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INVERSE SEMIGROUP HOMOMORPHISMS VIA
PARTIAL GROUP ACTIONS

BENJAMIN STEINBERG

This paper constructs all homomorphisms of inverse semigroups which factor through
an E-unitary inverse semigroup; the construction is in terms of a semilattice compo-
nent and a group component. It is shown that such homomorphisms have a unique
factorisation Sa with a preserving the maximal group image, § idempotent separat-
ing, and the domain I of § E-unitary; moreover, the P-representation of I is explicitly
constructed. This theory, in particular, applies whenever the domain or codomain of
a homomorphism is E-unitary. Stronger results are obtained for the case of F-inverse
monoids.

Special cases of our results include the P-theorem and the factorisation theorem
for homomorphisms from E-unitary inverse semigroups (via idempotent pure followed
by idempotent separating). We also deduce a criterion of McAlister-Reilly for the
existence of E-unitary covers over a group, as well as a generalisation to F-inverse
covers, allowing a quick proof that every inverse monoid has an F-inverse cover.

1. INTRODUCTION AND MAIN RESuULTS

The class of E-unitary inverse semigroups has received special attention in the semi-
group theory literature. These are inverse semigroups with an idempotent pure homo-
morphism to a group. McAlister’s P-theorem [5], under a reformulation below, states
that all F-unitary inverse semigroups can be constructed as the “semidirect product”
of a group and a semilattice where the group acts partially on the semilattice. A re-
sult of Munn and Reilly [8] shows that every homomorphism from an E-unitary inverse
semigroup factors as an idempotent pure homomorphism followed by an idempotent sep-
arating homomorphism.

In this paper, we generalise both these results simultaneously. If S is an inverse
semigroup, gg will denote its minimal group congruence, G(S) its maximal group image
and E(S) its set of idempotents. We give an explicit construction of all homomorphisms
from S which factor through an E-unitary inverse semigroup. The construction builds
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the homomorphism out of pieces defined on F(S) and on G(S). More precisely (undefined
terms will be defined in the text):

THEOREM 1.1. Lety:S — T bea homomorphism of inverse semigroups. Then
the following are equivalent:
1. The image under ¢ of each agg-class of S is compatible;
2. @ = Poag withayg : S — Iy, fp : Iy = T homomorphisms and Iy E-unitary;
3. ¢ = Pa with o : S — I a surjective, maximal group image preserving
homomorphism, 8 : I — T idempotent separating, and I E-unitary;
4. There is a dual prehomomorphism p : G(S) — C(T) such that ¢(s) <
po(s)) for all s € S;
5. There is a compatible pair ¢ : E(S) — E(T), p: G(S) = C(T) such that
p(s) = Y(ssH)p(a(s)).
Moreover, a and f are unique, there is a unique minimal choice of (¢, p), and I is the
P-semigroup Py, ) associated to (v, p).

Note that by considering the case when S is E-unitary, we obtain the aforementioned
result of Munn and Reilly [8]. Theorem 1.1 allows the construction of a P-representation
of an E-unitary inverse semigroup from any idempotent separating image.

Roughly speaking, a compatible pair is a way of coordinatising a homomorphism
into two components: one component is a semilattice homomorphism; the other is a dual
prehomomorphism from a group. In the case of an E-unitary inverse semigroup acting
on a set X, the theorem (or rather a variant thereof proved below) states that the action
is obtained from a partial group action of the maximal group image (see [2, 4, 11] for
the importance of partial group actions) by restricting the domains of the various group
elements. More specifically, we have

THEOREM 1.2. Let S be an inverse semigroup and X a set. Suppose S acts on
X with the property: s og t implies s- and t- agree on the overlap of their domains.
Then there is a partial action of G(S) on X and an action of E(S) on S such that, for
all s € S, the action of o(s)(s™!s)a(s) is the action of ss™!, and sz = (ss™!)o(s)z; the
converse holds as well. In particular, if S is E-unitary, this is always the case.

The action of E(S) in the above theorem is unique, while there is a unique minimal
choice of the partial group action (where minimality is in terms of the size of the domain
of the action of the elements).

It is shown in [3], based on earlier work of Exel (2], that dual prehomomorphisms
¢ : G — T, where G is a group, correspond bijectively to homomorphisms ¢ : G** - T
where GT* is the prefix expansion of Birget-Rhodes [1]. This is an F-inverse monoid with
maximal group image G, finite D-classes, and a transparent structure. Thus, in some
sense, homomorphisms from arbitrary E-unitary inverse semigroups can be reduced to
homomorphisms from semilattices and from F-inverse monoids with finite D-classes.
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As a corollary of Theorem 1.1 we shall be able to deduce the following result of
McAlister and Reilly [6].

COROLLARY 1.3. An inverse semigroup S has an E-unitary cover over a group
G if and only if there is a dual prehomomorphism p : G — C{(S) such that, for s € 5,
s € p(g) for some g € G.

We note that the equivalence of 1, 2, and 3 can be deduced in a straightforward
manner from the usual factorisation theorem [4, Theorem 7.5.3]. But we prefer the
constructive approach afforded by compatible pairs since it both builds explicitly the
P-representation of I, and provides a simple coordinatisation into semilattice and group
components.

We also extend Theorem 1.1 to F-inverse monoids (where things simplify because
C(T) is not needed). In particular we shall be able to deduce the following generalisation
of Corollary 1.3.

COROLLARY 1.4. An inverse monoid S has an F-inverse cover over a group G
if and only if there is a dual prehomomorphism p : G — S such that, for s € S, s < p(g)
for some g € G.

We shall then easily obtain the following result of [8] which clearly implies the
McAlister-Tilson covering theorem.

THEOREM 1.5. Let S be an inverse monoid, then S has an F-inverse cover. As
a consequence, every inverse semigroup has an E-unitary cover.

2. PRELIMINARIES AND NOTATION

Fix an inverse semigroup S. Recall that the natural partial order on S is given by
s<tif s=ss"1t. Welet 0 : S — G(S) denote the canonical projection.

One says that s,t € S are compatible, written s ~ t, if st™!, 57t € E(S). Intuitively,
if S acts faithfully by partial bijections on the left of a set X, then s and ¢ are compatible
precisely when their union (as a relation) is a partial bijection. The relation ~ is not
in general transitive; in fact, S is E-unitary if and only if ~ is transitive, in which case
~ = g5 [4, Theorems 2.4.4 and 2.4.6).

A subset A of S is said to be compatible if each pair of its elements is compatible.
Following Schein [9], a subset which is a compatible order ideal is called permissible. For
example, for s € S, [s] = {t € S| t < s} is easily seen to be permissible. If S is E-unitary,
o~!(g) is permissible for all ¢ € G(S). One says that S is complete if each compatible
subset has a join. For instance, the symmetric inverse monoid on X, I(X), is complete.
Observe that if A is any subset of /(X) having a join, A must be compatible.

An inverse semigroup is called infinitely distributive if multiplication distributes over
arbitrary joins (whenever they exist). One can show S is infinitely distributive if and
only if E(S) is. Thus I(X) is infinitely distributive. Let C(S) be the set of permissible
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subsets of S. Then C(S) is an inverse semigroup under setwise multiplication. There is
a natural embedding of S in C(S) by s — [s]. One can show [4, Theorems 1.4.24 and
1.4.25] that C(S) is complete and infinitely distributive, and that the above embedding
is universal. The Preston—-Wagner representation affords another embedding of S into a
complete, infinitely distributive inverse semigroup.

A map ¢ : S — T is called a prehomomorphism if p(st) < ¢(s)p(t). This is equiv-
alent to asking that ¢ preserve order and that if s™'s = tt71, then o(st) = ©(s)p(t) [4].
Also ¢ is a homomorphism if and only if it preserves products of idempotents.

One says that a map ¢ : § — T of inverse semigroups is a dual prehomomorphism
if p(s)p(t) < ¢(st) and @(s7') = p(s)~1. Dual prehomomorphisms take idempotents to
idempotents. Indeed :

p(e) = ple)p(e) o(e) = ple)’ < () = p(e).

If ¢ : S = T is a homomorphism, we set ker o = ¢~(E(T)) and tr(p) = ¢|g(s).
We use a similar notation for congruences. Any congruence is uniquely determined by
its kernel and its trace [4]. A surjective, idempotent separating homomorphism is called
a cover. '

If (X, <) is a partially ordered set, we use I(X, <) for the inverse monoid of partial
order isomorphisms of X whose domains are order ideals. If G is a group, a partial action
of G on X consists of a dual prehomomorphism p : G = I(X, ) with p(1) = 1. One
usually writes gz for p(g9)(z). If X is set ordered by equality, this is the usual notion
(see [2, 4]). If X is a semilattice, then the partial action automatically preserves meets.

If Y is a semilattice and G is a group acting partially on Y with the property that,
for each g € G, there exists y € Y with g~'y defined, then one can define an inverse

semigroup
P(Y,G)={(y.9) €Y x G | 3g7'y}.

One defines a product by

(v,9)(z,h) = (9(¢7'y A z), gh).

It is easy to check this is well defined and that (y,g)~! = (g~'y,¢~}). Furthermore, the
projection to G is an idempotent pure, surjective homomorphism whence P(Y,G) is E-
unitary. The P-theorem states that all E-unitary inverse semigroups arise in this manner.
Note: the usual statement of the P-theorem differs slightly from, but is equivalent to,
ours; see [3].

3. CONSTRUCTING HOMOMORPHISMS

We begin with a general method of constructing homomorphisms sending os-classes
to compatible subsets; of course, we aim to show that all such homomorphisms so arise.
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3.1. COMPATIBLE PAIRS Let S, T be inverse semigroups. Suppose ¢ : E(S) — E(T)
is a homomorphism and p : G(S) — T is a dual prehomomorphism. We say (¢, p) is a
compatible pair if

(3.1) p(g)¥(ss)p(g) ™! = ¥(ss7?) for all s € o7 !(g).

The intuition behind this is to axiomatise what is necessary to be able to define a
homomorphism from P(Y,G) to T by taking the product of a map defined on ¥ and a
map defined on G.

PrROPOSITION 3.1. Let (v,p) be a compatible pair.
1. ¥(s7's) < p(a(s)) " p(o(s)) whence e < s™'s for some s € 0™(g) implies
¥(e) < plg)~p(g)-
2. e<sls = p(cr(s))11)(e)p(a(.<>'))_1 = 1p(ses™1).
3. G(S) acts partially on ¥(E(S)) by gf = p(g)fp(g)~" if f = +(e) with
e < s7's for some s € o71(g). Also, if s € 07(g), then g~'¢(ss7!) is
defined.

PRroor: For 1, observe that

P(s7's)p(9) " p(a) = plg) " p(g)w (s s)p(g) " p(g) = ¥(s™'s)

by two applications of (3.1). The second statement is clear.
For 2,

p(g)v(e)n(g)~" = p(g)w((se) " (se))p(g) ™" = v((se)(se)™")

by (3.1).

For 3, observe first that gi(e) € ¥(E(S)) by 2. To see that g- has domain an order
ideal and that it preserves order, let e < s™'s with s € 07!(g) and ¥(f) < v¥(e). Then
Y(ef) = ¥(f) and ef < s~'s whence gy(f) is defined. Moreover, sefs~! < ses™! so
g¥(f) € g¢¥(e) by 2. Note that 13(e) = ¢(e) by (3.1) with s =e.

Observe that if e < s7!s, then ses™! € ss7! and s~!ses™'s = e. It immediately
follows that, for f € ¥(E(S)), g~'(9f) = f whenever gf is defined whence g- and g~
are inverses.

Finally, suppose h(gf) is defined with f € ¥(E(S)). Since h(gf) and g~'(gf) are
defined, there exist e,e’ € E(S) with 9(e) = gf = ¥(¢’), e < t71t some t € o71(h),
and € < ss™! some s € 07'(g). Then ee’ < ss~!,t71¢ and ¢(ee’) = gf whence h(gf) =
P(tee't™1). Also f = g~ 'y(ee’) = ¥(s'ee's). But

s7lee's < s7'(ss7't7t)s = (ts)"'ts and ts € o7 (hg), so

(hg)f = p((ts)s~'ee's(ts)™") = w(tee't™) = h(gf).
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The last statement is clear. |

Thus, given a compatible pair (v, p), we can define the associated E-unitary inverse
semigroup Py, = P (¥ (E(S)), G(S)). Observe that Proposition 3.1 (1) implies that if
gv(e) is defined, ¥(e) < p(g)~'p(g). We shall use this repeatedly in the sequel.

THEOREM 3.2. Let (¢, p) be a compatible pair. Then:

1. a:8 — Py, defined by a(s) = (y(ss™?),0(s)) is a surjective homomor-
phism, preserving maximal group images. Moreover, if S is E-unitary, o is
injective if and only if 9 is;

2. B : Pyyp — T given by B(f,g) = fp(g) is an idempotent separating
homomorphism;

3. Ba(e) =¢(e) for e € E(S).

PrOOF: By Proposition 3.1 (3), a is well defined. Since 1 is a homomorphism, a
induces a homomorphism on the idempotents. So it suffices to show « is a prehomo-
morphism. We first observe that (3.1) implies o (s)~!¢(ss™!) = ¥(s~!s). Suppose s7!s =
tt~!. Then

(32)  (¥lss™),009) (B(et™), o) = (o()((o() M lss ™) (™)), o(st))-

The first coordinate of the righthand side of (3.2) is then

o(s) (W(s7's)p(tt™")) = a(s)y(s™'s) = p(ss7?).

Since (st)(st)™' = ss7!, it follows that a is a prehomomorphism. To see that « is
surjective, note that if (f,g) € Py,,), then, since g~ f is defined, f = ¥ (e) with e 557!
for some s € 07!(g). But

a(es) = (Y(ess'e), a(es)) = (£, 9)

so « is surjective. If e is injective, 1 must be. Suppose S is E-unitary and 1 is injective.
Then « is idempotent separating, so it suffices to show « is idempotent pure. But if
a(s) = (Y(ss™!),0(s)) is an idempotent, then o(s) = 1 and hence s € E(S).

To prove 2, consider

(3.3) Ble, 9)B(f, h) = ep(g)fp(h).
Since g~ 'e is defined e < p(g)p(g)~!, whence the righthand side of (3.3) is
(3.4) p(g)p(g)""en(g)fo(h) = p(g)(9~"e) fp(h).

But since g(g~e) is defined and the domain of g- is an order ideal, g((g~'e)f) is defined
whence (g7'e)f < p(g)~'p(g). This lets us transform the righthand side of (3.4) into

p(9)(g™"e) fp(9) " p(9)p(h) = g((g7"e) ) p(9)p(h).
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Observe that g~'e < p(g)~'p(g) and f < p(h)p(h)~! (recall: h~'e is defined) imply

35)  g(lg™'e)f) < p(9) (plg) " plg)o(R)o(R) ™) p(9) ™" = p(g)p(h) (p(g)p(R)) .

Denote the left hand side of (3.5) by ¢. Using p(g)p(h) < p(gh), we see

ap(9)p(h) = a(p(9)p(h)) (p(g)p(Rh)) " p(gh) = gp(gh).

On the other hand, (e, g)(f,h) = (g,gh), so B is a homomorphism. To see that f
is idempotent separating, first observe that p(1) is an idempotent and, for e € E(S),
(e) < p(1) by Proposition 3.1 (1). Hence 8(¢(e), 1) = ¥(e)p(1) = 1(e). We now deduce
3 since Bale) = B(¥(e), 1).

As an immediate corollary, we have:

COROLLARY 3.3. Let (¢, p) be a compatible pair. Set p(s) = ¥(ss™!)p(o(s)).
Then ¢ is a homomorphism; in fact, ¢ = Ba where « is a surjective, maximal group image
preserving homomorphism and 8 is idempotent separating with E-unitary domain.

Note that Theorem 3.2 shows that to prove the P-theorem, we just need to show
that given an E-unitary inverse semigroup S, there is a compatible pair (¢, p) with ¢
an injective homomorphism. ‘We shall soon see that such a pair can be constructed from
any idempotent separating congruence on S.

LEMMA 3.4. Let¢:S— T be a homomorphism.
1. 51058 = (s1) or 9(s2)-
2. s~t = @(s) ~ ().
ProoF: For 1, if u < s1, S, then @(u) < ¢(s1), p(s2) so p(s1) or ©(s2).
For 2, st7!,s7't € E(S), implies ¢(s)p(t)"! = ¢(st™!) € E(T) and, dually,
¢(s)"'p(t) € E(T).
COROLLARY 3.5. Leta:S — I and B :1 — T be homomorphisms of inverse
semigroups with I E-unitary. Then, for g € G(S), ﬂa(a"l(g)) is compatible.

PROOF: By Lemma 3.4 (1), a(o~!(g)) is contained in a single o;-class. Since I is
E-unitary, it follows a(c~'(g)) is compatible whence, by Lemma 3.4 (2), Ba(o"'(g)) is
compatible.

In particular, ¢ = Ba, constructed above, sends os-classes to compatible subsets.

We now state a lemma which is useful in constructing compatible pairs.

LEMMA 3.6. Supposey:S — T is a homomorphism and p : G(S) — T is a dual
prehomomorphism such that ¢(s) < p(o(s)) for all s € S. Then (¥, p) is a compatible
pair, where ¥ = |g(s), and ¢ = B that is, p(s) = P(ss™")p(a(s)) forall s€ S.

PRrOOF: Since ¢(s) < p(o(s)), the following equalities hold:

1L p(o(s))e(s) Te(s) = ¢(s);

https://doi.org/10.1017/50004972700019778 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700019778

164 B. Steinberg 8]

2. () e(s)p(0(s)) ™" = w(s)7Y;
3. o(s) = p(s)p(s) " p(a(s)).
By taking products of the corresponding sides of 1 and 2, we obtain

p(o(5)) (s~ s)p(0 () ™" = p(ss™),

verifying (3.1). To complete the proof, observe that 3 states precisely that ¢(s) =
w(ss™)p(a(s). i

We now define an ordering on compatible pairs; the definition is motivated by
Lemma 3.7 below. For compatible pairs (11, 1), (02, p2) (where ¢; : E(S) — E(T),
pi : G(S) = T,i=1,2), we write (¢1, p1) < (¥s, p2) if ¥4 = 9, and p;(g) < p2(g) for all
g € G(S). This is clearly a partial order on the set of compatible pairs.

LEMMA 3.7. Suppose (11, p1) < (2, p2). Then both pairs induce the same fac-
torisation fa : S — T. Furthermore, for any compatible pairs ({1, p1), (¥2, p2) with

Yi(ss o (a(s)) = va(ss7)p2(0(5)), %1 = ¥a.
PROOF: Let us write the associated factorisations as fya; and Bya,. Also, let ¢ =
1 = 1),. First we show the actions are the same. Let e < s~ 's with s € 67!(g). Then

p1(9)¥(e)p(g)™" = y(ses™) = pa(g)(e)p2(g) ™"

by Proposition 3.1 (2). It follows now that oy = a3 so we may drop the subscripts.
Since a is onto, to show f; = f, it suffices to show fia = Ba. Now ¢¥(ss7!)
p1(a(s))p1(o(s)) ™ by Proposition 3.1 (1). So

Bac(s) = P(ss™ ) p2(0(s)) = w(ss™ 1)1 (0(5)) o1 (0(5)) ™ p2((s))
= Y(ss7 N p1(0(s)) = fra(s),

the penultimate equality following because p; (a(s)) < p2(a(s)).
The last statement follow from Proposition 3.1 (3). 1]

3.2. THE COMPLETE, INFINITELY DISTRIBUTIVE CASE We begin with the case T is
complete and infinitely distributive. This theorem is inspired by Lawson and Kellendonk’s
rendition [3] of the P-theorem in terms of partial group actions (which, in turn, was
inspired by Schein’s and Munn’s proofs of the P-theorem {10, 7]). Fix a homomorphism
¢ : S — T of inverse semigroups such that each os-class is sent to a compatible subset
and such that T is complete and infinitely distributive.

LEMMA 3.8. Definep:G(S)—T by

p(9) = \/ v(c7'(9))-

Then p is a dual prehomomorphism.
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PROOF: Indeed,

(3.6) p(91)0(92) = \ 0(07 (@) \ o(07'(92)) = \/ (o7 (a1)) (o7 (92

by [4, Proposition 1.4.20]. Since 0~'(g1)0™(g2) C o~ (glgg), it follows that the 1.,.....and
side of (3.6) is less than \/ 6~!{g192) = p(g192)-

Also, p(g7!) = V(o Y g™)) = ch(a‘l(g))—1 = p(g)~! since inversion preserves
joins. 0

THEOREM 3.9. Letg:S — T be a homomorphism of inverse semigroups such
that each os-class is sent to a compatible subset and T is complete and infinitely distribu-
tive. Then there is a unique minimal compatible pair ¢ : E(S) - E(T), p: G(S) = T
such that ¢ = Pa (constructed as above). Also fo is the unique factorisation as a
maximal group image preserving homomorphism followed by an idempotent separating
homomorphism with the domain of § being E-unitary.

PROOF: Define p as above and let 1 = ¢|g(s). Then, since ¢(s) < p(a(s)), (¢, p) is
compatible and ¢ = S by Lemma 3.6.

It remains to prove the uniqueness statements. Suppose (', ¢') is another compatible
pair with ¢(s) = ¢/(ss7)p'(o(s)); then ¢ = ¢’ by Lemma 3.7. Now, for g € G, s €
o7Hg), p(s) = P(ss7)p(g) < p’( ). Thus

=Vele™(9) <F9)
whence (¢, p) < (¥', ') as desired.

As to the uniqueness of @ and j, it suffices to show that the congruence determined
by a is unique. We proceed by examining the trace and kernel. Suppose = is a congruence
such that the projection to S/= preserves the maximal group image, S/= is E-unitary,
and the projection from S/= to T is idempotent separating. Then tr(=) = tr(y). Suppose
s € ker =, then s 05 e € E(S) since = C 05. Conversely, if s 05 e € E(S), then s ogz e
whence, since S/= is E-unitary, s € ker=. Thus 0~!(1) = ker=. But tr(a) = tr(y) and
kera = 0~!(1), so = is induced by a. 0

Theorem 1.2 now follows since I(X) is complete.

3.3. PROOF OF THEOREM 1.1 We are now prepared to prove Theorem 1.1. That 4
implies 5 is Lemma 3.6 (since ¢ = ¢|g(s)) while 5 implies 4 follows from the calculation
o(s) = ¥(ss71)p(a(s)) < p(o(s)). That 5 implies 3 is the content of Corollary 3.3 once
we show that the range of B is contained in T (viewed as a subsemigroup of C(T)).
But since a is onto and fa = ¢, the image of f is contained in T; 3 implies 2 is
obvious; 2 implies 1 follows from Lemma 3.4. For 1 implies 4, we view ¢ : S -+ T asa
homomorphism ¢’ : § = C(T). Then, by Theorem 3.9, we can find a compatible pair
¥ : E(S) = E(C(T)) and p : G(S) — C(T) such that ¢(s) = ¢'(s) = ¥(ss7)p(o(s))
plo(s).

The uniqueness statements follow from Theorem 3.9. 0

https://doi.org/10.1017/50004972700019778 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700019778

166 B. Steinberg [10]

3.4. ProoF OF COROLLARY 1.3 Suppose ¢ : I — S is an E-unitary cover such that
G = G(I). Then, by Theorem 1.1 (4), there exists a dual prehomomorphism p : G —
C(S) such that o(t) < p(o(t)). Since o is onto, the result follows.

Suppose now that p : G — C(S) is a dual prehomomorphism such that, for each
s € S, s < p(g) some g € G. Define

(3.7) I={(s,9) €5 x G |s<p(9)}.

Then, since p(1) is idempotent, E(I) = E(S)x 1 whence the projection to G is idempotent
pure and the projection to S is idempotent separating. 0

4. F-INVERSE MONOIDS

We now specialise our results to the case of F-inverse monoids. An inverse semigroup
S is an F-inverse monoid if each os-class has a maximum; such a semigroup must be a
monoid and E-unitary.

THEOREM 4.1. Lety:S — T bea homomorphism of inverse semigroups. Then
the following are equivalent:

1. The image under ¢ of each og-class of S has a maximum;

2. ¢ = Ba with a : S — I a surjective, maximal group image preserving
homomorphism, f : I — T idempotent separating, and I an F-inverse
monoid;

3. There is a compatible pair ¢ : E(S) — E(T), p : G(S) — T such that
w(s) = ¥(ss~')p(a(s)), and, for each g € G(S), there exists f € y(E(S))
which is maximum such that g~! f is defined.

4. There is a dual prehomomorphism p : G(S) — T such that ¢(s) < p(o(s))
all s € S and p(g) € p(o~!(g)).

Moreover, o and 8 are unique, there is a unique minimal choice of (y, p), and I is the
P-semigroup Py, associated to (¥, p).

PROOF: For 4 implies 3, Lemma 3.6 gives that (1, p), where ¥ = ¢|z(s), is a com-
patible pair and ¢(s) = ¥(ss7)p(o(s)). Suppose p(g) = ¢(s) with s € o~!(g); then
if g7'f is defined, f < p(g)p(g)~! = ¥(ss™!) so the second condition of 3 is satisfied.
For 3 implies 2, it suffices to show that Py ,) is an F-inverse monoid. But if f € (F)
is maximum with ¢! f defined, then (f,g) is maximum in the op, ,-class of g. For 2
implies 1, let A be a os-class. Then, by Lemma 3.4 (1), a(A) is contained in a o,-class.
But since « is surjective, maximal group image preserving, a(A) must, in fact, be a ;-
class. Let t = max(a(A)); we claim B(t) = max(p(A)) (note: B(t) € p(A)). Indeed, if
r € p(A), then r = Ba(s) with s € A and a(s) < t whence 7 < B(t). For 1 implies 4,
define p(g) = max(p(c"(9)))-
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The uniqueness statements follow from Theorem 1.1 and observing that the minimal
choice of p is given by p(g) = max(p(c~'(g)))- 0

We note that Theorem 4.1 applies if S is F-inverse since if § : G(S) — S is de-
fined by 6(g) = max(o~!(g)), then ¢(s) < p(a(s)) where p = 8 and p(g) = ¢(6(g))-
Thus every homomorphism from an F-inverse monoid factors as an idempotent pure
homomorphism onto an F-inverse monoid followed by an idempotent separating homo-
morphism, a result of Munn and Reilly [8]. Since free inverse monoids are F-inverse, any
homomorphism from a free inverse monoid can be coordinatised in terms of a semilattice
homomorphism from the subsemilattice of elements represented by Dyck words and a
dual prehomomorphism from a free group.

4.1. PrROOF OF COROLLARY 1.4 Suppose ¢ : I — S is an F-inverse cover such that
G = G(I). Then, by Theorem 4.1, there exists a dual prehomomorphism p : G — S such
that ¢(t) < p(o(t)). Since ¢ is onto, the result follows.

Suppose now that p: G — S is a dual prehomomorphism such that, for each s € S,
s £ p(g) for some g € G and let I be as in (3.7). Then, as in the proof of Corollary 1.3,
I is an inverse semigroup and the projection to S is idempotent separating. But clearly
(0(9), g) is the maximum element projection to g, so S is an F-inverse monoid. 0

4.2. PROOF OF THEOREM 1.5 Suppose § is an X-generated inverse monoid and let
FG(X) be a free group on X. Define p : FG(X) — S by taking a reduced word w
to its equivalence class in S. Since deleting subwords of the form zz~! takes you up in
the natural partial order, it easily follows that p is a dual prehomomorphism and that
if s € S is represented by u, then s € p(w) where w is the reduction of u. The result
follows from Corollary 1.4. 0
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