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In use since the 1960’s [1], electron beam-induced current (EBIC) imaging is a common tool for mapping 

electric fields in a scanning electron microscope (SEM). In the “standard” EBIC mode, current is 

generated through electron-hole pair separation in local electric fields. This standard mode of EBIC can 

also be performed in a transmission electron microscope in scanning mode (STEM). Recently a new mode 

of EBIC was demonstrated in STEM, SEEBIC, which measures current generated by the emission of 

secondary electrons from the sample [2]. These EBIC modes produce completely distinct contrast, which 

corresponds to entirely different electrical, thermal, and physical features. SEEBIC is also capable of much 

higher resolution (≤ 2 Å) than standard EBIC [3].  Here we discuss a variety of new STEM EBIC-based 

methods for mapping sample properties that are not accessible with standard TEM imaging, including 

resistance, temperature, and thickness.   

The Pt electrodes in Fig. 1A are patterned on a silicon nitride membrane and poor liftoff has left metallic 

debris between them. SEEBIC images acquired independently from each electrode are used to compute 

the resistance to each (virtually grounded) electrode [2,4], shown here in a 3D “topographic” 

representation. The “altitude” (resistance to ground) is lowest on the electrodes, higher in the region with 

debris, and highest on the clean silicon nitride. We are unaware of any other TEM-based techniques 

capable of generating contrast related to conductivity. 

The carbon electrode in Fig. 1B sits adjacent to a Pt heater.  Al nanoparticles, which are used as 

thermometers for temperature calibration via plasmon energy expansion thermometry (PEET) [5], are 

drop-cast onto the entire sample. Increasing the heater temperature increases the carbon’s SEEBIC signal 

significantly (Fig. 1B lower image). Similar experiments (not shown) show that standard EBIC has a 

similar, but much stronger, temperature response. Temperature mapping with sensitivity of just a few 

Kelvin is possible in both EBIC modes. Temperature mapping (i.e. with thousands of pixels) in the TEM 

has otherwise only been demonstrated with PEET, and all other known methods only work for a narrow 

range of materials. In contrast, a broad range of materials is subject to STEM EBIC thermometry: In Fig. 

1B similar temperature measurements are acquired on the amorphous carbon, on crystalline Al 

nanoparticles, and on the insulating, amorphous silicon nitride. 

Unlike in Figs. 1A and 1B, where the EBIC electrode is in the field of view, in the Fig. 1C images of a 

(roughly spherical) tin nanoparticle the EBIC is measured remotely and is found to provide a precise 

measure of thickness. The ADF STEM line profile (Fig. 1C plot) shows that the thick center of the 

nanoparticle attenuates the number of electrons scattering at high angles ( >60 mrad) into the detector. 

The thickness map, calculated from the remotely acquired EBIC signal, shows its strongest signal in the 

middle of the nanoparticle and a thickness profile consistent with a sphere of homogeneous density. 
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Preliminary results suggest that this technique is capable of thickness resolution comparable to AFM 

height mapping with lateral resolution comparable to standard STEM imaging. 
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