
Estimating the correlation of non-allele descents
along chromosomes

XIN-SHENG HU AND ZHIQUAN WANG*
Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6J 2P5, Canada

(Received 27 April 2010 and in revised form 20 July 2010; first published online 14 December 2010 )

Summary

The pattern of the correlation of non-allele descents among linked sites is an important aspect for an
insight into the genomic evolution at the population level. Here, we present a new statistical method
for estimating two types of non-allele descent correlations. One is the standardized parental descent
disequilibrium termed by Cockerham & Weir (1973), the other is the standardized disequilibrium
between non-allele descent segments from the same chromosome. Essential to this analysis is the
partitioning of the joint identity-by-state probability for a random pair of non-allele gametes into
the different components of identity by descents at the two or three sites. We consider the samples of
phased haplotypes of single nucleotide polymorphism (SNP) markers and the weighted least square
method for fast parameter estimation. Monte Carlo simulations demonstrate that robustly unbiased
estimates with appropriate precisions can be obtained with certain sample sizes, y100 diploids,
under the impacts of allele frequency distributions and linkage disequilibrium. This method can be
used to construct the maps of non-allele descent correlation blocks for the population whose genetic
pedigree is not required on a prior basis.

1. Introduction

Characterizing the pattern of genomic diversity is
important for insights into genomic evolution in
natural or artificial populations. This pattern records
the naturally occurring processes that maintain the
pattern of genomic diversity along chromosomes, in-
cluding the relative effects of basic evolutionary forces
(mutation, migration, selection and genetic drift) in
different chromosomal regions. Historical, ecological
and demographical processes are also implicitly re-
corded underlying this pattern (Oleksyk et al. 2010).
In reality, such a pattern can facilitate genomic selec-
tion in plant or animal breeding programmes, since
individual correlation blocks are easier to manipulate
compared to individual single nucleotide polymor-
phism (SNP) markers. Markers within correlation
blocks can be jointly used in breeding value predic-
tions, reinforcing recently extensive explorations of
genomic selection (Meuwissen et al. 2001; Hu 2007;

Hayes et al. 2009). Currently, although numerous
methods have been proposed to characterize the
genomic structure (Percus 2002; Hahn 2007; Begun
et al. 2007), most of them focus on genome features at
the individual level and hence are not suitable for de-
scribing the genomic structure at the population level.
Theoretical development in this area remains in its
infant phase (Hernandez-Sanchez et al. 2004; Hill &
Weir 2007). One type of genomic structure is the pat-
tern for the correlation of genetic diversities among
linked sites along chromosomes and the chromosomal
segment within which strong genetic correlations exist
and can be broadly termed as a correlation block.
For instance, the gametic linkage disequilibria (LDs)
block pattern describes the pattern for the corre-
lations between frequencies of non-alleles at different
loci (Wright 1969; Slatkin 2008). Here, we examine an
alternative correlation block pattern, the correlation
of non-allelic identity by descents (IBD) among linked
sites, to characterize the genomic structure at the
population level.

Three types of descent correlations are possible
when a random pair of gametes for two or more sites
is considered: IBD between alleles from different
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gametes at the same site, IBD between non-alleles
from the sites on different gametes, and IBD between
non-alleles from the sites on the same gametes.
Cockerham & Weir (1973) exhaustively described all
possible descent correlations/measures and explored
their applications to some specific cases. Previous
studies mainly lie in developing the method for esti-
mating the correlation of IBD between alleles from
different gametes at the same site (Lynch 1988;
Rousset 2002; Wang 2002), mainly due to its con-
ceptual importance in breeding programme and
in population genetics (e.g. inbreeding coefficient;
Wright 1969; Jacquard 1974). The second and third
types of descent correlations are studied in a limited
way, such as IBD among multigene families (Kimura
& Ohta 1983) and the distribution of surviving blocks
of an ancestral genome (Baird et al. 2003). In
this study, the method for estimating the third-type
correlation is emphasised for describing the genomic
structure. We extend the concept of non-allele IBD
correlations to a three-site case where multiple IBD
correlations among sites can be simultaneously esti-
mated.

The focal IBD correlation block among non-alleles
refers to the chromosomal segment within which
any pair of non-alleles significantly comes from the
same ancestor (different copies of the same ancestral
genome). Such a correlation pattern is distinct from
the correlation pattern of pairwise relatedness that
focuses on the first type of IBD correlation (Hu 2005)
or from kinship mapping along chromosomes
(Morton & Simpson 1983). Although both types of
patterns can be used to characterize the genomic
structure at the population level, they differ in relation
to the pattern of the recombination rate along a
chromosome. The pattern for non-allele IBD corre-
lations along chromosomes is tightly associated with
the pattern of the recombination rate. Also, this
pattern is more sensitive to LD than the pattern of
pairwise relatedness, since the occurrence of recom-
bination immediately changes IBD status between
linked non-alleles. LD is the genetic basis for causing
the pattern of non-allele IBD correlation.

The purpose of this study is to develop a new
method for estimating the IBD correlation based on
non-allele descent measures, complementary to the
previous IBD correlation study based on the allele
descent measures (Hu 2005). Two types of descent
correlations are estimated: one is the standardized
parental disequilibria termed by Cockerham & Weir
(1973) ; the other is the standardized IBD segment
disequilibria. Similar to the previous studies in pair-
wise relatedness estimation, the approach of sampling
pairwise haploids is employed. Diallelic SNP markers
are focused as tri-/tetra-allelic SNP are infrequent
in natural or artificial populations. Use of haploid
data sets also leads to the method being applicable to

specific chromosomes, such as the sex chromosomes,
irrespective of the effects of the mating system.
However, the use of diploid genotyping data in terms
of heterozygosity at different sites produces over
parameterization, different from the pairwise related-
ness analysis (Hu 2005), and thus is not explored here.

In the following sections, we begin by describing
the method for the two-site case where only one type
of descent correlation is measured. The three-site case
is then examined to estimate two types of descent
correlations. In each case, Monte Carlo (MC) simu-
lations are used to explore the statistical properties
related to the application to real data analysis. Based
on the previous study showing a comparable per-
formance between the weighted least square (WLS)
method and the maximum likelihood (ML) method
(Hu 2005), only the WLS method is employed. The
application of the proposed method is discussed from
the analytical and simulation results.

2. The statistical model

The model is suitable for diallelic SNP marker-
based population genomic analysis. Different from
Cockerham & Weir (1973), who inclusively analysed
the descent measures for two loci in theory, this study
emphasizes the statistical estimation of the two-
and three-site non-allele descent measures and their
correlations on the same chromosome.

(i) Two-site descent correlation

Consider a pair of two linked SNP markers in a
natural or artificial population, denoted by A and B,
respectively. Let pa and pak (=1xpa) be the fre-
quencies of alleles a and ak at the A site ; and pb and pbk
(=1xpb) be the frequencies of alleles b and bk at the
B site. There are four types of two-allele gametes, with
gametic frequencies denoted by pab, pabk, pakb and pakbk
for ab, abk, akb, and akbk, respectively. The two-site
gametic frequencies can be expressed in the conven-
tional way in terms of LD, e.g. pab=papb+DAB,
where DAB is the LD between the A and B sites.
Throughout this study, the gametic and allelic fre-
quencies are assumed to be known beforehand or es-
timated from the same or different sampling datasets,
similar to the previous pairwise relatedness studies
(Hu 2005).

Following the definition on the two-locus descent
measures by Cockerham & Weir (1973), two param-
eters can be defined with regard to the descent
measures between two linked non-alleles. For a pair
of non-alleles from two linked sites, let the Kronecker
delta variable d(uv)=1, if u and v are from the copies
of non-alleles on an ancestral gamete ; and d(uv)=0,
otherwise. Considering a pair of two-site non-alleles
(ab, akbk), let i=d(ab) and ik=d(akbk). Let Fi,ik
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(0fFi,ikf1) be the joint probability that IBD occurs
between a and b and between ak and bk. F1,1 is the same
in biological meaning as F11 of Cockerham & Weir
(1973). Figure 1 illustrates these four combinations
for a random pair of two-site gametes (F1,1+F1,0+
F0,1+F0,0=1). Only two parameters (F1,1 and F1,0 or
F1,1 and F0,1) are distinguishable, since the equiva-
lence, F1,0=F0,1, holds.

The approach for estimating F parameters is based
on the probabilities of pairwise two-site gametes
(haplotypes) sampled from the focal population. This
is essentially the same as previous studies on pairwise
relatedness (Hu 2005), i.e. from the probability of
identity by state (IBS) to that of IBD. Let Pakbk

ab be the
observed probability that a random pair of two-site
gametes are ab and akbk. Non-alleles a and b on one
gamete may or may not be identical in state with
ak and bk on the other gamete, respectively. This type
of information is extensively considered in previous
pairwise relatedness studies and is not included
here. Four types of gametes can generate 16 types
of pairwise combinations, but only 10 of them
(4r(4+1)/2=10) are distinguishable. Using the same
approach as Cockerham & Weir (1973), the observed
probability for a random pair of gametes,Pakbk

ab , can be
decomposed as

Pab
akbk=F1, 1pabpakbk+F1, 0pabpakpbk+F0, 1papbpakbk

+F0, 0papbpakpbk,
(1)

where Fi,j is the F-parameters at the two-site case.
From eqn (1), one randomly sampled gamete prob-
ability can be expressed as Pab=gak, bkPakbk

ab =F1.pab+
F0.papb, where F1.=F1,1+F1,0 and F0.=F0,1+F0,0.
The expression for Pab is essentially the same as
Cockerham & Weir (1973, p. 308) for a random
sample from an infinite randomly mating population.

The F-parameters can be estimated from eqn (1).
Let cF be the covariance between non-allele descents
of ab and akbk for two randomly sampled gametes, i.e.
cF=cov(F1.,F.1). Here, F1. and F.1 are expected to be
the same. Cockerham & Weir (1973) defined cF as the
parental descent disequilibrium, since it describes
the difference between the joint probability and the
product of individual non-allele IBD probabilities
from different gametes. Thus, the following expres-
sions can be obtained from the definition of covari-
ance in statistics

F̂1, 1=F̂1:F̂:1+cF, (2a)

F̂1, 0=F̂1:(1xF̂1:)xcF, (2b)

F̂0, 1=F̂:1(1xF̂:1)xcF, (2c)

F̂0, 0=(1xF̂1:)(1xF̂:1)+cF: (2d)

Solution to eqns (2a)–(2d) yields F̂1:=F̂1, 1+F̂1, 0 and
ĉF=F̂1, 1xF̂1:F̂:1 or ĉF=F̂1, 1F̂0, 0xF̂1, 0F̂0, 1. To make
this estimate comparable among different regions on
the same or different chromosomes, the correlation
coefficient is standardized, i.e. rparent=ĉF=F̂

1:(1xF̂1:)
or ĉF=F̂

:1(1xF̂:1), which ranges from x1 to 1.

(ii) Three-site descent correlation

Now, consider a random pair of three-site SNP
markers in a natural or artificial population, denoted
by sites A, B, and C, respectively. Notation for allele
frequencies at the A and B sites remains the same as in
the preceding two-site case. Let pc and pck(=1xpc) be
the frequencies of alleles c and ck at the C site. There
are eight types of three-site gametes, with the fre-
quencies denoted by pabc, pabck, …, pabkck and pakbkck
for gametes abc, abck, …, abkck, and akbkck, respect-
ively. According to Bennett (1954), the three-site
gametic frequency, e.g. pabc, can be expressed as
pabc=papbpc+paDBC+pbDAC+pcDAB+DABC, where
Dij(=freq.(ij)xfreq.(i)rfreq.(j)) is the gametic LD at
the i and j sites and DABC is the gametic LD at the A,
B and C sites. The two-site gametic frequencies can be
readily derived from the three-site gametic frequencies,
e.g., pab=pabc+pabck for the frequency of gamete ab.

Sixteen parameters can be defined with regard to
the non-allele descent measures in the three-site case,
excluding the allele-descent measures at individual
sites from separate chromosomes (Hu 2005) and the
descent measures of non-alleles at different sites from

1,1F

0,1F

1,0F

0,0F

a b

a′ b′

a b

a′ b′

a b

a′ b′

a′ b′

a b

Fig. 1. Four combinations of non-allele descents are
illustrated for a random pair of gametes at the two-site
case. Each site has two alleles, with alleles a and ak at the
A site, and alleles b and bk at the B site. The thicker solid
lines indicate the linked non-alleles that are IBD. Fi,j

(i,j=0,1) denotes the joint IBD probability for a random
pair of gametes.
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separate chromosomes (recombinant descent coeffi-
cients; Cockerham & Weir 1973). This may remove
the number of parameters that are difficult to estimate
simultaneously. For a random pair of non-alleles at
two different sites on the same chromosome, let the
Kronecker delta variable d(uv)=1 if u and v come
from the copies of the same ancestral gamete, and
d(uv)=0 otherwise. Considering a random pair of
three-site non-alleles (abc, akbkck), let i=d(ab), j=
d(bc), ik=d(akbk) and jk=d(bkck). Let Fij,ikjk (0fFij,ikjkf1)
be the joint probability that IBD occurs between a and
b, between b and c, between ak and bk and between bk
and ck. Figure 2 illustrates different combinations for a
random pair of three-site gametes (gi,j,ik,jk=0,1F

ij,ikjk=1).
For example, F11,11 is the probability that IBD occurs
among three non-alleles on each chromosome (abc
and akbkck) ; F10,10 is the probability that IBD occurs
between non-alleles a and b and between non-alleles
ak and bk, but does not occur between b and c and
between bk and ck for the random pair of three-site
gametes. Note that F00,..(=gik,jk=0

1 F00,ikjk) or F..,00(=
gi,j=0

1 Fij.00) contains the probability of the occurrence
of double crossovers, where d(ab)=d(bc)=0, but
d(ac)=1, or d(akbk)=d(bkck)=0, but d(akck)=1, and
the probability of non-double crossovers where
d(ab)=d(bc)=0, but d(ac)=0, or d(akbk)=d(bkck)=0,
but d(akck)=0. This partitioning of F00,..or F..,00 is
not extended. Because of the symmetry between dif-
ferent random pairs of three-site gametes, there are
six equivalences among the 16 F-parameters and
hence the 16 parameters can be reduced to nine dis-
tinct F-parameters (F11,11, F11,10=F10,11, F11,01=F01,11,

F11,00=F00,11, F10,10, F10,01=F01,10, F10,00=F00,10, F01,00=
F00,01 and F01,01). The above F-parameters are only
related to the IBD between non-alleles on different
sites on the same chromosome, and the genetic basis
for the occurrence of such IBD is the presence of LD
among linked sites.

Let Pakbkck
abc be the observed probability that a

random pair of three-site gametes are abc and akbkck.
Note that non-alleles a, b and c on one gamete may
or may not be identical in state with ak, bk, and ck on
the other gamete, respectively. The observed prob-
ability is partitioned into different components based
on the case of IBS for the random pair of three-site
gametes. Using the same approach as Cockerham &
Weir (1973), Pakbkck

abc can be expressed as

Pabc
akbkck

=papbpcpakpbkpck+F11, 11(pabcpakbkckxpapbpcpakpbkpck)

+F11, 10(pabcpakbkpck+pabpcpakbkckx2papbpcpakpbkpck)

+F11, 01(pabcpakpbkck+papbcpakbkckx2papbpcpakpbkpck)

+F11, 00(pabcpakpbkpck+papbpcpakbkckx2papbpcpakpbkpck)

+F10, 10(pabpcpakbkpckxpapbpcpakpbkpck)

+F10, 01(pabpcpakpbkck+papbcpakbkpckx2papbpcpakpbkpck)

+F10, 00(pabpcpakpbkpck+papbpcpakbkpckx2papbpcpakpbkpck)

+F01, 00(papbcpakpbkpck+papbpcpakpbkckx2papbpcpakpbkpck)

+F01, 01(papbcpakpbkckxpapbpcpakpbkpck):

(3)

The relationship F00,00=1xF11,11x…xF01,01 is used
in deriving the above expression. In the case of two
sites, say the A and B sites, eqn (3) reduces to eqn (1).

Again, accurate allelic and gametic frequencies
in eqn (3) are assumed to be known beforehand,
which can be estimated by directly using the counting
method (ML estimates) when the sample size is not
small. The IBD information between alleles at the
same site from different gametes and the linkage
phases are not necessitated on a prior basis. For the
diallelic SNPs, there are eight types of gametes, 64
types of pairwise combinations, but only 36 pairwise
combinations (8r(8+1)/2=36) are distinguishable.

The nine unknown F-parameters can be estimated
according to the above approach based on haplotype
data sets (see the next subsection). When diploid data
are considered, eight equations can be produced in
terms of various combinations of heterozygosity at
individual sites, analogous to eqn (6) in Hu (2005),
which is less than the number of F-parameters (=9).
Thus, the diploid-based approach in terms of hetero-
zygosity is not applicable to obtain solutions due to
over parameterization, different from the case of es-
timating IBD probabilities between alleles at the same
site from different chromosomes.

Two types of correlation coefficients are accord-
ingly calculated in the three-site case. One is the

11,11F

10,11F

 … …  

00,00F

a b c

a′ b′ c′

a′ b′ c′

a′ b′ c′

a b c

a b c

Fig. 2. Part of 64 combinations of non-allele descents is
illustrated for a random pair of gametes at the three-site
case. Each site has two alleles, with alleles a and ak at the
A site, alleles b and bk at the B site and alleles c and ck at
the C site. The thicker solid lines indicate the linked
non-alleles that are IBD. Fij,ikjk (i, j, ik,jk=0, 1)denotes the
joint IBD probability for a random pair of gametes.
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correlation between the IBD probability for the two
non-alleles at the A and B sites and the IBD prob-
ability for the two non-alleles at the B and C sites,
denoted by rsegment. The other is the correlation be-
tween the IBD probabilities for the two non-alleles at
the A and B sites (or at the B and C sites) from dif-
ferent gametes, which is addressed in the preceding
section. From the estimates of F-parameters based on
eqn (3), we obtain three correlation coefficients :

r̂segment=
F̂11, ::xF̂1:, ::F̂:1, ::

F̂1:, ::(1xF̂1:, ::)F̂:1, ::(1xF̂:1, ::)
� �1=2

, (4a)

r̂parent(AB)=
F̂1:, 1:xF̂1:, ::F̂1:, ::

F̂1:, ::(1xF̂1:, ::)
, (4b)

r̂parent(BC)=
F̂:1, :1xF̂:1, ::F̂:1, ::

F̂:1, ::(1xF̂:1, ::)
, (4c)

where F̂11, ::=g
ik, jk=0, 1F̂

11, ikjk, F̂1:, ::=g
j, ik, jk=0, 1F̂

1j, ikjk,

F̂:1, ::= g
i, ik, jk=0, 1F̂

i1, ikjk, F̂1:, 1:=g
j, jk=0, 1F̂

1j, 1jk, and F̂:1, :1=
g

i, ik=0, 1F̂
i1, ik1. F̂11, :: is the joint probability of IBD be-

tween non-alleles at the A and B sites and between
non-alleles at the B and C sites on one gamete; F̂1:, 1: is
the joint probability of IBD between non-alleles at the
A and B sites on each of a random pair of gametes;
and F̂:1, :1 is the joint probability of IBD between non-
alleles at the B and C sites on each of the random pair
of gametes. F̂1:, ::and F̂:1, ::are the probabilities of IBD
between non-alleles at the A and B sites and between
non-alleles at the B and C sites on one gamete, re-
spectively. F11,..xF1.,..F.1,.. is the covariance of IBD
probabilities between two IBD segments on the same
chromosomes, i.e. segments AB and BC (Fig. 2).
F1.,1.xF1.,..F1.,.. and F.1,.1xF.1,..F.1,.. are the covariances
of IBD probabilities for a random pair of segments
AB and BC from separate gametes (Fig. 2), respect-
ively, which is the same as that in the two-site case.
Standardization of these covariances makes them
useful for comparisons among different regions of
chromosomes, with the correlation coefficients (rseg-
ment, rparent (AB) and rparent (BC)) ranging fromx1 to 1.

(iii) Parameter estimation

Several statistical methods can be applied for esti-
mating F-parameters, such as WLS and ML methods.
Hu (2005) has compared these two methods and
demonstrated that the two methods can yield com-
parable results in accuracy and precision in pairwise
relatedness analysis. However, the iteration approach
for theMLmethod, such as using Newton–Raphson’s
iterative approach, takes a long time to obtain con-
vergent estimates in the presence of many parameters
(e.g. nine F-parameters in the three-site case), espe-
cially when the sample size is large. The MLmethod is

inappropriate for analysing large population genomic
datasets since it may take an extremely long time,
such as the use of human population genome data or
50K SNP panel in beef cattle population. Following,
only the WLS method is described due to its fast and
efficient calculation.

In the two-site case, let Y be the known vector
(yi)nABr1=(yabakbk)nABr1, where yakbk

ab =Pakbk
ab xpapbpakpbk

and nAB=10. Let X be the known matrix with nABr2
elements, X=(x1 x2), where x1=(x1i)nABr1=(pabpakbkx
papbpakpbk)nABr1 and x2=(x2i)nABr1=(pabpakpbk+pakbkpa
pbx2papbpakpbk)nABr1 ; and F be the parameter vector
F=(F1,1 F1,0)k. As an approximation, we assume that
errors for individual observations of yi are uncor-
related with each other. This assumption is reasonable
when the sample size is not too small (their covar-
iances are small in the case of a large sample size).
To include the likely impacts of the uncertainty of
each observation, the weight wi(i=1, …,nAB), the re-
ciprocal of the variance of the ith observation,
is assigned to the ith observation. Note that other
more sophisticated algorithms for setting weights
can also be proposed, which is not emphasized here.
Estimation of F-parameters can be derived by mini-
mizing the weighted sum of square residuals, i.e.
mingnAB

i=1wi(yixȳxx1iF
1, 1xx2iF

1, 0)2. Expression for
F-parameter estimates can be further simplified:

ȳˆ
F̂

� �
=

1k
Xk

� �
W(1 X)

� �x1
1k
Xk

� �
WY, (5)

where 1 is the vector (1, 1, . . . , 1)knABr1, W is the
weight vector (wab

akbk)nABr1 with the diagonal element
being wakbk

ab =1/Pakbk
ab (1xPakbk

ab ) and zero for non-
diagonal elements, and ŷ̄ is the estimate of the mean
of yakbk

ab . Note that the intercept estimate ŷ̄ is expected
to be zero since the original constant term in eqn (1)
is removed from each observation (yakbk

ab =Pakbk
ab x

papbpakpbk). Alternatively, Pakbk
ab can be straightfor-

wardly used as the dependent variable in regression
analysis. Under this situation, the intercept is not ex-
pected to be zero and its biological meaning refers to
the average probability of a random haplotype pair in
the absence of non-allele descents.

The analysis is similar to the two-site case, which
is applied to the three-site case. Let Y be the
known vector (yabcakbkck)nABCr1 in which yakbkck

abc =Pakbkck
abc x

papbpcpakpbkpck and nABC=36; X be the known matrix
with nABCr9 elements, X=(x1 x2 … x9), where x1=
(pabcpakbkckxpapbpcpakpbkpck)nABCr1, x2=(pabcpakbkpck+
pabpcpakbkckx2papbpcpakpbkpck)nABCr1, …, and x9=
(papbcpakpbkckxpapbpcpakpbkpck)nABCr1 ; and F be the
F-parameter vector , F=(F11,11F11,10 … F01,01)k. F-para-
meters can be estimated using the same formula as
eqn (5) except that 1 is the vector (1, 1, . . . , 1)knABCr1,
W is the weight vector (wabc

akbkck)nABCr1 with the diagonal
element being wakbkck

abc =1/Pakbkck
abc (1xPakbkck

abc ) and zero for
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non-diagonal elements, and ŷ̄ is the estimate of the
mean of yakbkck

abc . Three correlation coefficients can be
simultaneously estimated according to eqn (4) once all
F-parameters are calculated according to eqn (5).

3. Simulation results

MC simulation is employed to examine the effects of
(i) sample size, (ii) allele frequency distribution and
(iii) LD. For the effects of allele frequency distri-
bution, two types of distribution are examined: uni-
form and non-uniform distributions. For the uniform
distribution, each allele at a site has equal frequency
(=0.5). For the non-uniform allele frequency distri-
bution, one allele frequency is set as 1/3 and the other
is set as 2/3 at each site. Other settings of non-uniform
allele frequency distribution can also be examined in

different cases. The simulation is conducted in a way
similar to the previous pairwise relatedness study of
Hu (2005).

Simulation data are generated in the following
steps. Given a set of parameters, including two- or
three-site gametic frequencies, allelic frequencies, and
F-parameters, calculate the probabilities for each pair
of two- and three-site gametes according to eqns (1)
and (3), respectively. All parameter settings are arbi-
trary as long as these settings are biologically mean-
ingful. Use these calculated probabilities that follow
the multinomial distribution for generating random
samples. Random numbers with uniform distribution
within (0, 1) are generated using the routine of Press
et al. (1991, pp. 210–211). For a sample of N diploids
(2N haploids), it can generate a sample of 2N(2Nx1)
random gamete pairs. F-parameters are then calcu-
lated according to eqn (5) and the correlation co-
efficients are calculated according to eqn (2) for the
two-site case and eqn (4) for the three-site case.
Gauss–Jordan elimination method is used to calculate
the inverse matrix and F-parameters (Press et al. 1991,
pp. 36–37). Ten thousand independent simulation
runs are conducted in each simulation case. These
replicates are used to estimate mean and standard
deviation of correlation coefficients according to the
statistical model detailed in the preceding section.
Simulation programs in C are available from Hu
upon request.

In the two-site case, Fig. 3(a) shows the changes of
average F-parameter estimates with the sample size.
Unbiased estimates can be obtained when the sample
size is >50 individuals. The precision of estimates in
terms of standard deviation slightly increases when
the sample size is >50 (Fig. 3b). Simulation results
also confirm that the average estimate of intercept is
essentially equal to zero, with a very small standard
deviation. This is the same case for all other simula-
tions described below.

The results that are similar to the pattern of
F-parameter estimates can be observed for the accu-
racy and precision of parental descent correlation
coefficient (rparent). Basically, unbiased estimates and
small standard deviations can be obtained when the
number of individuals is >50 under the uniform dis-
tribution of allele frequencies (Fig. 4). The effects of
the distribution of allele frequencies (uniform versus
non-uniform distribution) on parameter estimation
are not significant (results not given here). However,
the magnitude of LD can affect the accuracy and
precision of F-parameters and rparent. For example,
smaller LD can lower the precision of rparent estimate
(Fig. 4), indicating that a large sample size is required
to obtain a comparable precision with that in case of
larger LD.

In the three-site case, Fig. 5 shows the effects of the
sample size on the accuracies and precisions of three
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Fig. 3. Effects of the sample size on F-parameter
estimation at the two-site case: (a) average estimates of F1,1

and F1,0 and (b) standard deviations of F1,1 and
F1,0estimates. The results are obtained from 10 000
independent simulation runs under uniform distribution of
allele frequencies. The parameter settings are the LD
between the two sites=0.1, F1,1=0.1, F1,0=0.05, and the
correlation coefficient rparent=0.6078. The dashed line
represents the truth F-parameter values.
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correlation coefficients under the assumption of
uniform distribution of allele frequency at each site,
i.e. 1

2 for each allele frequency. The average estimates
of three correlation coefficients are generally unbiased
from their actual values when the number of sample
size increases, such as >20 individuals in Fig. 5(a).
The standard deviations for estimating the correlation
coefficients decrease with the sample size (e.g.,
Fig. 5b). When the number of individuals is >50, an
appropriate estimate can be obtained in terms of both
accuracy and precision (Fig. 5).

The preceding result shows the case with a
larger IBD segment correlation coefficient (rsegment=
0.7655), but smaller parental descent coefficients
(the truth rparent(AB)=0.3994, rparent(BC)=0.3633).
Similar results can also be obtained in the case of
larger parental descent correlation coefficients but
smaller IBD segment correlation coefficients (data not
shown here). Generally, unbiased estimates of corre-
lation coefficients together with appropriate preci-
sions can be obtained in each case when the number of
individuals is >50 in each case.

In the three-site case, the effects of the distribution
of allele frequency are not significant when the sample
size is not too small, indicating the robustness of
this method. Comparable estimates in terms of the

unbiased average and the small standard deviation
are obtained between the uniform and non-uniform
distributions of allele frequencies. Similar results can
be observed in various cases with different parameter
settings (results not shown here).

Simulation results show that the magnitude of LD
among the three linked sites can affect estimation in
accuracy and precision. Figure 6 shows that larger
sample sizes are needed to obtain unbiased estimates
in the case of low LD (the truth rsegment=0.5612,
rparent (AB)=0.2927 and rparent (BC)=0.4048), com-
pared to the results of the cases with high LD. Large
standard deviations exist even with a large sample size
(Fig. 6b).

4. Discussion

This study presents a statistical issue for charac-
terizing the structure of genomic diversity in terms of
the correlation of non-allele descents along chromo-
somes. Two types of correlations (standardized par-
ental disequilibrium and standardized IBD segment
disequilibrium) can be estimated by partitioning the
joint probabilities of a random pair of gametes into
the probabilities of non-alleles IBD at two or three
sites. These descent correlations are complementary
to the previous studies focusing on the correlation
of alleles IBD probabilities (pairwise relatedness) at
two or three sites (Hu 2005). The patterns in terms
of allele- or non-allele-descent correlations reflect
different aspects of the genomic structure at the
population level although a similar statistical ap-
proach is employed. The practical significance is that
such a pattern of correlation blocks along chromo-
somes can be broadly utilized for various purposes,
including marker-assisted selection in breeding pro-
grams, genome-wide association studies and insights
into genomic evolution at the population level.

It is important to understand that mechanisms
maintaining the gametic LD block pattern can also
change the non-allele IBD correlation pattern al-
though concordance or discordance between them
remains to be empirically verified. Migration (or in-
fusion of breeders to the plant or animal breeding
populations) and drift can cause whole genome
changes and hence alter whole genome level of IBD
correlation blocks. Selection and mutation, such as
selective sweep effects and genetic hitchhiking effects
(Hill & Robertson 1966; Maynard Smith & Haigh
1974), can cause regional chromosomal variation in
correlation block size. Mating system as an additional
agent can shape the correlation block pattern. Non-
random distribution of recombination reinforces the
regional variation of correlation block sizes (Coop &
Prezeworski 2007). Different combinations of these
effects provide the basis for generating various corre-
lation patterns in populations of distinct histories.
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Fig. 4. Effects of the sample size on estimating the
parental descent correlation at the two-site case. The
results are obtained from 10 000 independent simulation
runs under the non-uniform and uniform distributions of
allele frequencies. The dashed lines with opened circles and
opened triangles represent the average and standard
deviation of parental descent correlations, respectively,
with the LD between the two sites=0.05 under the
non-uniform distribution of allele frequencies. The lines
with closed circles and closed triangles represent the
average and standard deviation of parental descent
correlations, respectively, with the LD between the two
sites=0.1 under the uniform distribution of allele
frequencies. The common parameter settings are F1,1=0.1,
F1,0=0.05, and the correlation coefficient rparent=0.6078.
The dashed line represents the truth parental descent
correlation coefficient.
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It is interesting to understand the similarity and
difference in biological meaning between LD and IBD
disequilibrium, or between their standardizations.
Both are directly affected by recombination, but do
not have a one-to-one functional relationship. LD
itself does not contain any biological meaning since
it only measures the non-random association between
two alleles. Its biological meaning can be activated
only when linked to the effects of ecological and
evolutionary processes (Slatkin 2008). To the con-
trary, correlation of non-allele descents has an explicit

genetic meaning, measuring the joint probability
of two connected segments that come from the same
ancestor. The correlation pattern directly reflects the
effects of various evolutionary and ecological pro-
cesses on the recombination rate in distinct regions.

To apply the proposed method for constructing
the maps of non-allele descent correlation blocks, two
steps are needed. First, a sample of the haplotype
SNP markers with a certain density is required.
When only diploid genotyping data are available, the
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Fig. 5. Effects of the sample size on estimating correlation
coefficients at the three-site case: (a) average estimates of
three correlation coefficients ; (b) standard deviations for
the estimates of correlation coefficients. The results are
obtained from 10 000 independent simulation runs under
the uniform distribution of allele frequencies at each site.
The parameter settings are the LD between the A and B
sites=0.12, between the A and C sites=0.10, between B
and C sites=0.12, and LD among the three sites=0.05,
F11,11=0.2, F11,10=0.01, F11,01=0.01, F11,00=0.1, F10,10=0.01,
F10,01=0.02, F10,00=0.01, F01,00=0.02 and F01,01=0.01. The
dashed line represents the truth correlation coefficients.
The line with closed circles represents the estimate of
rsegment=0.7655; the line with closed squares represents the
estimate of rparent(AB)=0.39994; and the line with closed
triangles represents the estimate of rparent(BC)=0.3633.
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Fig. 6. Effects of low LD on estimating correlation
coefficients at the three-site case: (a) average estimates of
three correlation coefficients ; (b) standard deviations for
the estimates of correlation coefficients. The results are
obtained from 10 000 independent simulation runs under
the uniform distribution of allele frequency. The parameter
settings are the LD between the A and B sites=0.05,
between the A and C sites=0.01, between the B and C
sites=0.05, and the LD among the three sites=0.005,
F11,11=0.02, F11,10=0.01, F11,01=0.02, F11,00=0.04,
F10,10=0.01, F10,01=0.01, F10,00=0.01, F01,00=0.02 and
F01,01=0.02. The dashed line represents the truth values.
The line with closed circles represents the estimate of
rsegment=0.5613; the line with closed squares represent the
estimate of rparent(AB)=0.2927; and the line with closed
triangles represents the estimate of rparent(BC)=0.4048.
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haplotype marker sequences are needed to estimate,
including the information on SNP marker linkage
phases. This can be done with the existing software
(e.g., Marchini et al. 2006; Scheet & Stephens, 2006).
One caution is that the false positive error in inferring
genome-wide linkage phases needs to be controlled,
which otherwise might likely result in a biased corre-
lation block pattern. The robustness of the proposed
method to biased linkage phased remains to be as-
sessed. This is different from the method for estimat-
ing the correlation of pairwise relatedness where
diploid genotyping data can be directly applied under
the assumption of random mating (Hu 2005). When
the sexual chromosome or the sequence sample based
on megagametes is employed, the proposed method
can be directly applied. The second step is to use the
three conjunctive sites as one unit (an overlapping
sliding window) to estimate for correlation of non-
allele descents. The individual three-site results are
then jointly analysed to construct the correlation
block map for the whole chromosome. The thresholds
for determining the correlation block size can be set
according to statistical tests or some empirical values,
similar to the approach of gametic LD block setting in
previous studies (Barrett et al. 2005; Tomita et al.
2008). Those consecutive SNP markers with strong
correlations among them are then grouped into one
block and such an analysis continues until all SNP
markers on one chromosome are examined.

When the linkage map of dense markers with some
markers of more than two alleles, instead of the
sequence of SNP markers, is applied for constructing
correlation block maps, method presented needs to be
expanded to a more complicated analysis. One fre-
quent situation is that our regular linkage maps are
inappropriate for correlation block mapping due to
large physical distances between adjacent markers
where strong LD are often present, or due to the low
marker density. This case occurs because most linkage
maps are family based and a general method is needed
for population-based linkage mapping for the popu-
lation with a mixed mating system (Hu et al. 2004).
Like the previous studies on pairwise relatedness,
this method only uses one-generation data that are
randomly sampled from the population with prior
unknown genetic pedigree, and thus has a potential
of wide applications in future population genomics
analysis.

This study only explores the theory for the two- and
three-site cases. Use of the two-site case only esti-
mates the parental descent disequilibrium (Cockerham
& Weir 1973). The correlation among non-allele
descent segments, rsegemnt, can be estimated with a
minimum number of three sites. This is different from
the analysis of the correlation block of pairwise
relatedness where both two- and three-site methods
can be used to estimate the correlation of pairwise

relatedness except that the double crossover effects
are included in the three-site case (Hu 2005). The
proposed method can be extended to the case of more
than three sites without technical difficulty. For n(i3)
conjunctive diallelic SNP sites on a chromosome,
there are nx1 segments. It can produce 2nx1(2n+1)
distinguishable random nxsite haplotype pairs
(analogous to eqn (3) in the three-site case), 2nx2

(2nx1x1)+2nx1x1 distinguishable F-parameters,
nx1 parental descent disequilibrira (rparent’s), and
(nx1)(nx2)/2 disequilibria between non-allele de-
scent segments (rsegment’s). The number of joint equa-
tions, 2nx1(2n+1), is much greater than the number of
F-parameters, with the difference being 22nx3(22x1)+
2nx2+1. The probability for a random pair of n-site
haplotypes can be decomposed in the way similar to
eqn (3). The advantage of multiple-site analysis is that
all these correlation parameters can be simultaneously
estimated in theory although the calculation becomes
more complicated. This requires a large sample size so
that 2N(2Nx1) haplotype pairs are greater than the
number of joint equations.

Statistically, the time-consuming step for the WLS
method is to calculate the number of haplotype pairs,
2N(2Nx1) for sampling N diploids, which increases
substantially with the sample size. This is the same
case for using the ML method, since the number of
haplotype pairs in constructing the likelihood is re-
quired in parameter estimation. The advantage for the
WLS method over the ML method is its fast calcu-
lation to obtain estimates in the later steps (Hu 2005).

The diagonal elements in matrix
1k
Xk

� �
W(1 X) are

non-zeros, resulting in robustness in calculating its
inverse matrix (eqn (5)). This property is of signifi-
cance in population genomics analysis as the number
of pairwise correlations increases significantly with a
large SNP panel.

Our simulation results suggest the sample sizes of
y100 diploids can produce estimates with appropri-
ate precision under various effects of LD and allele
frequency distribution. The proposed sample sizes
are much greater than those required for pairwise re-
latedness analysis (Hu 2005). This is attributable to
the effects of LD and more number of parameters.
However, the proposed sample size can be met in the
future with the development of high-throughput geno-
typing techniques, such as commercially available
Illumina Bovine SNP50K BeadChip for genotyping
in beef and dairy cattle populations.

One striking result is that our simulations demon-
strate a high precision (low standard deviation) for
the estimate of the correlation of non-allele descents
from the same chromosomes (rsegment), compared
to the precision of the estimates of the correlation
of non-allele descents from different chromosomes
(rparent). This is due to the non-uniform distribution
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for the number of haplotype pairs in the presence of
LD that is the genetic basis for the presence of non-
allele correlation. Thus, the results imply that the
WLS method is effective in practice for estimating the
correlation of non-allele descents along chromo-
somes.

It is necessary to mention briefly the assumption
underlying the method presented for estimating the
correlation of non-allele descent measures. Like the
previous studies on estimating pairwise relatedness,
accurate and precise estimates of gamete and allele
frequencies are assumed to be available beforehand.
These frequencies might be estimated from the same
sampling data sets as well. Biased estimates of these
frequencies can affect estimates of the correlation
coefficients of descent measures in precision and
accuracy. The statistical robustness remains to be as-
sessed in the presence of biased estimates of gametic
and allelic frequencies. However, this problem might
not be serious when large sample sizes, say y100
diploids, are applied in practice since gametic and
allelic frequencies are often estimated accurately.
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