
Can. J. Math.Vol. 43 (6), 1991 pp. 1294-1308 

COMPLEX WEIGHT FUNCTIONS FOR 
CLASSICAL ORTHOGONAL POLYNOMIALS 

Dedicated to our friend P. G. (Tim) Rooney on his 65th birthday 

MOURAD E. H. ISMAIL, DAVID R. MASSON AND MIZAN RAHMAN 

ABSTRACT. We give complex weight functions with respect to which the Jacobi, 
Laguerre, little g-Jacobi and Askey-Wilson polynomials are orthogonal. The complex 
functions obtained are weight functions in a wider range of parameters than the real 
weight functions. They also provide an alternative to the recent distributional weight 
functions of Morton and Krall, and the more recent hyperfunction weight functions of 
Kim. 

1. Introduction. The classical Jacobi polynomials {Pn (x)} are orthogonal on 
[— 1,1] with respect to the weight function (1 —x)a(l+x)P, when a > — land/3 > — 1. 
When a > — 1, the Laguerre polynomials {L^\x)} are orthogonal on [0,oo) with 
respect to the weight function xae~x. The Jacobi and Laguerre polynomials have the 
explicit representations 

(i.D ^ > w = < ^ 2 F l p B + a ; 0 + 1 

n\ V a +1 
(a + \)n 

l - ; n 

(1.2) z(«)W =S£L±i2- l F l(-» L) 

respectively, Rainville [15, Chapters 12 and 16], or [7, § 10.8 and § 10.12]. 
Every family of orthogonal polynomials {pn(x)} satisfies a three term recurrence 

relation 

(1.3) Xpn{x) = anpn+i(x) + (3nPn(x) + 7nPn-l(x), H = 1,2,. . . . 

With the normalization 

(1.4) p0(x) = 1, P\(x) = (x-(3o)/(Xo a0 ̂  0, 

a sequence of polynomials {pn(x)} such that/?„(*) is of precise degree n is orthogonal 
with respect to a positive measure with finite moments and infinite support if and only if 
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COMPLEX WEIGHT FUNCTIONS 1295 

it satisfies a three term recurrence relation of the type (1.3) such that /?„'s are real and a 
positivity condition 

(1.5) anln+l > 0, fi = 0 , l , . . . , 

holds. 
From the three term recurrence relation of the Jacobi and Laguerre polynomials [15, 

Chapters 12 and 16], or [7, § 10.8 and § 10.12] it follows that the positivity condition (1.5) 
is satisfied if and only if a > — 1 and (3 > —1 in the case of Jacobi polynomials and 
a > —1 in the case of Laguerre polynomials. It is then natural to ask what will happen 
if a < —I or f3 < —I. Morton and Krall [13] attempted to answer this question. They 
gave distributional weight functions for Jacobi and Laguerre polynomials and proved that 
their distributional weight functions reduce to the classical weight functions when the 
positivity condition is satisfied. Morton and Krall then attempted to find a distributional 
weight function for the Bessel polynomials but pointed out that the series representation 
their approach gave did not converge in the space of distributions. They then raised the 
question of finding a distributional weight function for the Bessel polynomials. Recently 
Kim [11] further extended the work of Morton and Krall and obtained hyperfunctions as 
weight functions for Jacobi and Laguerre polynomials and Bessel polynomials. 

This work grew out of an attempt to replace the use of distributional or hyperfunction 
weight functions by a more classical approach using complex weight functions. The idea 
is to observe that if { pn(x)} is orthogonal with respect to a positive measure d\i supported 
on a finite interval [—A, A] then the function X(z) 

(1.6) X ( Z ) : = i r W z^-A,Al 
2TTI J-A z — t 

is a complex weight function since 

1 r 1 r rA du (t\ 
T ~ / , D^Pn(z)pm(z)X(z)dz = — I Pn(z)pm(z) / - dz 
2lTl J\z\=R>A 27TI J\Z\=R>A J-A z~ t 

rA 
= J Pn(t)pm(t)dll(t)9 

by Cauchy's theorem. It turns out that in the case of Jacobi polynomials X(z) continues 
to be a complex weight function when a+/3+2 ^ 0 , - 1 , . . . , but a < — 1 and (3 > —1 
or a > —1 and (3 < — 1. Similar results hold for the little #-Jacobi polynomials [1], [3] 
the continuous g-ultraspherical polynomials [2], [3] and the Askey-Wilson polynomials 
[3]. We believe that this is a general analytic continuation property shared by all polyno
mials orthogonal on a finite interval. The complex weight function for Jacobi polynomial 
has also appeared in Rusev [16]. Rusev [16] pointed out that the complex orthogonality 
follows from the fact Jacobi polynomials satisfy a linear second order differential equa
tion of Sturm-Liouville type. In general this technique is not applicable. Furthermore the 
complex weight function for Laguerre polynomials in Rusev [16] is different from the 
one we use. 
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In Section 2 we discuss Jacobi polynomials. In Section 3 we treat the Laguerre poly
nomials for real a. This is particularly interesting because the Laguerre polynomials are 
orthogonal on the unbounded interval [0, oo) when a > — 1. In Sections 4 and 5 we treat 
^-analogues of the classical orthogonal polynomials. The little g-Jacobi polynomials [1] 

, -n n+a+f3+\ . 

(1.7) pn(x; a,/? :q):=2*i [* „+1 ; ^ , ^ + 1 ) , 

are studied in Section 4 where a complex weight function is found. In Section 5 we give 
a complex weight function with respect to which the Askey-Wilson polynomials of [3] 
are orthogonal. A special case of the Askey-Wilson polynomials are the continuous q-
ultraspherical polynomials [2], so by specializing the parameters of the Askey-Wilson 
polynomials we obtain a complex weight function of the continuous g-ultraspherical 
polynomials. Part of the proof of the complex orthogonality relation for the Askey-
Wilson polynomials is given in Section 5 and the proof is continued in Section 6. 

Proofs of the real orthogonality relations for Jacobi and Laguerre polynomials are 
available in most books on the subject, [7, Chapter 8], [15, Chapters 12 and 16], [17, 
Chapters 4 and 5]. Proofs of the real orthogonality relations for little g-Jacobi and Askey-
Wilson polynomials are in the recent book [9]. Reference [9] also contains an excellent 
bibliography on the subject. After [9] appeared, Atakishiyev and Suslov [4] found a new 
and elegant proof of the real orthogonality relations for the Askey-Wilson polynomials. 

2. Jacobi polynomials. Recall that, Szegô [17, §4.61] 

n n fl ( l - ' r a + O * ^ 2 ^ + 1 r ( a + l ) r ( /3+l ) / l , a + l i x 
( l l ) l - . ^=~t * = (z-l)r(a+/3+2) 2 F l L + / 3 + 2 | 2 / ( 1 - 4 
Since the Jacobi polynomials are orthogonal on [—1,1] with respect to the weight func
tion (1 — x)a (1 + xf we consider the complex weight function 

l , a + 1 

-/? 

Consider the integral 

(2.3) 7m,„ := ~ / (1 - z)mPia-0)(z)Xa-e(z)dz, 

where C is a closed circle containing the circle | z — 11 = 2 in its interior. Using the 
representations (1.1) and (2.1) we obtain 

(<* + l)n f A (-n)k(n + a + (3 + !),(! - z ) ^ " 1 °° (a + 1)7 / 2 y 

2TTI(/I!) Jcto k\(a + \)k2
k U T(a + f3 +j + 2) V 1 - z)

 Z' 

Termwise integration is justified and the integrals of various terms will vanish except 
when j = m + k. This identifies /m>n as a multiple of a 3F2 in the form 

(a + l)m(a + l)„ _ f-n,n + a+(3 + 1, a + m + l 

(2.2) X ^ ( z ) = [ r ( a + / 3 + 2 ) ( z - l ) r 1 2 F 1 ( ^ * + \ \ 2/(1 - Z)Y | z - l | > 2 . 
\a + 3 +2 \ J 

Im 
( —n,n + a + p + l, a + m + 1 1 \ 

T 2 ( 1 I • rc!T(a+/3+ra + 2) ' V a + 1, a + / 3 + r a + 2 
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The above 3F2 can be summed by the Pfaff-Saalschutz theorem, [15], and we get 

i = 2w(cr + l)w (-n-(3)n(-m)n 

n\T(a + /? + ra + 2) (—m — n — a — (3 — l)n 

When m < n the above relationship reduces to 

n A. f 2"*(a + l)m (-!)*„! (ff + l ) ^ 
U ' 4 ) V n " « ! r ( a + ^ + m + 2 ) ( a + ^ + m + 2)/m ' / I-

This shows that when m < n 

.9 -. 27n *>c w m m\m\ 
U ' ^ = ( a + !)„(/?+!)„ 

n!(a+/3 + 2rc + l)r(ar + /3 + n + l ) m'"' 

Using the notation 

(2.6) r ^ ( z ) := 2a+/3+1T(a + \)T(fi + l)Xa^(z) 

the orthogonality relation (2.5) takes the form 

e.7) ̂  / ^wur^tor* w « - ,r;'r (;: : ;, ':nr ! : '', ,*-
IniJc n\(2n + a + f3 + l)T(n + a +(3 + 1) 

Of course when a > — 1, /? > —1 the orthogonality relation (2.7) and the integral 
representation (2.1) imply the familiar orthogonality relation, Szegô [17] 

<2/!(1 _ ,f „ _ WWM* = ,r:lr<;:::')r(r!;'>,)8--
J-i «!(2« + a + /} + l)r(n + a + /} + 1) 
It is evident that (2.7) holds as long as neither a, (3 nor a +(3 +1 is a negative integer. 

It is interesting to note that (2.7) implies orthogonality with respect to a distributional 
weight function if a or (3 is less than —1. To see this first consider the case 

(2.9) k + a > - 1 > a, f3 > - 1 , for some integer k, k > 0. 

Let/(x) be a polynomial of degree at least k and let g(x) be the first & terms in its Taylor 
series about x — 1, that is 

(2.10) £ W = £ - L _ ! i ^ _ i ) / . 

For 7 = 0 , 1 , . . . , and a + (3 ^ —2, — 3 , . . . , Cauchy's theorem yields 

(2.11) Jc(z-iyYa^(z)dz = 2^ + 0 + 1 ( - iyr ( / J + l ) r (a +7 + l ) / r (f + a +/? +2). 
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Thus we have 

jcf(z)Yap(z)dz = Jcg(z)Ya'P(z)dz + jc\f(z) - g(z)]Y"-13(z)dz 

to j\r(j + a+(3 + 2) 

Jc\f(z)-g(z)]Ya^(z)dz. 

On the other hand Cauchy's theorem, (2.1), (2.6) and the fact that \f(z) - g(z)]/ (z - 1 )* 
is a polynomial show that 

f\f(z) - g(z)]Ya'P (z) dz = ff{f-S(z)Ya+k,p (z) dz 
JC JC (I — z) 

Thus we proved 

ff(z)Y^(z) dz = E\ - iyy-^y^( i ) r ( f r ; . * ) r (; +
R{+^ 

Jc 7to j\T(j + a+f3 +2) 
k-\ /^O), (2.12) + / a - tyk\f{t)- Ys-^r^- iy"lci - 0a4*0 + tf du 

where / is a polynomial, provided that (2.9) is fulfilled. The restriction a + /? + 2 / 
0, — 1 , . . . , which was used implicitly in the derivation of (2.12) can be removed by ana
lytic continuation. 

Based on the above calculations one can define an indefinite inner product with respect 
to a distributional weight function by 
(2.13) 

M = E ( - i y 2 ^ 
7to j\r(j + a+/3 + 2) 

+ fjl ~ ')"*[/(')#«- E ^ p ^ C - iy](l - 0a+*(l + 0*3 rff. 

The symmetry relation 

(2.14) P(
n
a^(-x) = (-l)nP, (f'a)W, 

Szego [17, (4.1.4)], reduces the case (3 < —1, a > —1 to the case a < — 1, (3 > — 1 
where (2.12),(2.13) and (2.14) are applicable. 

3. The Laguerre polynomials. We have been unable to find a direct proof of the 
complex orthogonality of the Laguerre polynomials without using the real orthogonality, 
Rainville[15, Chapter 12] 

(3.1) r L^\x)L^\x)-f^~ dx = ^-Hn,n , a > -1. 
Jo Via + 1) ft! 
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(Rcos(e-R2\Rsin(e-R2)) 

z-plane 

FIGURE 1 

If one assumes the real orthogonality of a family of polynomials then the method of this 
section shows how one may extend the real orthogonality to orthogonality with respect 
to a complex weight function. We now proceed to show how to extend (3.1) to the cases 
when a < — 1 and a is not an integer. Note that in (3.1) we normalized the weight 
function to have a total mass equal to unity. 

The complex weight function is 

(3.2) w ( z ; c r ) = - l P ( l , l - a , - z ) , 

where *F is the Tricomi *F function, [6, Chapter 6]. When a > —1, the moments of the 
real weight function are given by 

(3.3) 

Furthermore, [6], 

v{z,a)= Y, »nZ-"-{ + 0{\z\~N-% z-»oo, N=Q,\, 
n=0 

The explicit representation (1.2) is 

(3.4) 
(a + l)n(-n)k 

Lia\x)=YJdn,^, dny.= 
*=o n\kl(a + l)k 
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LEMMA 3.5. The identity 

m n (a + l)w 

(3.6) Yl X! dmjdn,kHk+j = 7-^0min, 
j=0lc=0 n l 

holds for all a (real or complex). 

PROOF. The identity (3.6) is just the orthogonality relation (3.1) when a > — 1. 
Since (a + l)n/ (a + 1)̂  = (a +/:)••• (a + n — 1) the dj/s and the /i„'s are polynomials 
in a then (3.6) holds for all a. 

THEOREM 3.7. If a ^ - 1 , - 2 , . . . , r/^n 

(3. 8) lim - L / w ( z ; a)L^(z)L^(z) & = ^ - ^ ^ -
/?—KX> ZTTI JT(R) n\ 

where T(R) is as in Figure 1. 

PROOF. Let F2(R) = {z : \z\ = R,txp(-R2) < argz < 2n - exp(-/?2)}, in the 
clockwise sense. Then 

Jm) w(z; a)l£\z)I%\z) dz= - / ^ w(z; a)L<n
a\z)L(:\z) dz, 

since w(z\ a ) has its singularities in [0, oo). Now choose N > m + n and observe that 

i w(z-,a)Lia\z)L^\z)dZ 

r r m n -I r W -l 

= / r , j E E 4 A ^ E ^ - 1 - 1 -+-o(|z|-^-2)\dz. 

Therefore 

1 r m n (a + \) 
lim — / w(z; a)LLa)4a)(z) * = - E E 4 - X * / ^ - - — ^ 5 ^ . 

This establishes Theorem 3.7. 
Theorem 3.7 continues to hold also when a — —k, k = 1,2, However the or

thogonality is then for only a finite number of polynomials { L^~k\x)}^~Q. The measure 
may be reexpressed as a real distribution with support at x — 0. 

COROLLARY 3.9. If a = -k, k = 1,2,... tfierc 

(3.10) f°° l}-k\x)Ûm
k\x)dfi(x;k) = {-]—P^8m,n, 

where 

(3.11) dii(x\k) := fl + —J £(*) = £ ( • I^OO^Jt. 
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PROOF. From [6, (6.7.13)] 

(3.12) w( 
*-i ( - i y ( f c - l ) ! _J_1 

y=o (k-J-l)l 

Thus, when a = —k, the left side of (3.8) can be replaced by 

1 *z* f (-iy(k-l)l 

(3.13) 
2 7 n ; = 0 % | = i (k-j - 1)! 

(i - ir v^-^) z=0 

and the proof is complete. 

4. The little g-Jacobi polynomials. We shall assume throughout this section that 

0 < q< 1. 

Recall the definition of the ^-integral [9] 

(4.1) / f(t) dq(t) := (1 - ?)a £ qnf(aqn), 
J0 n=0 

the g-shifted factorial 
(4.2) 

(cr,q)0:= 1, (a;?)„ := 11(1 - a ^ " 1 ) ,n = 1,2,..., or oo, (a;q)b = a\q °° , 
*=i (aqb;q)oo 

and the ^-gamma function 

(4.3) r .w-^^wi-^^V^^oo, o<?< l. 

When Re a > — 1 and Re /? > — 1 note the evaluation of the g-beta integral [9] 

(4.4) jf1 *«(#; ̂  d,f = [Tq(a + l)r,(/î + 1)/ Tq(a +(3+ 2)]. 

The analog of (2.2) is 

1 **(**;?)/* 

_ rq(a + l)r,Q3 + 1)_ ( 4 ' 5 ) - - +1)^03 + 1) _, ^ ^,<?g+1 _,\ 

The 2^1 in (4.5) is the familiar function 

ra,Z? \ ~ (a\q)n(b\q)n n (a,b \ ^ (a\q)nKb\q)n n 

2<̂ i ;^,z : = L ; — T 7 — r ^ 
V c / ^(c,q)n(q\q)n 
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[8],[9]. We are then led to consider the complex weight function 

(4.6) Xa-P(z;q) := U r ' 2 * i ( ^ 2 ; < / , ^ ' ) . 

THEOREM 4.7. The little q-Jacobipolynomials satisfy the orthogonality relation 
(4.8) 

2niM=r (Z'q)PniZ)Pmiz)dZ- (l-q"+^»)(q°^Kq^;q)n
q *"•"' 

where 

(4.9) PnM = 2*i (q \+l \q,qx), 

and 
n 

{a\ ,a2,..., an\ q)m = X\{af, q)m. 
7=1 

PROOF. There is no loss of generality in assuming that m > n. 
The left-hand side in (4.8) = 

A A (q-m, qm+a+P+l ; q)k{q-\ qn+a+^+l ; q)j(qa+l ; q)j+k i+k 

h>h (q,q«+l;q)k(q,qa+U,q)j(qa+P+2;q)J+k * ' 

They sum is 

/^-" ,^ , + a + ^ + 1 ,^ + a + 1 x _ (qP+\<f-n+u,q)n 
3 H aoc + ̂ qa+p+2+k '^^) - (qk+a+p+29q-n-a;q)n> 

by the q analog of the Pfaff-Saalschtitz formula, [9]. Therefore the j sum vanishes if 
k < n. Thus in the left-hand side of (4.8) the summation index k must satisfy n < k < m. 
Replacing k by k + n, we find after elementary manipulations that the left-hand side in 
(4.8) 

fsil3+\ n—m m+a+(3+l . „ \ ,nn—m „n+m+\+a+(3 

_ w ' q » q » H)n n rt> I q >q 
(q-"~a;q)n(qa+0+2;q)2n '' " " V q2 

(q?+\q-m,qm+a+fi+l;q)n n (ql+"-m;q)m.n 

(q-"~a;q)„(qa+0+2;qhn (q2n+2+a+0;q)m-„ 

which, after some simplification, reduces to the right-hand side in (4.8). 

5. The Askey- Wilson polynomials. Let — 1 < q < 1 and 
(5.1) 

(q, ab, ac, ad, be, bd, cd, e2'e ,e 2,e ; q)™ -, , / -, 
Mt) •= 2.(abcd-,qU(ae^be»,ce«,de«Zyl " ^ ' ' = « » ' e M . H-

Askey and Wilson proved that the polynomials 
(5.2) 

(q n,abcdqn l,az,a/z \ 1 
Pn(C;a,b,c,d):=4<t>,r H ' ' ' ;q,q), C,=-(z+\z), \z\<\, 

\ ab,ac,ad J 2 
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later called the Askey-Wilson polynomials, are orthogonal with respect to the weight 
function w(t) on [—1,1], when a,b,c,d G (—1,1). For two exceptional cases when 
abed = q or q1, see Gupta and Masson [10]. Masson in earlier work [12] treated the 
case q— 1. We shall not discuss any exceptional cases in this work. The weight function 
wit) has been normalized to have a unit total mass. Rahman [14] proved that the function 
F(£ ) defined by 

rl wit) 
(5.3) F{0--=j_{^tdU 

has the explicit representation 

(5.4) F(C ) = — —y -sW7(abcz; ab, ac, be, q, zq/ d\ q, dz), 
(1 - az){\ - bz)(l - cz) 

where the gW7 is a very well poised 8^7, 
(5.5) 

a, qy/a, -q^/a, b, c, dj, g 

^ sfâ, —\Ja, aqj b, aqj c, aqj d, aq/ f, aqj g ' 

In the above formulas we assume 

, ,. ^ ( a,qJa,—qJa,b,c,dA,g \ 
sW1(a;b,c,dJ,g;q,z)=s^( r , - V , , ™. , ,f , \q,z\ 

V J a* —J a, aq b, aq c, aq d, aq f,aq g J 

(5.6) C = ( z + l / z ) / 2 , 

and |z| < 1 < I l /z | . The series defining the 8W7 in (5.4) converges if none of the 
denominator parameters is of the form q~n, n — 0 , 1 , . . . , and \dz\ < 1 • The symmetry 
of F(£ ) in a, b, c, d, which is a consequence of the Bailey transformation formulas (§2.10 
in [9]) implies that | dz\ < 1 can be replaced by "one of | az\, | bz\, | cz\, | dz\ is less than 
1." If at least one of the parameters a,b,c,d is in (—1,1) then this latter condition is 
automatically satisfied because of (5.6). If not, we can always take a smaller circle in the 
z-plane to ensure it. 

It is obvious that F(£ ) is analytic in any closed disc of radius r and center £ = 0 in the 
(-plane when r < min(|û|_1, |£ | _ 1 , | c | _ 1 , | d | - 1 ) . We shall use 8W7 to mean the series 
defining the 8W7 as well as its analytic continuations. 

Our main objective is to evaluate the complex integral 

1 r 
;r~: IPniC ; <*> h, c, d)pm(Ç ; a, b, c, d)F(£ ) d(, 
21TI JK 

where K is a simple closed positively oriented contour enclosing the origin in the £ -plane 
and/?n is as in (5.2). Furthermore we assume that K contains the unit circle in its interior. 
Since 

(az, a j z\ q)k = I I ( 1 ~ K aq/ + a2q2j), 
j=o 

the pn 's have a relatively simple explicit expression in terms of £ but the weight function 
does not share this property. So, it is convenient to transform the above complex integral 
to the z-plane. From (5.6) we see that 

z = -ttllr!Lc2n-\ ici>i, 
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hence IdC, = (1 — z 2)dz, and \z\ < 1. We choose r such that 

(5.7) r< rmn{l,\a\-\\b\-l,\c\-\\d\-1}. 

Thus K can be chosen such that the integral over K is transformed to the integral 

1 r 1 -z 2 

(5. 8) Jm,n(a> b,c,d) = •— / —y—Pm(C, ; a, b, c, d)pn((, ; a, b, c, d)F(C, ) dz, 
4TTI JC zl 

where C is the circle |z| = r with r satisfying (5.7). 
The orthogonality relation to be proved is 

1 r 1 - z2 

(5.9) — / —y—pm(C ; a, b, c, d)pn(( ; a, b, c, d)F(( ) dz = 6m/l/ hn, 
47TÏ «>C Z z 

where 
( 1 — abcdq2n~x )(ab, ac, ad, abed; q)n _2n 

(1 — abcdqn~l)(q,bc,bd,cd;q)n 

It is clear from (5.4) and (5.5) that F(£) is an analytic function of z in and on C and 
that neither pm(^ ; a, b, c, d) nor/?„(£ ; a, b, c, d) has any singularity inside C other than the 
origin z = 0, where /?m(£ ) has a pole of order m. So we need only to consider the residue 
of the integrand in (5.8) at z — 0. 

Although F(£ ) is analytic in C as a function of z, it is not easy to express it as a power 
series in z, so we shall take an indirect route to compute the residue at z — 0. 

Bailey's formula [9, (2.10.10)] yields the representation 

(5.10) nO = Fta,b,c,d;0=(X ~£ , M ^ ^ , >™ 
(1 — az){ 1 — aj z) V abed, aqz, aqj z 

2z(q,ab,ac,ad,bcdz,qz2;q)oo ^ (bz,cz, dz \ 
(bz,cz,dz,abed,az,ajz\q)oo ^bedz,qz2' ' / ' 

Since \q\ < 1, both series on the right-hand side of (5.10) are, of course, convergent. If 
TV is any positive integer then it follows that 
(5.11) 

j —lacf ( abqN ,acqN ,adqN,q \ 
F(aq»,b,c,d;0= {l.azqN){l_aqNlz)^Aabcdq^azq^,aq^lz^q) 

2z(abqN,acqN,adqN;q)00 (q,bcdz,qz2;q)oo , (bz,cz,dz ^ ( bz.cz, dz \ 
Hbcd,a^M (abcdqN, azqN, aqN/ z; q)^ (bz, cz, dz; q)oo " ^ bed: 

Combining (5.10) and (5.11) with the observation 

1 / ab,ac,ad,q \ 

(1 — az)(\ — a/z) \ abed, aqz, aq j z ' / 

^2, (ab, ac, ad; q)rqr 

^o (abed; q)r(az, a/ z; q)r+\ 

^t;1 (ab, ac, ad; q)rqr 

^ 0 (abcd;q)r(az,a/ z;q)r+\ 

(ab,ac,ad;q)NqN / abqN, acqN, adqN, q \ 
+ (abcd;q)N(az,a/z;q)N+i4 3\abcdqN, azqN+l, aqN+l /z'

q,q)' 

https://doi.org/10.4153/CJM-1991-074-8 Published online by Cambridge University Press

bz.cz
https://doi.org/10.4153/CJM-1991-074-8


COMPLEX WEIGHT FUNCTIONS 1305 

we establish the functional equation 

™ u A r\ (ab,ac,ad;q)N „ 
F(a, b, c, d; C ) = ——A -, —F(a(f, b, c,d;() 

{abed, az, a z; Q)N 
(5.12) „ , 

^N-1 (ab,acM\qW 
^ 0 (abed; q)r(az, a/ z; q)r+\ ' 

Now for the sake of definiteness we shall assume that n > m, then apply Sears' 4O3 

transformation, namely [9, (2.10.4)] 

s* 1 ^ ^ (<Tn>**b'c \ (ela,f/a\q)n n / q~n,a,d/b,dje \ 
(5.13) 4<ï>3( \q,q) = , ' " 4O3 , ' ' ;q,q), 

V d,e,f J (e,f',q)n \d,aql nje,aqx n/f J 

provided that abc = defqn~x, to (5.2) in order to establish the representation 

<*IA\ ( u * (bcM^qU fq^,abedqm-\bz,b/z \ 
(5.14) pm(x;a,b,c,d)= - ——(a/b) m

4<I>3 , , , , ;q,q)-
(ac,ad;q)m \ ba.be, bd ) 

The g-analog of the Pfaff-Saalschutz summation theorem [9, (1.7.2)] implies the identity 

(feV^^^-^/M^^f^^îM). * = 0,1,..., 

which enables us to derive the representation 

<r u A\ tr u * ^m(be,bd;q)m " (q~m,abcdqm-x;q)s s 

pm(C ; a, b, c, d)pn(( ; a, b, c, d) = — — — £ , u u UJ \ q 

bm(ac,ad;q)m 5 = 0 (q,ba,bc,bd;q)s 

" {q-\abcdqn-u,q)k k k _k * (g~s; q)j(az, a/ z; q)j+k j 

i^~r—u j-r-q(abq>bq w)*!^-,—n—M-SIU ^ » 
k=0 (q,ab,ac,ad;q\ = 0 (q,abq\aqk+l s b;q)j 

for the productpn(( )pm(C, ) in a straightforward manner. Thus in order to prove the orthog

onality of the pn's with respect to the complex measure H>(£ ) we need only to compute 

the integrals 

(5.16) Mk:= ^Jc
]-^(az,a/ z;q)k F(^(z + z~])) dz, £ = 0 , 1 , . . . . 

We set N = j: + k + 1 in (5.12) and obtain 

(ab,ac,ad;q)j+k+l r 1-f F(aq^+\b,c,d;l
1(z+l/z)) 

MJ tj+k Jc 2z2 (1 - azaJ+k)(\ - aaJ+kI z) Z 
( 5 n )

 J 2vi(abcd; q)j+k+l Jc 2z2 (1 - azc?+k)(\ - aqi+k j z) 

_ ^ (afr, AC, ad; q)rqr r 1 - z2 (az, a/ z; q)j+k , 

^ 0 2iri(abcd;q)r Jc z2 (az,aj z;q)r+\ 

The representation (5.17) is all that we need to prove the orthogonality relation of the 

Askey-Wilson polynomials (5.9). The integrals on the right-hand side of (5.17) will be 

evaluated in the next section where we will complete the proof of the orthogonality re

lation of the Askey-Wilson polynomials. 
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6. Orthogonality of the Askey-Wilson polynomials. The integrals on the right-
hand side of (5.17) will be computed using the calculus of residues. First observe that, in 
view of (5.4), the integrand in the first integral is analytic in a neighborhood of z = 0 so its 
only singularity in the unit circle is at z — aqi+k. On the other hand the only singularities 
of the integrand in the second integral which are within C are z — 0 and z = aqi*k. 

The residue at z — 0 of the second integrand in (5.17) is 

(6.1) «Res n - 2 V / x v- (ab,ac,ad\q)rqr 

(1 - z )(az, a z\ q)j+k E 7 u A w / r~ ^ = ° 
^o (abed; q)r(az, a z; q)r+i 

When 0 < r < j + k in the above sum we have 

Resf {l_z-2)(az,a/z-q)k^ = o 

(az, a I z; q)r+\ 

= Res[(l - z~2)(azqr+\aqr+l / z;q)J+k-r^z = 0] 
j+k-r-l j+k-r-l (nr+\-k-j \ (nr+l~J-k'n) 

u=o v=o to; q)u(q\ q)v 
j+k-r-l j+k-r-l /r+\-k-j. \ /r+\-j-k.\ 

= E E »gMg - ^ ( ^ r
v R e s [ ( l - l /zV"vU - 01 

u=o v=0 (q;q)u(q;q)v 
= 0, 

since the residue is zero except when u = v — 1 and u = v + 1 where the residue is 1 and 
— 1, repectively but the rest of the summand is symmetric in u and v. On the other hand 
the term r ~ j + k contributes a multiple of 

(6.2) Res{(l - z~2)/ [(1 - az^k)(\ - aq>+k/z)\,z = 0} = q~j'k/a. 

Thus the contribution of the pole at z = 0 to the second integral in (5.17) is 

(6. 3) (ab, ac, ad; q)j+k/ (abed; q)j+k. 

Using (5.4) we see that the singularity at z = aqi+h contributes 

( 1 - a2bcq2j+2k+l )(ab, ac, ad; q)j+k+] 

(6.4) (1 - a2q2J+2k+l)(l - abqi+k)(\ - acqj+k)(abcd; q)j+k+l 

• 6W5(a
2bcq2j+2k+l ; be, q, ac^+M / d; q, ad^\ 

to the first term on the right-hand side in (5.17). The 6^5 in (6.4) can be summed by 
(11.20), p. 238 in [9] and its sum is 

(a2bcq2J+2k+2, a2q2j+2k+l, adqj+k+l, abcdq>+k ; q)oo 
(a2q2J+2k+2, a2bcq2J+2k+], abcdqj+k+l, adqj+k; q)0 

Thus the first term on the right-hand side in (5.17) is 

(ab, ac, ad; q)j+k/ (abed; q)j+k. 
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Now the contribution to the second term on the right-hand side of (5.17) from the residue 

at z = aqi+k is easily seen to be 

—(ab, ac, ad; q)j+k/ (abed; q)j+k, 

which, by (6.5) cancels out the first term on the right-hand side in (5.17). Thus 

Mj+k = (ab, ac, ad; q)j+k/ (abed; q)j+k, 

and from (5.15) and (5.17) we obtain 

Jm/i(a,b,c,d) 

_ am(bc,bd;q)m A (q~n,abcdqn~x;q)k k /q~m ,abcdqm~ x ,abq k 
" yq '\aocaq1 ;q)k k , (q ,at?caq"1 l,abq~ \ 

^_n (a,abcd:a)k V abcdak,ba ' / ' bm(ac, ad; q)m k=:0 (q, abed; q)k V abcdqk, ba 

and the 3O2 can be summed by the ^-analog of the Pfaff-Saalschutz theorem, [9, (1.7.2)]. 

Therefore 

Jm,n(a,b,c,d) 

_ am(bc,bd;q)m A (q'\abcdqn-x;q)k k rq~m,abcdqm~x,abqk 

bm(ac, ad; q)m k~^0 (q, abed; q)k V abcdqk, ba 

am(bc, bd; q)m « (q'\ abcdqn'x; q)k k (qx+k~m, ed; q)n 

bm(ac,ad;q)m k=0 (q,abcd;q)k (abcdqk,qx~m / ab;q)m 

(be, bd, ed; q)m am «z» (q~n, abcdqn~x ; q)m+k(q
k+x ; q)m k+m 

(ac,ad,qx m/ (ab); q)m bm
 k=0 (q; q)m+k(abcd; q)2m+k 

(be, bd, ed; q)m am (q~n, abcdqn~ x;q)m m ( qm~n, abcdqn+m-1 
Q 2^^1 ( 

(ac,ad,qx~~m/(ab);q)mbm (abcd;q)2m ^ abedq2 

_ fqm-\abcdqn+m-x \ 
0 l ( abeda» ; * 4 

Now by the ^-analog of the Gauss summation theorem [9, (1.5.2)] the sum of the above 

2O1 is (qm~n+x ; q)n-m/ (abcdq2m; q)n-m, which vanishes if n > m. Thus we have proved 

(6. 5) Jm,n(a> b, C, d) = 6m,n/ gn, 

where 
(ab, ac, ad; q)n(abcd; q)2n 

(q,bc,bd,cd;q)n(abcdqn~x;q)na
2n' 

and after a simple calculation we find that gn = hn (of (5.9)) and the proof of the orthog

onality relation (5.9) is now complete. 
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