q in terms of the difference between lake
water level h0 and seal height bm, and in terms of the slopes b+

x and b−
x up- and downstream

of the seal. That relationship can be expressed in the form

q = Qs(ν
−1(h0 − bm), b−

x , b+
x ), (3.16)

where Qs is non-negative, vanishes when its first argument is negative or zero (meaning,
water level is at or below seal height) and is otherwise O(1) when its arguments are O(1)

(see Appendix B.2, figure 15b).
When applied to the mass balance of the lake, this prescription for flux leads to a

regularized version of (2.17)

γ h0,t = Q(t) − q, q = Qs(ν
−1(h0 − bm), b−

x , b+
x ). (3.17)

Note that this replaces the cruder but structurally similar ordinary differential equation
models for lake surface lowering in Raymond & Nolan (2000), Kingslake et al. (2015) and
Ancey et al. (2019).

Let h0 = bm + νh1, so h1 is the appropriately rescaled water level elevation above the
seal. Then, using (3.10) to re-write h0,t = ḃm + νh1,t, we obtain from (3.17)

νγ h1,t = Q − γ w − γ b−
x M(−b−

x ,Qs(h1, b−
x , b+

x ))

b+
x − b−

x
− Qs(h1, b−

x , b+
x ). (3.18)

Reassuringly, we recover (3.14) for q = Qs(h1, b−
x , b+

x )) at leading order in ν. The flux q
implicitly defines the correction h1, but this still does not resolve the multi-valuedness of
the solution. Omitting the time derivative νh1,t is, however, a singular perturbation that
neglects transient behaviour on the faster O(ν) time scale: rescaling time as T = ν−1t in
(3.17) yields an ordinary differential equation for h1 with b−

x and b+
x constant on that fast

time scale. h1 will evolve to a stable steady state in T that satisfies either case in (3.14).
(There is a slight inconsistency here: (3.17)2 is the result of the steady state boundary

layer problem in Appendix B.2. When rescaling to the fast time scale T , that boundary
layer problem actually becomes non-steady, so that q is determined by (B2) with an
additional term BT added to the left-hand side of (B2b), meaning the boundary layer is
no longer necessarily in steady state, in which case flux cannot necessarily be expressed
as a function of h1 and the slopes b−

x and b+
x only. We leave an analysis of that situation to

future work.)
Assuming that flux increases with water level above the seal, we have ∂Qs/∂h1 > 0 as

indicated by the numerical solutions in figure 15(b). The stability of steady-state solutions
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Figure 6. Contour plots of q as a function of (b+
x , b−

x ) for steady-state upstream conditions w(xm) = b−
x /U.

Logarithmically spaced contour intervals with five contours per decade, contour levels as indicated by the
colour bars. The dashed contour in each case corresponds to q = Q, at which the shock is stationary, migrating
forward for q < Q and backward for q > Q. The solid black curve indicates the boundary of the region in which
only the zero solution exists. Panel (a) shows U = 1, γ = 1, Q = 1 α = 0.5, red dot-dashed line is the lower
boundary of the region in which q = 0 is a solution. Panel (b) shows U = 1, γ = 4, Q = 2, α = 0; the solid
red curve is the boundary of the region in which no stable solution for q exists.

to (3.18) is then easy to determine: when there are three solutions to (3.14), only the largest
solution (for which q increases with base outflow rate Q − γ w(xm)) and the zero solution
are stable as indicated by solid lines in figure 5(a).

In common with analogous problems such as glacier surges or other relaxation
oscillators, the relevant, stable solution branch of the original leading-order model (2.17) is
chosen by continuity of q in the original, slow time variable t whenever such continuity is
possible. (This is true at least provided there are no significant variations in water supply Q
on the short ∼ O(ν) time scale over which the lake level correction h1 adjusts. In practice,
this could be a real consideration with diurnal water input fluctuations. Presumably these
are generally insufficient in practice to lead to h1 changing significantly, and do not affect
the outflow rate q, but a more sophisticated approach is necessary if they do.)

For the commonly encountered situation of the upstream side of the lake seal being
in steady state, w(xm) = Ub−

x , we can use the stability result to visualize flux q as a
multi-valued function of b+

x and b−
x in the limit of small ν (figure 6a). Here, a zero solution

q = 0 is possible everywhere above the red dash-dotted line b−
x = Q/(γ U), and becomes

the only solution in the area demarcated by a solid black curve. Flux q is not continuous
across either of those boundaries when transitioning between solution branches. Note also
the region bounded to the left by the dashed black contour: here, the non-zero flux q is less
than the inflow Q, with the seal advancing and rising in height, but water still flowing out
of the lake.

3.6. Flux for the constant channel width case α = 0
For α = 0, the situation is qualitatively different: we have M(−p, q) = −pq and hence
(3.14) reads

q(b+
x − b−

x γ b−
x b+

x )/(b+
x − b−

x ) = Q − γ w(xm), (3.19)

if q > 0, and Q − γ w(xm) ≤ 0 if q = 0. Stability again requires q to increase with Q −
γ w(xm), so the coefficient of q on the left of (3.19) must be positive when a stable non-zero
solution exists. As a result, there is no multi-valuedness: q vanishes if and only if the base
outflow rate Q − γ w(xm) < 0. Instead of multi-valuedness, there may, however, be no
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solution at all. This occurs when

Q − γ w(xm) > 0 and (b+
x − b−

x γ b−
x b+

x ) < 0. (3.20a,b)

We can again visualize the flux solution situation, plotting q against b+
x and b−

x under
the assumption that w(xm) = Ub−

x (figure 6b). Unlike the case α > 0, q is indeed not
multi-valued, but instead undefined in a ‘forbidden’ part of the (b+

x , b−
x ) plane if Q > U

as shown, reflecting the solvability condition (3.20a,b).
As a result, breakdown of the model is a very real possibility if α = 0. If the seal

migrates backwards with a steepening upstream slope, b−
x can approach the critical value

at which the coefficient in (3.19) vanishes, and q undergoes runaway growth (as the red
boundary of the forbidden region is approached from below in figure 6b). We will show
in § 4.2 below that this runaway growth corresponds to abrupt lake drainage, with a
short-lived but finite jump in water height across the seal that cannot be captured fully
by our reduced model.

4. Results

We solve (2.13)–(2.17) numerically using the method of characteristics with a backward
Euler step as described in Appendix E. We use the regularized flux prescription (3.17)
for α > 0, and at times for α = 0 in order to explore what happens ‘beyond’ the model
failure identified at the end of the last subsection. When we do use (3.17), we treat Qs
simply as a regularization rather than trying to emulate the function shown in figure 15(b).
Consequently we drop the slopes b−

x and b+
x as arguments from Qs. In practice, we use

Qs(h1) = [max(h1, 0)]2, and put ν = 10−3.
Figures 7–10 illustrate the behaviour of lakes that are initially empty with b(x, 0) = s(x),

where s is the unincised ice surface, satisfying Usx = w. This initial profile is a steady-state
solution in the absence of flowing water, and the profile b therefore remains unchanged
until the lake is full: only then does water begin to flow and the channel becomes incised
on the downstream side of the lake seal. We compute results for an uplift velocity of the
form

w(x) = U
{
�bx − 2b1λ(x − x0) exp

[
−λ (x − x0)

2
]}

, (4.1)

with x0 = 1.5960, b1 = λ = 1, �bx = −0.25 and U = 1; this results in a steady-state
surface s(x) in the form of a Gaussian b1 exp(−λ(x − x0)

2) superimposed on a uniform
downward slope −�bxx (see e.g. the top profile in figure 7a i–a ii). The choice of x0 ensures
that Usx = w = 0 at x = 0, so that the upstream end of the domain is the bottom of the
lake. The steady state surface is shown as a dashed black line in figure 8(a ii), or as one of
the black curves in figure 7(a i,a ii).

We use two different choices of shape exponent, α = 1/2 (the semicircles and triangles
of (2.1c) and (2.1d), with wetted perimeter increasing monotonically with channel
cross-section), and α = 0 (the fixed wetted-perimeter slot of (2.1e)). For each of these, we
compute solutions for different constant values of water input Q and of storage capacity
γ , treating the latter as independent of water level (see also Clarke 1982, for a discussion
of lake hypsometries). Both of these assumptions are simplistic, but help understand the
dynamics of surface lakes more clearly.

4.1. Lake drainage modes for steady water supply: α > 0
Depending on the values of α, Q and γ , different outcomes are possible, differentiated at
the coarsest level by whether the lake drains or not. Figure 7 illustrates two possible end
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Figure 7. Solutions for α = 0.5: γ = 1, Q = 0.1962 (a i–c i) and γ = 4, Q = 1.570 (a ii–c ii). Panels (b i,b ii)
show contour plots of b(x, t), with t on the horizontal and x on the vertical axis, contour intervals of 0.1 and
levels given by the colour bar. Blue lines show water level in the lake and boundaries of ponded sections,
black lines show the smooth lake seal, magenta the closest shock to the seal, excluding the seals of ponded
sections downstream. Inset in (b ii) shows detail of shock migration: note that the shock first forms downstream
of seal, and then migrates upstream to incise the seal as predicted for α > 0 in § 3.3. Panels (a i,a ii) show the
profiles indicated by black dashed lines in (b i,b ii), respectively, with blue indicating water surface in the lake
or a ponded section. Panels (c i,c ii) show time series of xm(t) (blue) and q(t) (black), using the same t-axis as
(b ii,b ii).

members for α = 1/2. In both cases, outflow from the lake commences once water level
(blue curve in panel b) reaches the smooth seal (black line in panel b). For the low-inflow
example in column 1, with Q = 0.196, the smooth seal (the maximum in the unincised ice
surface at x = x̄m = 1.468) remains in place, and hence (with w = 0 at the steady seal),
q = Q from the paragraph following (3.11). The channel steepens downstream, but no
backward-migrating shock forms. The steepened flowing section terminates in a ponded
section that migrates downstream, eventually leaving the entire domain in a new steady
state.

Column 2 shows a high-inflow counterexample to the steady state of column 1, with
Q = 1.570 and γ = 4. Here, a shock forms quickly: the inset in panel (b ii) shows that
the shock (magenta) forms downstream of the smooth seal (black) as predicted at the
end of § 3.3, and subsequently migrates upstream to breach the lake. This causes flux q
to increase as stored lake water is released. The downstream side of the shock steepens
and a ponded section again forms further downstream. Although the steepening on the
downstream side of the seal is eventually reversed (panel a ii), the backward migration of
the shock continues until the lake is fully drained.
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Figure 8. Solutions for α = 0.5: γ = 4, Q = 0.7850 (a i–e i) and γ = 2, Q = 0, 7850 (a ii–e ii). Same plotting
scheme as figure 7, panels (a–c) now show profiles at equal time steps during the intervals between the vertical
dashed lines in panels (d i,d ii), those intervals being marked with the appropriate panel label (a i)–(c i) and
(a ii)–(c ii). The black dashed curve in panel (a ii) is the unincised ice surface s(x).

Note that we may naively attribute the steepening of slopes near the smooth seal
location x̄m in both columns of figure 7 to melting after outflow from the lake commences.
Characteristics offer a different perspective that will be important later: slope evolves as
pτ = wx along characteristics, that is, as the result of differential uplift. Melt enters into
the evolution of slope by determining how fast a given characteristic propagates, with
xτ = U − cM−p by (3.3). Larger fluxes q lead to increased M−p and hence to reduced
characteristic velocities. The steepest downward slopes result when xτ is near zero where
the uplift rate derivative wx is most negative (which is indeed near the smooth seal
location), causing characteristics to linger. That does not occur at the largest fluxes q,
however, since xτ then becomes progressively more negative. The latter effect, of large
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discharge q flattening slopes, is evident in column 2 of figure 7, where slopes downstream
of the shock become less steep as the shock approaches the upstream end of the domain.
This flattening of downstream slopes will play a key role in § 6 below.

Depending on storage capacity γ , more complex behaviour can occur at intermediate
values of water supply Q as illustrated in figure 8. The left-hand column shows a higher
storage (γ = 4, Q = 0.7850) example, the right a lower storage (γ = 2, same Q) case.

For the former, we see periodic oscillations being generated. As in column 2 of figure 7,
a shock forms downstream of the smooth seal, steepening initially and breaching the
lake. Lake drainage does not continue to completion, however. The seal stops migrating
upstream before reaching the low point of the lake, with slopes downstream of the seal
again flattening some time after the lake seal has been breached (panel a i). Outflow q
stops and the shock is advected downstream, allowing the initial q = 0 steady-state surface
profile to re-establish itself and re-forming a smooth lake seal. The shock that caused the
original drainage event migrates some distance downstream before the lake refills and
outflow starts afresh (panel b i). Panel (d i) shows that a new shock (break in the magenta
curve) forms and repeats the drainage of the lake, with the channel profile in the entire
domain undergoing periodic oscillations after several cycles of lake drainage and refilling
(panels c i,e i).

For the lower storage case of column 2 in figure 8, we again see a shock breaching the
seal, partially draining the lake and then stopping, with slopes downslope of the shock
initially steepening and then flattening. The shock is again advected downstream and a
smooth seal re-forms, but the refilling of the lake occurs more rapidly. The same shock
that originally breached the lake is reactivated and breaches the seal again, this time
migrating further upstream. The lake fully drains during the third such drainage cycle.
We return in § 6 to a more detailed analysis of the mechanism by which lake drainage
becomes oscillatory, and of the differences between the two cases in figure 8.

A more systematic exploration of the parameter dependence of lake drainage styles is
shown in figure 9, with each column corresponding to a fixed value of Q and each row
to a fixed value of γ . The figure indicates that inflow rate Q alone determines whether
the seal is breached: a critical value of Q appears to separate solutions that experience at
least partial lake drainage from those that leave the seal intact. The fact that the initial seal
breach does not depend on storage capacity γ is trivial: until a backward-migrating shock
has formed and breached the seal, the intact, steady-state smooth seal leads to outflow
balancing inflow once the lake has filled, with q = Q, and the shock that breaches the seal
must form at that value of flux q.

Once the seal is breached, the outcome of lake drainage depends on both Q and γ . As
already indicated above, for α = 0.5, moderate Q and larger γ favour oscillatory drainage
of the lake, with smaller Q and larger γ ultimately also leading to periodic oscillations
rather than divergent oscillations eventually leading to lake drainage.

4.2. Lake drainage modes for steady water supply: α = 0
The range of drainage styles observed for α = 0 is more limited. At low water input Q <

U = 1, the channel develops into a steady state in much the same way as shown in figure 7,
column 1. At larger Q > U, a shock once more forms, although this time at the seal in
agreement with §§ 3.2–3.3. The outcome of that shock migrating backwards into the lake
leads to flux q increasing and one of two outcomes, shown in figure 10.

Column 1 shows a case with more moderate water input Q = 1.1 and γ = 2. Panel
(c i) shows results for discharge q(t) and seal position xm(t) from two computations:
one without the regularization advocated in (3.17) (magenta and red), and one that is
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Figure 9. Solutions for α = 0.5. Time series of q(t) (black) and xm(t) (blue) (as shown in e.g. panel (c) of
figure 7) for different combinations of γ and Q. γ = 0.5 (a i–a v), 1 (b i–b v), 2 (c i–c v) 4 (d i–d v) and Q =
0.1962 (a i,b i,c i,d i) 0.3525 (a ii,b ii,c ii,d ii) 0.4371 (a iii,b iii,c iii,d iii) 0.7850 (a iv,b iv,c iv,d iv) and 1.570
(a v,b v,c v,d v). The solutions in figures 7(a i–c i) and 7(a ii–c ii) and 8(a i–e i) and 8(a ii–e ii), are shown in
panels (b i), (d v), (d iv) and (c iv), respectively. Note that the critical water input for seal breaching predicted
by (5.7) is Qc = 0.3917, between columns (a ii–d ii) and (a iii–d iii) here. This also marks the transition from
steady outflow q to outflow q increasing after a seal breach in this figure.

regularized (black and blue). The unregularized model has a singularity in finite time,
as expected from the results in § 3.4 (see in particular figure 6b): this manifests itself in a
very rapid rate of increase dq/dt followed by the Newton solver used to compute backward
Euler steps failing to find a solution.

The regularized solution instead undergoes very rapid drainage at a slightly later time
(t ≈ 4.97), the timing being different because the regularization in question involves water
level in the lake having to rise further to reach the same flux. The singularity in flux in the
unregularized model is averted because the regularized model allows water level h0 to
differ significantly from seal height bm: consequently, lake drainage can lag behind the
rapid lowering of the seal that occurs for α = 0. That being said, seal incision continues
after the very rapid drainage, and lake drainage continues to completion as in column 2 of
figure 7.

Column 2 of figure 10, at a larger inflow rate Q = 2 than column 1, shows a much more
straightforward analogue to column 2 of figure 7, with seal incision leading to a peak in
flux and continued seal incision until lake drainage is complete, without a (near-) singular
peak flux. Importantly, we did not find any instances of oscillatory lake drainage for α = 0,
as detailed in the more systematic exploration of the effect of changing storage capacity γ

and water input Q in § 5.1 of the supplementary material.
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Figure 10. Solutions for α = 0: γ = 2, Q = 1.1 using (3.17) with ν = 5 × 10−3 (a i–c i) and γ = 2, Q = 2
(a ii–c ii). Same plotting scheme a figure 7. In panel (c i), we show two solutions, one using (3.17) as in panels
(a i)–(b i) (q in black, xm in blue), and the other without using that regularization, (q in red, xm in magenta).
The latter solution fails to converge numerically after t = 4.764.

5. Criteria for lake drainage

For constant water input to the lake Q with b in steady state upstream of the seal, there
appears to be a critical value of Q above which a shock either forms at the seal (if α = 0)
or below the seal (if 1 > α > 0, see figure 9). The shock migrates backwards, leading to
at least partial lake drainage.

Below, we identify situations in which such shocks must form with parameter
combinations for which there is no steady-state solution to (2.13)–(2.17) (see also § 4 of the
supplementary material). Steady states are the natural consequence of the seal remaining
intact: as discussed after (3.7), the constant upstream boundary condition b(0, t) = bin(0)

ensures that
bt = −H = 0, (5.1)

on any characteristic originating at the upstream end of the boundary. This remains true
if that characteristic passes a steady-state smooth lake seal at x̄m, across which H is
continuous (§ 3.3), and below which Hτ = Hqqτ = 0 if the seal is steady and hence
qτ = 0. The formation of steady states by characteristics entering the domain from above is
evident in column 1 of figure 7, where steady-state conditions are established progressively
down-flow as characteristics that cross the seal after lake outflow has commenced
propagate downstream across the domain. In other words, a global steady-state results if
the characteristics crossing a steady seal can fill the entire domain, while non-existence of
steady states implies that such characteristics cannot propagate through the entire domain.
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Figure 11. The reduced Hamiltonian Hr = H + w for (a) α = 0.5 and (b) α = 0, with U = 1, shown for
q = 0.5, 0.75, 1, 2. The red dots in panel (a) correspond to p = pc, Hr = Hc. Steady states satisfy Hr = w,
with negative w found downstream of the seal. Combinations of p and Hr shown as dotted curves correspond
to backward-propagating characteristics. We expect steady states to remain purely on the dashed/solid branches
of the curves: backward-propagating characteristics in steady state require steady-state boundary conditions at
the downstream end of the domain, and must meet forward-propagating characteristics at a stationary shock,
an unlikely scenario.

A critical flux Q beyond which steady states fail to exist is easy to identify. To simplify
matters, recall that we assume the uplift function to have a single root w(x̄m) = 0 at the
steady seal location, with w < 0 for x > x̄m (as is indeed the case for the uplift function in
(4.1)). In steady state, there is then a single ponded section with bx > 0 upstream of x̄m, so
we can omit the ponding function c from the definition of the Hamiltonian in steady state.

The fixed-width channel case α = 0 of figure 10 differs qualitatively in terms of shock
formation from the variable-width case α > 0 of figures 7–9, and we have to treat the two
separately. First, consider α = 0. Then, M(−bx, q) = −H(−bx)bxq where H is the usual
Heaviside function. In steady state, (2.17) demands that q = Q, while the steady state (5.1)
becomes (figure 11b)

H = (U − QH(−bx))bx − w = 0. (5.2)

We can solve for bx everywhere when Q < U. By contrast, H cannot be zero in regions
where w < 0 (that is, downstream of the seal) if

Q ≥ U. (5.3)

This is the criterion for lake drainage when α = 0, and is consistent with the observation
in § 3.3 that a smooth lake seal cannot persist if (5.3) holds.

Second, consider the variable-width channel case with 0 < α < 1. In that case, we can
define a reduced Hamiltonian Hr through

Hr(x, t, p, q) = Up + M(−p, q), (5.4)

so H = Hr − w. The reduced Hamiltonian (see figure 11a) has a global minimum Hc with
respect to p at a value p = pc given by

pc(q) = − [(3 − α)U/3](3−α)/α

q3(1−α)/α
, Hc(q) = −α(3 − α)(3−α)/αU3/α

33/αq3(1−α)/α
. (5.5a,b)

(More generally, such a minimum Hc can always be identified for generic melt rate
functions M(−p, q) that are strictly convex functions of slope −p for downward slopes
p < 0, with M(0, q) = M−p(0, q) = 0.)
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Figure 12. ‘Orbits’ of (b+
x , b−

x ) at the shock that breaches the seal, superimposed on corresponding versions
of the flux contour plot in figure 5(a), with contour lines for flux rendered in grey, These orbits are shown
for the solutions in (a) figure 8(a i–e i), showing one of the periodic drainage cycles (b) figure 8(a ii–e ii) and
(c) figure 7(a ii–c ii), showing the full solution for the latter two. The curves are colour coded by time as shown
in each colour bar. The ‘orbit’ penetrates perceptibly into the zero flux (q = 0) region at the top right of panel
(a) because of the regularization (3.17) used in the computation of the time-dependent solution. The orbits
terminating at b+

x < 0, b−
x = 0 in panels (b,c) correspond to the shock reaching the bottom of the lake at the

upstream end of the domain.

A steady state with H = Hr − w ≡ 0 exists if and only if inf(w) ≥ Hc, or equally, we
infer that lake drainage occurs if

inf(w) < Hc(Q). (5.6)

If (5.6) is satisfied, the combined effect of downward motion w of the ice and channel
incision M(−bx, q) must overwhelm downstream advection Ubx, no matter the channel
slope bx, and a steady state cannot be established. For the melt rate function given by
(2.12), the criterion (5.6) can be re-written in the form

Q >
αα/[3(1−α)](3 − α)(3−α)/[3(1−α)]

31/(1−α)
[− inf(w)]−α/[3(1−α)]U1/(1−α), (5.7)

which gives the desired critical flux for breaching the seal. While this differs from the
criterion (5.3) for α = 0, note that (5.7) reassuringly does reduce to Q > U in the limit
α → 0. Note also that (5.7) is consistent with our numerical results: the critical flux is
Q = 0.3917 for the calculations in figure 9 and Q = 1 for the results reported in § 4.2 as
well as in § 5.1 of the supplementary material.

6. Oscillatory lake drainage

Breaching of the seal need not lead to complete emptying of the lake: the lake can re-seal
and re-fill temporarily instead (figure 8). Re-sealing results from changes in upstream
slopes b−

x and b+
x at the seal during lake drainage, whose effect on q is shown generically

in figure 5. We have observed partial lake drainage only for α > 0, as shown in figure 5(a).
We superimpose ‘orbits’ of (b+

x , b−
x ) during different lake drainage events in figure 12 to

track the effect of slopes and their role in re-sealing the lake.
A steeper downstream slope b+

x < 0 leads to faster incision into the seal, and therefore
to a greater rate of backward migration of the seal and hence of lake drainage at fixed
upstream slope, so q increases with decreasing b+

x . The upstream slope b−
x has two

conflicting effects: larger b−
x on the one hand slows the backward migration of the seal

(through the denominator on the left of (3.14)) and corresponds to a greater rate of uplift,
trying to re-seal the lake. On the other, for a given backward migration rate of the seal, a
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steeper upstream slope also corresponds to a greater rate of surface lowering and therefore
volume loss from the lake at a given rate of seal migration. The latter effect dominates for
steeper (more negative) downstream slopes b+

x , the former for shallower b+
x .

In the solutions we have reported above, termination of flow before the lake is fully
empty generally hinges on two effects. First, while b−

x initially steepens after incision into
the smooth seal, the upstream slope eventually flattens again after an inflection point in the
unincised surface s(x) is passed, and approaches zero as the seal point xm(t) approaches
the bottom of the lake at x = 0, causing q to decrease again (figure 12a,b).

Second, following an initial decrease, the downstream slope b+
x < 0 eventually increases

(becoming less negative) during lake drainage, as already mentioned in § 4. The
mechanism involved is the following: as incision into the seal occurs, q initially increases.
The increase in flux causes characteristic velocities downstream of the seal to become more
negative by (3.3), so characteristics propagate upstream faster. As described in § 4, faster
propagation of characteristics can cause a reduction in slopes: slope evolves as pτ = wx
along characteristics, and wx is typically most negative around the original smooth seal
location x̄m. The faster that characteristics move through this region of steepening because
flux q has increased, the less p = bx will steepen. As a result, characteristics that reach
the shock at the seal xm(t) later during lake drainage do so with a less steep (that is, less
negative) slope b+

x .
Figure 12 shows that the increase in downstream slope b+

x (that is, reduction in
magnitude |b+

x |) is key in ensuring that flux is not only reduced in the later stages of lake
drainage (as a flattening of b−

x already ensures), but actually vanishes entirely on reaching
the boundary of the blank region of zero flux (marked q = 0 in the equivalent figure 6):
compare panels (a,b) of figure 12 with panel (c), which shows the equivalent orbit for a lake
that drains completely after the initial seal incision. Reaching that boundary in figure 12
implies that flow ceases abruptly, and the lake re-seals.

The case shown in figure 12(a) is additionally visualized in figure 13, where we
show characteristics that reach the shock from downstream as multicoloured curves, the
colouring indicating time (panel a) or slope p = bx along the characteristic (panel b).
The increasingly rapid transit of characteristics past the point x = x̄m (vertical dotted line
marked S1 in panel a) and the reduced steepening at later times during lake drainage is
evident in panels (a) (later characteristics do not dip to larger negative values of bx, and the
colouring indicates only a short amount of time spent near x̄m) and (b) (later characteristics
are steeper near x̄m = 1.468, indicating a faster passage, and retain a lighter blue colour
indicating less steep slopes).

The effect of downstream flattening during seal incision becomes stronger if storage
volume γ is large or the inflow Q is smaller (but still above the critical value for the
initiation of drainage as discussed in § 5). Both larger γ or smaller Q lead to a bigger
relative increase in flux q during lake drainage, and hence to a stronger relative flattening of
the downstream slope. This accounts for oscillatory drainage occurring at such parameter
combinations in figure 9.

Spontaneous termination of lake drainage, however, need not lead to periodically
recurring lake drainage, see for instance figures 8(d ii) and 12(b): consecutive filling and
drainage cycles may have an increasing amplitude, leading to complete lake emptying
eventually. This appears to be linked to rapid re-filling of the lake and re-activation of the
same shock that caused the initial incision. Once the reactivated shock incises the smooth
seal again, it may do so with a steeper downstream slope and incise further upstream
(figure 12b).

Reactivation of the same shock is favoured by small lake storage capacity and larger
fluxes Q, which allow the lake to refill rapidly. As a result, the shock that originally incised
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Figure 13. The solution in figure 8(a –e i) and figure 12(a). Panel (a) shows slope against position. The solid
black curve is slope bx(x, t) against x at t = 41.1, when lake level reaches the height of the smooth seal and
lake discharge recommences. The dashed black line, partially obscured by the solid curve, is the slope sx of
the unincised ice surface. Purple and red curves (solid and dashed) show the trajectory taken by downstream
slope b+

x on the new shock that forms after flow commences (the upstream slope is b−
x = sx), the red arrow

indicating the direction in which the shock traverses the curve as time t increases. Purple indicates that the shock
is downstream of the smooth seal at x̄m (dotted vertical line), red indicates the shock has incised into the seal.
Dashes (between points C and S2) indicate that there is zero flux q, while the solid portion of the curve between
A and C corresponds to positive flux. The multi-coloured curves are characteristics that arrive at the shock at
intervals of δt = 0.1125 while the seal is breached and water is flowing, coloured shading indicates time. Panel
(b) shows same information but plotted as position against time, with coloured shading indicating the slope bx
on the characteristics. The blue curve shows flux q against time, plotted using the right-hand vertical axis tick
marks. Here, S1 marks the smooth seal where w(x̄m) = Usx(x̄m) = 0 as indicated by the horizontal dotted line;
S2 marks the shock left by the previous drainage cycle. The point labels A–D mark changes in the shock, from
formation at A to breaching the smooth seal at B, flow ceasing at C to a new smooth seal forming as the shock
passes the smooth seal location x = x̄m at point D. Note that the dashed portion of the curve from C to S2 is
a translated version of part of the black initial profile curve on which points S1 and S2 lie; this is no accident
since both are characteristics with the same characteristic velocity xτ = U and evolution equation pτ = wx.

the smooth seal is not advected far enough downstream, and on reactivation reaches the
re-formed smooth seal again. Periodic lake drainage by contrast results most easily if γ is
larger and inflow rates Q are small but above the critical value for drainage.

In that case, lake re-filling takes longer and the shock that incised the seal on the
previous drainage cycle is advected far enough downstream between cycles for it not to
return to incise the seal again. This is illustrated in figure 13. The ice surface rebuilds to
a local steady-state solution Ubx = w everywhere upstream of the advected shock by the
time the lake refills and outflow of water recommences (the black curve in figure 13(a),
with the advected shock being marked by S2; the dashed black curve continues the steady
state solution Ubx = w past the advected shock, where it now represents the unincised ice
surface s(x)). When flow of water recommences, a new channel is incised and a new shock
is formed in this previously steady part of the ice surface (the pink–red line originating
at point A in figure 13(a), see also the pink line in figure 8d i). This new shock migrates
upstream, intersecting the rebuilt smooth seal S1 at point B in figure 13(a). Crucially,
all characteristics that reach the new shock from downstream during the drainage cycle
also originate upstream of the old shock (the coloured lines in figure 13(a), all of which
start upstream of S2). Once flow terminates again (point C), the new shock is in turn
advected downstream, with a new smooth seal forming at point D. The new shock reaches
the position S2 of the previous shock at the start of the next cycle, which repeats the
previous one exactly.

It is worth emphasizing that the flood termination mechanism described above involves
a surface shape s(x) that flattens upstream of the seal, as is likely to be generically the
case for surface lakes on ice sheets that form due to a smooth local uplift anomaly.
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Lakes whose bottom does not flatten out do occur on mountain glaciers, for instance at
glacier confluences (Werder, Loye & Funk 2009). We investigate this situation in § 5.3
of the supplementary material, prescribing an uplift velocity w(x) such that bx tends to a
positive constant far upstream of the smooth lake seal (that is, the lake surface does not
flatten). Repeated floods with constant lake supply Q are much less common, and follow
a somewhat different mechanism: the same shock reactivates in each cycle but does not
steepen from cycle to cycle in such a way as to cause complete lake drainage.

7. Discussion and conclusions

In this paper, we have derived and solved a reduced, ‘stream power’-type model (Whipple
& Tucker 1999) for supraglacial stream incision (2.13), coupled to a model for lake
drainage to determine the water flux q (2.17), whose value depends on whether and how
fast the stream is cutting into the lake seal. Note that, for completeness, the model is
stated in dimensional form in § 1 of the supplementary material. At the most basic level,
the model predicts that a lake drains if water input to the lake is sufficiently large to
overcome the effect of forward advection of the channel by the flow of the ice: if the inflow
criterion (5.7) is satisfied (again stated in dimensional form in § 1 of the supplementary
material), then the incision of the outflow channel will cause the lake seal to be breached
eventually by a backward-propagating shock. The criterion demonstrates that sufficiently
large water supply, steep downward slopes on the far side of the seal (large − inf(w), where
w is the uplift velocity of the ice) and slow advection (small values of the horizontal
velocity U) is key to lake drainage. In particular, forward advection of the channel is
the critical difference between the supraglacial lake drainage case and other dam burst
phenomena (e.g. Balmforth, von Hardenberg & Zammett 2009). Qualitatively, our lake
drainage criterion (5.7) is at least consistent with the observation (Poinar & Andrews
2021) that non-draining lakes in Greenland are located at higher elevations (where water
supply rates will be smaller, as are vertical velocities w) compared with ‘slowly draining
lakes’, which may conceivably drain through surface channels rather than hydrofracture.
Our model also suggests that, as surface melt rates and therefore rates of water supply Q
continue to increase, more lakes should eventually drain.

The model also predicts that initial incision into the seal need not lead to complete lake
drainage. Instead, a flattening of both upstream and downstream slopes at the shock at
the downstream end of the lake can lead to the lake re-sealing, with forward advection
of the shock subsequently causing the original lake basin to re-form. The flattening of
the downstream slope is facilitated not only by relatively slow water inflow rates to the
lake but also, and perhaps counterintuitively, by a large lake storage capacity, with both
facilitating a large relative increase in discharge during lake drainage and rapid retreat of
the lake-terminating shock that ultimately causes the slopes downstream of the shock to
flatten again (§ 6).

The dynamics of supraglacial lakes in our model ultimately permits four different
outcomes: no incision of the seal (at inflow rates below the critical value given by condition
(5.7)), a periodic cycle of the lake being breached and draining, followed by refilling (at
large storage capacity and small above-critical water inflow), a sequence of lake drainage
episodes of growing amplitude that progress until the lake fully empties (at intermediate
storage volumes and water supply rates) and complete lake drainage at small storage
volumes and large water supply rates. The possibility of oscillatory lake behaviour by
overland drainage in particular has implications for the interpretation of lake observations
by remote sensing, where the drainage mechanism may not be immediately apparent:
it permits lakes to drain ‘unexpectedly’, that is, provided that seal incision is already
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underway, they may drain outside the melt season (e.g. Schaap et al. 2020; Benedek
& Willis 2021), and for lakes to remain filled for multiple melt seasons until the seal
is breached again (see also § 5.2 of the supplementary material). However, unlike the
condition (5.7) for seal breaching, we are unable to give simple criteria for complete vs
partial, oscillatory lake drainage; presumably, the boundaries between these phenomena
in parameter space depends on the specifics of the uplift velocity w(x).

Importantly, the results we have presented assume steady water supply, while real ice
sheet surface lakes are subject to time-dependent forcing due to seasonal and shorter
melt cycles. In many cases, that forcing is quite rapidly varying, since the time scale [t]
for ice to traverse the length scale of the seal may be quite long: with U = 100 m yr−‘

and [x] = 1 km, one unit of dimensionless time here corresponds to ten annual melt
cycles. We explore the effect of rapidly varying water input in § 5.2 of the supplementary
material, where we find that it leaves the qualitative behaviour of the system largely
unchanged.

One shortcoming of our model relevant to the different drainage styles above is its
one-dimensional nature. Implicit here is that, even if drainage terminates and the lake
re-seals, subsequent overflowing of the reconstituted lake will re-activate the same channel
as before. This is key to the drainage cycles with growing amplitude, leading to the lake
emptying fully (column 2 of figure 8): the re-activation of the previous channel leads to
subsequent drainage of the lake progressing further. If instead the previous channel is
advected laterally as well as down-slope (Darnell et al. 2013), then a new channel may
be formed each time and periodic drainage cycles may in fact be more common than our
results indicate.

More broadly, it is worth revisiting the construction of our model. The glacial case is
perhaps the simplest in which a ‘stream power’ model for channel incision can be justified
from first principles: the product of ‘erosion’ by flowing water is simply more water,
rather than sediment whose transport must then be accounted for (Fowler et al. 2007).
Our results, however, do indicate that the model as stated is incomplete: the predictions
of the model depend strongly on the choice of the exponent α that parameterizes the
cross-sectional shape of the channel in our model (§ 2.1). For instance, for channels of
fixed width (independently of their cross-sectional area) we have α = 0. Unlike the case of
channels with variable width (α > 0), we have found no oscillatory lake drainage (§§ 4 and
6) when α = 0. Instead, the lake can drain ‘abruptly’ in the sense that flux becomes large,
incision becomes rapid and water level in the lake does not remain close to the height of
the seal as stipulated by (2.17); in the model consisting of (2.13)–(2.17), this phenomenon
manifests itself as flux becoming singular unless (2.17) is regularized (§§ 3.4–4).

To determine even the qualitative behaviour of lake drainage unambiguously, a more
sophisticated model for channel evolution is therefore necessary, capable of predicting the
shape of cross-sections self-consistently instead of imposing it as a constitutive relation.
There is currently no particularly good template, although the work in Dallaston & Hewitt
(2014) may be a good starting point. Closely linked to cross-sectional shape evolution is the
need to be able to predict meandering (Karlstrom et al. 2013; Fernández & Parker 2021),
which ultimately should modify our large scale model (2.13) through the introduction of
an evolving tortuosity. Not only is a model for cross-sectional shape now required, but the
secondary flows involved in meandering instabilities also need to be accounted for, which
also occur at wavelengths comparable to channel width (Karlstrom et al. 2013). (That being
said, it is worth remembering that even the more sophisticated subglacial drainage models
in existence (e.g. Werder et al. 2013) do not attempt to account for evolving tortuosity.)
Lastly, the ability to account not only for lateral instabilities driving meandering, but also
for bedform formation and roll waves at supercritical Froude numbers (Fowler 2011, see
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also § 3.2 of the supplementary material) is also desirable, in order to be able to apply the
model on steeper slopes or at large discharge rates.

There are numerous other shortcomings to our model as described in § 2.1, such as
the neglect of melting due to heat exchange with the atmosphere and solar radiation,
accumulation of snow in the channel and exchange of water with an underground firn
aquifer. We conclude by pointing out that, these issues notwithstanding, our model
provides a template for improving previous surface drainage models due to Raymond &
Nolan (2000) and Kingslake et al. (2015). As with the prior, although slightly different
work in Walder & Costa (1996) (which considers the widening rather than deepening of
a pre-existing breach through the full thickness of an ice dam), the models for downward
incision of a channel in Raymond & Nolan (2000) and Kingslake et al. (2015) are heavily
parameterized and do not resolve position along the channel. In effect, they are ad hoc
versions of the boundary layer problem in our Appendix B.2, aiming to compute the
function Qs of § 3.4 here: Raymond & Nolan (2000) equate the difference between lake
level and seal height (Hw(−∞, t) in Appendix B.2) with the far-field water depth in the
same boundary layer (our Σ(∞, t)β in Appendix B.2), while Kingslake et al. (2015)
questionably impose Bernoulli’s law (valid in the inertia-dominated upstream far field of
the boundary layer) at the same time as a balance between the downslope force of gravity
and friction at the channel wall (valid in the friction-dominated downstream far field). The
details of those calculations aside, it is unclear whether the precise form of the relationship
between flux and water height above the lake seal are key to modelling a supraglacial
outburst flood: our work suggests that it may often (except in the flux singularity case for
fixed-width channels illustrated in figure 10a i–c i) suffice to require that lake level remains
approximately at the seal, and to focus instead on the incision of the channel over longer
length scales, which allows the channel slope at the shock-like lake seal to change as the
outburst flood progresses, changing the rate of backward migration of the seal and hence
the rate of lake drainage.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.130.
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Appendix A. Asymptotics of the ponded region

We assume h(S) = Sβ as given by the dimensionless version of (2.1f ); for more general
forms of h, see the supplementary material. The rescaling of (2.7) relevant to a ponded
section of the channel becomes

S = ν−1/β Ŝ, u = ν1/β û. (A1a,b)
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The drainage of glacier and ice sheet surface lakes

We also assume δ � 1/[h−1(ν−1)] = ν1/β � 1: the mass storage term, δSt in (2.7a), then
does not appear at leading order in the leading-order model and flux q remains constant as
assumed above in (2.13).

Specifically, at leading order, (2.7) becomes(
ûŜ
)

x
= 0,

(
b + Ŝβ

)
x
=
(

b + ĥ
)

x
= 0, bt + Ubx = w. (A2a–c)

Here, ĥ = ν−1h(S) = Ŝβ is rescaled water depth. Equation (A2a–c)3 is indeed (2.13a) with
c = 0; the only issue is making sure that c is correctly defined.

From (A2a–c)2, the surface elevation b + ĥ remains constant. The boundary layers of
Appendices B.2 and B.3 confirm that there is no leading-order jump in ĥ at the end of a
ponded section, and we have ĥ → 0, Ŝ → 0 at the ends of a ponded section in order to
match to the flowing sections. Hence, b takes the same value at both ends of the ponded
section, and (since ĥ > 0), b is below that value inside the ponded section. Since we must
have bx < 0 in any flowing section then, with q > 0, the ponded section must terminate
at a local maximum of b. The definition {x : b(x, t) < supx′>x b(x′, t)} for the union of
ponded sections follows, as does the ponding function c in (2.13).

Appendix B. Boundary layers

A shock forms where the bed slope changes discontinuously in (2.13). In the full scaled
model (2.7), that change in slope is not discontinuous but occurs over a short length scale
∼ ν. Assuming that the shock is at a moving location x = xc(t), the appropriate rescaling
is

X = x − xc(t)
ν

, B = b(x, t) − b0
(
xc(t)−, t

)
ν

, Σ = S, V = u, (B1a–c)

where b0 is the outer solution satisfying (2.13), and the superscript ‘−’ denotes the limit
taken as xc is approached from below. We will likewise use the superscript ‘+’ for the
limit taken from above. At leading order we find that (VΣ)X = 0. Matching with the
upstream far field, we deduce from (2.7a) that VΣ = q and b−

0t = w(xc) − Ub−
0x − V3−∞,

where V−∞ = limX→−∞ V = u(xc(t)−, t).
We restrict ourselves to (2.1f ) as constitutive relations here: the supplementary material

shows that the qualitative boundary layer results are unchanged under relatively mild
restrictions on wetted perimeter P and water depth h. With the constitutive relations (2.1f ),
the remainder of (2.7a) becomes, after some manipulation,

Fr2qVX = −qαV2−α − q
V

BX + βq1+β

V2+β
VX, (B2a)

(U − ẋc)BX = (U − ẋc)b−
0x − V3 + V3

−∞, (B2b)

or, as a single equation,

VX =
(
βqβ − Fr2V2+β

)−1
V1+β

(
b−

0x + V3−α

q1−α
− V3 − V3−∞

U − ẋc

)
. (B3)

As we discuss further in § 2 of the supplementary material, we must assume both far
field velocities to be subcritical in order for our leading-order model to hold: denoting
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Figure 14. Boundary layer solutions with Fr = 0.575, U = 1, α = 1/2, β = 1/2, q = 1 for (a) the knickpoint
boundary layer (Appendix B.1) with b+

0x = −1 and b−
0x = −0.2 and (b) the pond entry boundary layer

(Appendix D) with b−
0x = −1, b+

0x = αb−
0x/3. Black line shows B, blue shows B + Σβ . The dashed lines in

panel (a) show the outer solution as explained in § 2.4 of the supplementary material.

V∞ = limX→∞ V , subcriticality requires βqβ ≥ Fr2V2+β
±∞ , and the right-hand side of (B3)

remains bounded.
There are different types of shocks to consider, each corresponding to different far-field

conditions. We sketch each in turn.

B.1. The knickpoint boundary layer
For a shock connecting two flowing sections, V−∞ > 0 and V∞ > 0 satisfy the far field
equation (2.8a–c)2, qαV2−α

±∞ = −qV−1
±∞b±

0x. V±∞ > 0 must be distinct equilibria of (B3),
which requires

ẋc = U − q1−α
(
V3∞ − V3−∞

)
V3−α∞ − V3−α

−∞
= U + M(−b+

0x, q) − M(−b−
0x, q)

b+
0x − b−

0x
, (B4)

and α > 0 as discussed in § 3.2 for shocks of this type. The solution then connects V−∞
to V∞ as required provided V∞ is the stable equilibrium, and hence V∞ > V−∞ or b+

0x <

b−
0x < 0 (figure 14a). In common with the other boundary layers below, note also that

the outer solution is continuous at x = xc as assumed in §§ 3.2–3.3 and Appendix D: B
represents only a small correction in channel base elevation (see again figure 14a).

B.2. The seal downstream of a ponded section
If the upstream far field is ponded and satisfies (A2a–c), we have V → V−∞ = 0 and
Σ → ∞ as X → −∞, and the bed slope b−

0x < 0 is no longer related to V−∞ through
(2.8a–c)2. The solution must again connect V−∞ = 0 upstream to a finite V∞ > 0
downstream, satisfying qαV2−a∞ = −qV−1∞ b+

0x once more. V∞ must again be subcritical,
and an equlibrium of (B3), which implies

ẋc = U + V3∞
b−

0x + qα−1V3−α∞
= U + M(−b+

0x, q)

b+
0x − b−

0x
, (B5)

as in (3.8) with M(−b−
0x, q) = 0. With b−

0x > 0, the fixed point V = V∞ is then guaranteed
to be stable, and there is a solution connecting 0 to V∞. Note that a seal solution is possible
even if α = 0 (which is not the case for the shock solution of the previous section).
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Figure 15. Boundary layer solutions for the downstream end of a ponded section: (a) Fr = 0.5, α = β = 1/2,
q = 1 b+

0x = −1 and b−
0x = 1, (c) α = β = 1/2, q = 0.5, wx = b−

0xx = −1 and (d) same as (c) but α = 0, β = 1.
Same plotting scheme as in figure 14, the dashed lines in panel (a) again show the outer solution, and Hw(−∞)

is water level above the seal as defined by the outer solution. Panel (b) shows flux q as a function of Hw(−∞)

for b−
0x = 1, b+

0x = 2−8, 2−7, 2−6, . . . , 1, 1.98; b+
0x = 2 corresponds to a critical local Froude number. The

curves show realizations of the function Qs defined in (3.17). In each case, the dependence on h1 = Hw(−∞)

closely follows Qs ∝ h1
2.5; note that 2.5 = (3 − α)/(2β), which one would obtain for the relationship between

flux and water depth if the down-slope component of gravity is balanced by friction as in the outer solution (cf.
Raymond & Nolan 2000). This suggests it may be possible to derive the dependence of Q on Hw analytically.

By matching with the upstream, ponded solution we can also show that surface elevation
in the ponded section exceeds the seal height b−

0 by an amount of O(ν), assuming that
there is indeed flow with q > 0: this is done by integrating the O(ν) water level correction
Hw defined by Hw.X = (Σβ + B)X = BX − βqβVX/V1+β to −∞ with respect to X as
explained in further detail in the supplementary material. The finite value of Hw(−∞, t)
justifies equating water level in the ponded region with the seal height at leading order
as in Appendix A. Moreover, since the boundary layer solution is fully determined by
the model parameters and by far-field forcing through b−

0x, b+
0x and q, we can establish a

functional relationship between the outer water level correction Hw(−∞, t) and b−
0x, b+

0x
and q as assumed in (3.17) and (3.18), where h1 = Hw(−∞, t). An example is shown in
figure 15(b).

Note that the boundary layer description above does not cover the case of a ‘smooth’
seal, where there is no shock. The corresponding reformulation of the boundary layer is
based on the alternative rescaling

B̃ = b(x, t) − b0(xs(t), t)
ν(6−2α)/(6−2α+β)

, Ṽ = u
ν1/(6−2α+β)

, Σ̃ = ν1/(6−2α+β)S,

X̃ = x − xs(t)
ν(3−α)/(6−2α+β)

,

⎫⎪⎪⎬
⎪⎪⎭ (B6)

and assumes that b0x(xs(t), t) = 0. The boundary layer model can be rewritten as a
modified version of (B3)

ṼX̃ = Ṽ1+β

βqβ

(
Ṽ3−α

q1−α
+ wx

U − ẋs
X̃ − Iα

Ṽ3

U − ẋs

)
, (B7)

where Iα = 1 if α = 0, Iα = 0 otherwise. We need to match Ṽ → 0 as X̃ → −∞ and
V ∼ [−q1−αwxX̃/(U − ẋs − Iαq1−α)]1/(3−α) as X̃ → ∞. For 0 < α < 1, such a solution
always exists, while for α = 0, solutions only exist conditionally: if wx < 0, we must
have U − ẋs > q > 0 or wx > 0, U − ẋs < 0 < q. Details may be found in § 2.8 of the
supplementary material.
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B.3. Upstream end of a ponded section
A flowing section entering a ponded section can also be treated using the boundary layer
model (B3), with the upstream far field given by (2.8a–c)2, qαV2−α

−∞ = −qV−1
−∞b−

0x and
V∞ = 0 downstream. Such a solution requires that V = V−∞ be an unstable fixed point,
or equivalently

(3 − α)V2−α
−∞

q1−α
− 3V2−∞

U − ẋc
≥ 0. (B8)

This is the case if either ẋc > U or ẋc ≤ U − 3q1−αVα−∞/(3 − α) = U − M−p(−b−
x0, q),

which also ensures that V = 0 is a stable fixed point as required. These conditions on ẋc
justify the analysis in Appendix D below, and in particular justifies (D4). We still obtain a
relationship between the jump in slope and the migration rate, since

BX = b−
0x + V3−∞ − V3

U − ẋc
→ b−

0x + V3−∞
U − ẋc

, (B9)

as X → ∞, so b+
0x − b−

0x = V3−∞/(U − ẋc) = M(b−
0x, q)/(U − ẋc) as in (D2) below.

Appendix C. Dynamic smooth seals

In § 3.3, we investigated the conditions that make a smooth seal as shown in figure 4(d)
possible in steady state. Here, we extend the analysis of such smooth seals in the outer
problem to the dynamic case, and show that we obtain the same results from the outer
model as we did in Appendix B.2 from the corresponding boundary layer.

A smooth seal in general is a local maximum xs(t) where with bx(xs(t), t) = 0, and c = 1
downstream of xs. Characteristics must enter xs from upstream and exit downstream, with
no jump in b or bx, and with a continuous melt rate cM and Hamiltonian H. In other words
b−

x (xs(t), t) = b+
x (xs(t), t) = 0 . Differentiate this with respect to time

b−
xt + b−

xxẋs = b+
xt + b+

xxẋs (C1)

and similarly differentiate (2.13a) with respect to x, so b−
xt + Ub−

xx = wx(xs) with c− = 0
and b+

xt + (U − M−p(0−, q))b+
xx = wx(xs) with c+ = 1. Eliminating b−

xt and b+
xt from (C1)

and rearranging yields

ẋs = U − wx

b−
xx

= U − M−p(0−, q) − wx

b+
xx

. (C2)

Since xs is a maximum of b, we have b−
xx < 0 and b+

xx < 0. There are two cases, with wx
negative and positive at the seal, respectively. Positive wx corresponds to rapid downslope
motion of the seal with ẋs > U; this does not occur except for contrived initial conditions.

Assume therefore that wx < 0, so ẋs < U. Characteristics upstream of xs travel at speed
x−
τ = U > ẋs, so a smooth slope requires characteristics to emerge on the downstream

side, where the characteristic speed is x+
τ = U − M−p(−p+, q) = U − M−p(0−, q), with

0− indicating the limit taken as p = 0 is approached from below. Requiring x+
τ > ẋs so

that characteristics exit downstream, a smooth slope is possible provided

M−p(0−, q) <
wx

b−
xx

and wx < 0. (C3a,b)

A dynamic smooth seal cannot persist if (C3a,b) is violated. For M given by (2.12),
M−p(0−, q) = 0 if α > 0, and (C3a,b) will not be violated when wx < 0 and b−

xx < 0.

961 A4-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

13
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.130


The drainage of glacier and ice sheet surface lakes

By contrast, for α = 0, M−p(0−, q) = q and (C3a,b) can be violated for sufficiently
large fluxes q > wx/b−

xx = U − ẋs, the second equality following from (C2). This criterion
agrees with the solvability condition at the end of Appendix B.2, and with the condition
q < U for a steady smooth seal to exist when α = 0 (§ 3.3).

Appendix D. Entry into a ponded section in the outer model

Appendix B.3 confirms that b remains continuous at the upstream end of a ponded
section, where c+ = 0, c− = 1. Next, we determine jump conditions on the outer model
(2.13) at such a location, which never corresponds to a shock, but can give rise to an
expansion fan. Characteristics upstream of the ponded section move more slowly, at
x−
τ = U − M−p(−b−

x , q), than those downstream of the transition to ponded, at x+
τ = U.

Consequently, characteristics must emerge from at least one side of the transition, whose
location we denote by xp(t) (figure 4d). The height bp(t) = b(xp(t), t) is given by the seal
at the (distant) downstream end of the ponded section, which controls the migration rate
ẋp. Again differentiating both sides of b(xp(t), t) = bp(t) and rearranging, ẋp is

ẋp = U + ḃp + M(−b−
x , q) − w(xp)

b−
x

= U + ḃp − w(xp)

b+
x

. (D1)

If ẋp > U (so ḃp < w(xp) = b+
τ ), then characteristics emerge upstream and enter xp from

downstream, with no jump in b at xp Conversely, if ẋp ≤ x−
τ = U − M−p(−b−

x , q) (so ḃp >

w(xp) − M(−b−
x , q) − b−

x M−p(−b−
x , q) = −H(x, t, b−

x , q) − b−
x H−p(x, t, b−

x , q) = b−
τ ),

then characteristics emerge downstream with no jump in b. Upstream, characteristics enter
the transition point, or are tangent to xp. In either case, the requirement that b remain
continuous (3.8) is now a jump condition for the slope bx,

b+
x = b−

x + M(−b−
x , q)

U − ẋp
, (D2)

with ẋp being given through (D1): (D2) is the same as (B9).
The two cases identified above leave a third possibility where, instantaneously,

w(xp) − M(−b−
x , q) − b−

x M−p(−b−
x , q) > ḃp > w(xp). (D3)

For b−
x < 0 and with M given by (2.12), this range is non-void if and only if 3 > α >

0 (or more generally, if M is strictly convex in its first argument with M(0, q) = 0).
Characteristics now have to emerge on both sides as an expansion fan, whose behaviour
is non-trivial. The problem as stated is underdetermined, since the evolution of b−

x along
the curve xp(t) (and therefore ẋp itself beyond the initial instant) is undetermined in the
absence of characteristics intersecting xp(t).

From (B8), the migration rates U − M−p(−b−
x , q) < ẋp < U implied by (D3) cannot be

sustained for finite time spans: the expansion fan must adjust b−
x so that ẋp does not remain

in this forbidden range. From (D1), ẋp = U cannot be attained by changing b−
x along the

transition curve if ḃp > w(xp). Hence, b−
x must adjust to attain U − M−p(−b−

x , q) = ẋp. In
other words, the expansion fan upstream of xp must span all slopes between the initial b−

x
and a less steep slope b−

fx at which the motion of xp(t) is locally parallel to a characteristic
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on which p = b−
fx , determined implicitly through

ẋp = U +
ḃp + M(−b−

fx, q) − w(xp)

b−
fx

= x−
τ = U − M−p(−b−

fx, q). (D4)

Equivalently,

ḃp = −M(−b−
fx, q) − w(xp) − b−

fxM−p(−b−
fx, q) = −H− + p−H−

p = b−
τ , (D5)

where H−, H−
p and b−

τ are evaluated at slope p− = b−
fx . Characteristics on the upstream

side of xp emerge tangentially to the transition curve xp(t), and the slope b+
x of

characteristics emerging on the downstream side is then related to b−
fx through (D2).

Appendix E. Numerical solution

We solve the problem consisting of (2.13) and (2.17) using the method of characteristics,
appropriately modified to handle ponding and the outflow from the lake that determines q.
Given a set of values (xi, bi, pi), we define xi+1/2 = [bi − bi+1 + pixi − pi+1xi+1]/[pi+1 −
pi] as the point at which the straight lines b̃i(x) = bi + pi(x − xi) and b̃i+1(x) = bi+1 +
pi+1(x − xi+1) intersect, extrapolating linearly from xi and xi+1. We put bi+1/2 =
b̃i(xi+1/2) as the interpolant for b that point. If there is a shock between points xi and
xi+1, its location is at xi+1/2, and b at the shock is bi+1/2 to second-order accuracy.

Let superscripts j denote solutions at time tj. Assume a lake level h j
0 and solution at

discrete points (x j
i , b j

i , p j
i ) is given, with the x j

i being ordered so that x j
i < x j

i+1. For given i

and j, let S j
i = {k : k ≥ i, p j

k > 0 and p j
k+1 < 0} be the set of seal points downstream of i,

and let b j
c,i = max(b j

i , maxk∈Si j bk+1/2) be an estimate for the highest point in the channel

downstream of x j
i . Put c j

i = 0 if b j
i < b j

c,i, c j
i = 1 otherwise. Let b j

m = maxi(b
j
c,i) be the

discrete seal point height for the lake, which is second order accurate regardless of whether
the seal is at a shock or not. We update (x j

i , b j
i , p j

i ) by a backward Euler step

xj+1
i − x j

i
tj+1 − tj

= Hp(x
j+1
i , t j, pj+1

i , qj+1),
pj+1

i − p j
i

tj+1 − tj
= −Hx(x

j+1
i , t j, pj+1

i , qj+1),

bj+1
i − b j

i
tj+1 − tj

= −H(xj+1
i , t j, pj+1

i , qj+1) + Hp(x
j+1
i , t j, pj+1

i , qj+1)pj+1
i .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(E1a)

Note that the lagged time variable tj indicates that we are using a fixed ponding function
c j

i , computed from the last known solution. We use two methods of computing water level
hj+1

0 and flux qj+1. For α = 0, we use (2.17) as stated,

V̂(hj+1
0 ) − V̂(h j

0)

tj+1 − tj
= Q(tj+1) − qj+1, qj+1 = max

(
Q
(

tj+1
)

− V̂(bj+1
m ) − V̂(h j

0)

tj+1 − tj
, 0

)
,

(E1b)
with V̂ and Q being prescribed functions. For α > 0, (E1b) may not have a unique solution
as described in § 3.4, and we replace (E1b) with (3.17), in the form

V̂(hj+1
0 ) − V̂(h j

0)

tj+1 − tj
= Q(tj+1) − qj+1, qj+1 = Qs(ν

−1(hj+1
0 − bj+1

m )). (E2a,b)
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We treat Qs simply as a regularization rather than trying to emulate the function shown
in figure 15(b), and consequently we drop the slopes b−

x and b+
x as arguments from Qs.

In practice, we use Qs(h1) = h1
2 if h1 > 0, 0 otherwise, and put ν = 10−3. The system

of (E1) for the updated variables is solved using a semi-smooth Newton solver. Time step
size tj+1 − tj is chosen so that no characteristic xi moves further than the spacing between
adjacent characteristics in a single time step, and to ensure that tj+1 − tj � ν. In practice,
we have typically used values between 10−5 and 10−4.

The updated solution is then post-processed for shocks, and to add characteristics
where the points xj+1

i have become too widely spaced and account for expansion fans.
Any characteristic i with xj+1

i outside the domain (0, L) is deleted, and the remainder is
relabelled. Next, we compute the xj+1

i+1/2, bj+1
i+1/2 and cj+1

i , and identify any i for which

xj+1
i > xj+1

i+1/2. For these i, we assume there is a shock that the ith characteristic has
crossed, and delete the ith characteristic from that time forward, and relabel the remaining
characteristics. Likewise if xj+1

i+1 > xj+1
i+1/2, we delete the (i + 1)th characteristic, repeating

the entire postprocessing step (including computation of xj+1
i+1/2 and bj+1

i+1/2) until there are

no intervals (xj+1
i , xj+1

i+1) left such that xj+1
i+1/2 lies outside that interval. This also ensures

the remaining points are ordered.
If subsequently any xj+1

i+1 − xj+1
i are above a prescribed tolerance (typically 10−3–10−4),

we introduce new characteristics between them at a prescribed spacing. If cj+1
i =

1 and cj+1
i+1 = 0, we construct a piecewise linear interpolation b̂ between xj+1

i and

xj+1
i+1 with constant slope below and above a pond entry position xi+1

p (itself solved

for as part of the construction of the interpolation) chosen such that b̂(xi+1
p ) = bj+1

c,i ,
and such that the discontinuity in slope at xi+1

p satisfies (D2)–(D1). Otherwise, we

construct a linear interpolant between b j
i and b j

i+1 to initialize the new characteristics,

provided the characteristics are indeed spreading with Hp(x
j+1
i , t j, pj+1

i , qj+1) <

Hp(x
j+1
i+1, t j, pj+1

i+1, qj+1). If the characteristics are not spreading, new points are introduced

by extrapolation from xj+1
i at slope pj+1

i for any new points with x < x j
i+1/2, and from xj+1

i+1

at slope pj+1
i+1 otherwise.
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