Sixth Meeting, May 13th, 1898.
J. B. Clark, Esq., M.A., F.R.S.E., President, in the Chair.

On the Second Solutions of Lame's Equation

$$
\frac{d^{2} \mathrm{U}}{d u^{2}}=\mathrm{U}\{n(n+1) p u+\mathrm{B}\} .
$$

By Lawrence Crawford, M.A., B.Sc.

1. I consider here the second solutions corresponding to the solutions of the above equation (when n is an integer) in finite terms for special values of B. If U_{n} be such a solution, and F_{n} the corresponding second solution, we know that

$$
\mathrm{F}_{n}=(2 n+1) \mathrm{U}_{n} \int_{0}^{u} \frac{d u}{\left(\mathrm{U}_{n}\right)^{2}}
$$

2. U_{n} may be of one of four types, n being even or odd. Consider first the case of n even, $2 m$ say, then the first type is

$$
\mathrm{U}_{n}=\left(p u-a_{1}\right)\left(p u-a_{2}\right) \cdots\left(p u-a_{m}\right),
$$

where all the a 's are different and no one coincides with an e, as I have proved in a former paper. *

The F_{n} corresponding to this is then

$$
(2 n+1) \mathrm{U}_{u} \int_{0}^{u} \frac{d u}{\left(p u-a_{1}\right)^{2} \cdots\left(p u-a_{m}\right)^{2}}
$$

proceed to the consideration of this integral.
Let $\frac{1}{\left(p u-a_{1}\right)^{2}\left(p u-a_{2}\right)^{2} \cdots\left(p u-a_{m}\right)^{2}}=\sum_{r=1}^{r=m}\left(\frac{\mathrm{~A}_{r}}{p u-a_{r}}+\frac{\mathrm{A}_{r}^{\prime}}{\left(p u-a_{r}\right)^{2}}\right)$,
then

$$
\mathbf{A}_{r}^{\prime}=\frac{1}{\left(a_{r}-a_{1}\right)^{2}\left(a_{r}-a_{2}\right)^{2} \ldots\left(a_{r}-a_{m}\right)^{2}}
$$

and

$$
\begin{aligned}
\mathbf{A}_{r}= & {\left[\frac{1}{p^{\prime} u} \frac{d}{d u}\left\{\frac{1}{\left(p u-a_{1}\right)^{2} \cdot\left(p u-a_{r-1}\right)^{2}\left(p u-a_{r+1}\right)^{2} \cdot\left(p u-a_{m}\right)^{2}}\right\}\right]_{p u=a_{r}} } \\
& =-\frac{2}{\left(a_{r}-a_{1}\right)^{2} \cdot\left(a_{r}-a_{m n}\right)^{2}}\left\{\frac{1}{a_{r}-a_{1}}+\frac{1}{a_{r}-a_{2}}+\ldots+\frac{1}{a_{r}-a_{n}}\right\} .
\end{aligned}
$$

[^0]By differentiation of $\frac{p^{\prime} u}{p u-a}$, it is easy to prove that

$$
\begin{aligned}
& \int \frac{d u}{(p u-a)^{2}}=-\frac{1}{4 a^{3}-g_{2} a-g_{3}} \cdot \frac{p^{\prime} u}{p u-a} \\
& \quad+\int \frac{2(p u-a) d u}{4 a^{3}-g_{2} a-g_{3}}-\frac{6 a^{2}-\frac{1}{2} g_{2}}{4 a^{3}-g_{2} a-g_{3}} \int \frac{d u}{p u-a},
\end{aligned}
$$

$\therefore \quad$ we find

$$
\begin{aligned}
& \int_{0}^{u} \frac{d u}{\mathrm{U}_{n}{ }^{2}}=\sum_{r=1}^{r=m}\left[-\frac{\mathrm{A}_{r}^{\prime}}{4 a_{r}^{3}-g_{2} a_{r}-g_{3}} \cdot \frac{p^{\prime} u}{p u-a_{r}}-\frac{2 \mathrm{~A}_{r}^{\prime}\left(\xi u+a_{r} u\right)}{4 a_{r}^{3}-g_{2} a_{r}-g_{3}}\right. \\
&\left.+\left\{\mathrm{A}_{r}-\frac{\mathbf{A}_{r}^{\prime}\left(6 a_{r}^{2}-\frac{1}{2} g_{2}\right)}{4 a_{r}^{3}-g_{2} a_{r}-g_{3}}\right\} \int_{0}^{u} \frac{d u}{p u-a_{r}}\right]
\end{aligned}
$$

I proceed now to prove that $\quad \mathbf{A}_{r}-\frac{\mathbf{A}_{r}^{\prime}\left(6 a_{r}^{2}-\frac{1}{2} g_{2}\right)}{4 a_{r}^{3}-g_{2} a_{r}-g_{3}}=0$,
noting that

$$
\mathrm{A}_{r}=\left[\frac{1}{p^{\prime} u} \cdot \frac{d}{d u}\left(\frac{\overline{p u-a_{r}}}{\mathrm{U}_{n}^{2}}\right)\right]_{p u=a_{r}}
$$

In the differential equation for U_{n}, put $\mathrm{U}_{n}=\mathrm{R}\left(p u-a_{r}\right)$, then $\frac{d^{2} \mathrm{U}_{n}}{d u^{2}}=\left(p u-a_{r}\right) \frac{d^{2} \mathrm{R}}{d u^{2}}+2 \frac{d \mathrm{R}}{d u} p^{\prime} u+\mathrm{R} p^{\prime \prime} u=(n(n+1) p u+\mathrm{B})\left(p u-a_{r}\right) \mathrm{R}$ $\therefore \quad$ when $p u=a_{r}$, as \mathbf{R} and therefore $\frac{d^{2} \mathrm{R}}{d u^{2}}$ is not then infinite,

$$
\left[2 \frac{d \mathrm{R}}{d u} p^{\prime} u+\mathrm{R} p^{\prime \prime} u\right]_{p u=a_{r}}=0
$$

But

$$
\begin{gathered}
\mathrm{A}_{r}=\left[\frac{1}{p^{\prime} u} \frac{d}{d u}\left(\frac{1}{\mathrm{R}^{\prime \prime}}\right)\right]_{p u=a_{r}}=\left[\begin{array}{c}
2 \frac{d \mathrm{R}}{d u} \\
\left.-\frac{d \mathrm{R}}{\mathrm{R}^{3} p^{\prime} u}\right]_{p u=a_{r},} \quad \mathrm{~A}_{r}^{\prime}=\left[\frac{1}{\mathrm{R}^{2}}\right]_{p u=a_{r},} \\
{\left[p^{\prime} u+\mathrm{R} p^{\prime \prime} u\right]_{p u=a r}=0, \text { and }\left[\mathrm{R}^{3} p^{\prime 2} u\right]_{p u=a_{r}} \text { is not equal to } 0,} \\
\therefore \quad\left[\frac{2 \frac{d \mathrm{R}}{d u}}{\mathrm{R}^{3} p^{\prime} u}+\frac{p^{\prime \prime} u}{\mathrm{R}^{2} p^{\prime 2} u}\right]_{p u=a_{r}}=0, \\
\text { i.e. }\left[\mathbf{A}_{r}^{\prime} \frac{p^{\prime \prime} u}{p^{\prime 2} u}-\mathbf{A}_{r}\right]_{p u=a_{r}}=0, \\
\text { i.e. } \quad \mathbf{A}_{r}-\mathbf{A}_{r}^{\prime} \cdot \frac{6 a_{r}^{2}-\frac{1}{2} g_{2}}{4 a_{r}^{3}-g_{2} a_{r}-g_{3}}=0
\end{array}\right.
\end{gathered}
$$

\therefore all such terms as $\int_{0}^{u} \frac{d u}{p u-a_{r}}$ do not appear in $F_{n}(u)$,
and

$$
\begin{aligned}
\int_{0}^{u} \frac{d u}{\mathrm{U}_{n}^{2}} & =-\sum_{r=1}^{r=m} \frac{\mathrm{~A}_{r}^{\prime}}{4 a_{r}^{3}-g_{2} a_{r}-g_{3}}\left(2 \zeta u+2 a_{r} u+\frac{p^{\prime} u}{p u-a_{r}}\right) \\
& =\mathrm{C} u+\mathrm{D} \zeta u-p^{\prime} u \cdot \Sigma \frac{\mathrm{~A}_{r}^{\prime}}{\left(4 a_{r}^{3}-g_{2} a_{r}-g_{3}\right)\left(p u-a_{r}\right)} \\
& =\mathrm{C} u+\mathrm{D} \zeta u+\frac{p^{\prime} u f(p u)}{\mathrm{U}_{n}}
\end{aligned}
$$

where C, D are constants, $f(p u)$ is an algebraic integral function of $p u$, the highest power involved being $p^{m-1} u$, and D is twice the coefficient of $p^{m-1} u$ in $f(p u)$,

$$
\therefore \quad \mathrm{F}_{n}=(2 n+1)\left\{p^{\prime} u f(p u)+\mathrm{U}_{n}(\mathrm{Cu} u+\mathrm{D} \zeta u)\right\} .
$$

3. I shall work out now the second solution when U_{n} is of one of the types for n odd, having an irrational factor $\sqrt{p u-e}$. Then if $n=2 m+1, \mathrm{U}_{n}=\sqrt{p u-e}\left(p u-a_{1}\right)\left(p u-a_{n}\right) \cdots\left(p u-a_{m}\right)$, where all the a 's are real and different and no one coincides with an e, as I have proved in the former paper already referred to.

Then $\mathrm{F}_{n}=(2 n+1) \mathrm{U}_{n} \int_{0}^{u} \frac{d u}{(p u-e)\left(p u-a_{1}\right)^{2}\left(p u-a_{2}\right)^{2} \cdots\left(p u-a_{m}\right)^{2}}$,
and

$$
\begin{aligned}
\frac{1}{(p u-e)\left(p u-a_{1}\right)^{2} \cdots\left(p u-a_{m}\right)^{2}}= & \frac{\mathrm{C}}{p u-e} \\
& +\sum_{r=0}^{r=m} \frac{\mathrm{~A}_{r}}{p u-a_{r}}+\sum_{r=0}^{r=m} \frac{\mathrm{~A}_{r}^{\prime}}{\left(p u-a_{r}\right)^{2}},
\end{aligned}
$$

where
$\mathbf{C}=\frac{1}{\left(e-a_{1}\right)^{2}\left(e-a_{2}\right)^{2} \ldots\left(e-a_{m}\right)^{2}}, \quad \mathrm{~A}_{r}^{\prime}=\frac{1}{\left(a_{r}-e\right)\left(a_{r}-a_{1}\right)^{2} \ldots\left(a_{r}-a_{m}\right)^{2}}$,
and

$$
\mathrm{A}_{r}=\left[\frac{1}{p^{\prime} u} \frac{d}{d u}\left\{{\overline{p u-a_{r}}}_{\mathrm{U}_{n}^{2}}{ }^{2}\right]_{p u=a_{r}}\right.
$$

By differentiating $\frac{p^{\prime} u}{p u-e}$, it is found that

$$
\int \frac{6 e^{2}-\frac{1}{2} g_{2}}{p u-e} d u=2 \int(p u-e) d u-\frac{p^{\prime} u}{p u-e},
$$

and with the result already quoted for $\int \frac{d u}{\left(p u-a_{r}\right)^{2}}$, we have

$$
\begin{aligned}
\int_{0}^{u} \frac{d u}{\mathrm{U}_{n}^{2}}= & -\frac{\mathrm{C}}{6 e^{2}-\frac{1}{2} g_{2}}\left\{2 \zeta u+2 e u+\frac{p^{\prime} u}{p u-e}\right\} \\
& +\sum_{r=1}^{r=m}\left[-\frac{\mathrm{A}_{r}^{\prime}}{4 a_{r}^{3}-g_{2} a_{r}-g_{3}} \cdot \frac{p^{\prime} u}{p u-a_{r}}-\frac{2 \mathrm{~A}_{r}^{\prime}\left(\zeta u+a_{r} u\right)}{4 a_{r}^{3}-g_{2} a_{r}-g_{3}}\right. \\
& \left.+\int_{0}^{u} \frac{d u}{p u-a_{r}}\left\{\mathrm{~A}_{r}-\frac{\mathbf{A}_{r}^{\prime}\left(6 a_{r}^{2}-\frac{1}{2} g_{2}\right)}{4 a_{r}^{3}-g_{2} a_{r}-g_{3}}\right\}\right]
\end{aligned}
$$

Just as in the previous case, it follows that $\mathrm{A}_{r}-\frac{\mathrm{A}_{r}^{\prime}\left(6 a_{r}^{2}-\frac{1}{2} g_{2}\right)}{4 a_{r}^{3}-g_{2} a_{r}-g_{3}}=0$ by the substitution in the differential equation of $R\left(p u-a_{r}\right)$ for U_{n}, hence

$$
\begin{aligned}
\int_{0}^{u} \frac{d u}{\mathrm{U}_{n}{ }^{2}}=- & \frac{\mathrm{C}}{6 e^{2}-\frac{1}{2} g_{2}}\left\{2(\oint u+e u)+\frac{p^{\prime} u}{p u-e}\right\} \\
& -\sum_{r=1}^{r=m} \frac{\mathrm{~A}_{r}^{\prime}}{4 a_{r}^{3}-g_{2 r}-g_{3}} \cdot \frac{p^{\prime} u}{p u-a_{r}}-2 \Sigma \frac{\mathrm{~A}_{r}^{\prime}}{4 a_{r}^{3}-g_{2} a_{r}-g_{3}}\left(\xi u+a_{r} u\right) \\
& =\mathrm{C}^{\prime} u+\mathrm{D} \zeta u+\frac{p^{\prime} u f(p u)}{(p u-e)\left(p u-a_{1}\right) \ldots\left(p u-a_{m}\right)},
\end{aligned}
$$

where $\mathrm{C}^{\prime}, \mathrm{D}$ are constants, $f(p u)$ an algebraic integral function of $p u$, the highest power involved being $p^{m} u$,

$$
\therefore \quad \mathbf{F}_{n}=(2 n+1)\left\{\frac{p^{\prime} u f(p u)}{\sqrt{p u-e}}+\left(\mathbf{C}^{\prime} u+\mathrm{D} \xi u\right) \mathrm{C}_{n}\right\}
$$

4. Similar work may be done for all cases, and the general form is $\mathrm{F}_{n}=(2 n+1)\left\{\frac{p^{\prime} u f(p u)}{g(p u)}+(\mathrm{C} u+\mathrm{D} \zeta u) \mathrm{U}_{n}\right\}$, where $f(p u)$ is an algebraic integral function of $p u$, the highest power involved being $p u$ to the power, when n is even, $n / 2$ or $(n-2) / 2$, according as U_{n} has no irrational factor or one, and when n is odd, $(n-1) / 2$ or $(n-3) / 2$, according as U_{n} has an irrational factor $\sqrt{p u-e}$ or the factors $\sqrt{\left(p u-e_{1}\right)\left(p u-e_{2}\right)\left(p u-e_{3}\right)}, g(p u)$ is the irrational factor, if any, in U_{n}, and C, D are constants, functions of the roots of the equation $\mathrm{U}_{n}=0$, regarded as an equation in $p u$.
5. The forms for the second solutions are found in Halphen, Fonctions Elliptiques, Vol. II., pp. 483-5, but it is interesting to see that they can be worked out in this way by direct integration.

[^0]: * "On the Factors of the Solutions in Finite Terms of Lamés Equation," Quarterly Journal of Pure and Applied Mathenatics, No. 114, 1897.

