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1. Introduction 

This is a brief report on the work done by the IAU working group 'Relativity 
for Celestial Mechanics and Astrometry' that is well documented on the Working 
Group (WG) web-site: http://rcswww.urz.tu-dresden.de/~lohrmobs/iauwg.html. 
There one finds a list of members, the circulars of the WG, related material and 
references to relevant publications as well as some online documents containing 
important formulas and explanations. 

The first central task of the WG was to recommend some specific form of 
the metric tensor gap that is related to the distance ds of two neighboring points 
in space-time with coordinates xa = (ct,x%) and xa + dxa by 

ds2 = gap(t, xl) dxa cfar. 

The metric tensor allows one to derive translational and rotational equations of 
motion of bodies, to describe the propagation of light, the rates of atomic clocks 
and to model the processes of observation. Meanwhile it is widely accepted that 
in order to describe adequately modern astronomical observations one has to use 
several relativistic reference systems. The barycentric celestial reference system 
(BCRS) can be used to model the light propagation from distant celestial objects 
as well as the motion of bodies within the solar system. The geocentric celestial 
reference system (GCRS) is physically adequate to describe processes occurring 
in the vicinity of the Earth (Earth's rotation, motion of Earth's satellites). 

The necessity to use several reference systems can be understood from the 
following. If we were to characterize terrestrial observers by the difference be­
tween their BCRS coordinates and the BCRS coordinates of the geocenter, the 
positions of the observers relative to the geocenter would change with time also 
due to purely relativistic coordinate effects (such as Lorentz contraction, etc.) 
which have nothing to do with the Earth's rotation or geophysical factors and 
vanish if one employs suitable GCRS coordinates instead. On the other hand, 
the coordinate positions derived with VLBI observations are used to investi­
gate local geophysical processes and some adequate Geocentric RS allows one 
to simplify their description. For these reasons the central task of the workr 
ing group is to specify the metric tensors both in the BCRS and in the GCRS 
and the corresponding space-time coordinate transformations between these two 
systems. 

Two advanced relativistic formalisms have been elaborated to tackle the 
problem of astronomical reference frames in the first post-Newtonian approxi­
mation of general relativity. One formalism is due to Brumberg and Kopeikin 
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(Brumberg and Kopeikin, 1989; Kopeikin, 1988; Brumberg, 1991; see also Klioner 
and Voinov, 1993) and another one is due to Damour, Soffel and Xu (Damour, 
Soffel, Xu, 1991, 1992, 1993, 1994, referred to as DSX I-IV). Although the for­
malisms look rather different at first glance, it is mainly the concept of mass 
multipole moments (potential coefficients) at the first post-Newtonian level that 
differs in the two formalisms. The new recommendations of the WG improve 
and extend those from the IAU 1991 framework that will be recalled in the next 
section. 

2. The IAU 1991 framework 

The IAU resolution A4(1991) contains nine recommendations, the first five of 
which are directly relevant to our discussion. 

In the first recommendation, the metric tensor in space-time coordinates 
(t, x) centered at the barycenter of an ensemble of masses is recommended to be 
written in the form 

goo = _1 + ^ l + 0(c-4), 

goi = 0(c~% (1) 

SH = *ii ( l + E ^ 1 ) + °(c-4). 

where c is the speed of light in vacuum U is the sum of the gravitational po­
tentials of the ensemble of masses, and of a tidal potential generated by bodies 
external to the ensemble, the latter vanishing at the barycenter. The algebraic 
sign of U is taken to be positive. 

This recommendation recognizes that space-time cannot be described by a 
single coordinate system. The recommended form of the metric tensor can be 
used not only to describe the barycentric celestial reference system of the whole 
solar system resulting in the BCRS, but also to define the geocentric celestial 
reference system (GCRS) centered at the center of mass of the Earth with a 
suitable function U, now depending upon geocentric coordinates. In analogy to 
the GCRS a corresponding celestial reference system can be constructed for any 
other body of the solar system. 

In the second recommendation, the origin and orientation of the spatial 
coordinate grids for the solar system (BCRS) and for the Earth (GCRS) are 
defined. Notably it is specified that the spatial coordinates of these systems 
should show no global rotation with respect to a set of distant extragalactic 
objects. It also specifies that the SI (International System of Units) second and 
the SI meter should be the physical units of proper time and proper length in 
all coordinate systems. It states in addition that the time coordinates should be 
derived from an Earth atomic time scale. 

The third recommendation defines TCB (Barycentric Coordinate Time) 
and TCG (Geocentric Coordinate Time) — the time coordinates of the BCRS 
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and GCRS, respectively. Here we write (t = TCB,xl) and (T = TCG,X*) 
for the respective coordinates. The recommendation also defines the origin 
of the time scales (their reading on 1977 January 1, 0 h 0 m 0 s TAI (JD = 
2443144.5 TAJ) must be 1977 January 1, 0 h 0 m 32.184s) and declares that the 
units of measurements of the coordinate times of all reference systems must co­
incide with the SI second and SI meter. The relationship between TCB and 
TCG is given by a full 4-dimensional transformation 

TCB - TCG = c - „-2 j n ^ + tfCWOndt + tfcri, + 0 ( 0 , (2) 

where xE and vl
E are the barycentric coordinate position and velocity of the 

geocenter, rE = x% — xE with xl the barycentric position of the observer, and 
U(t,-x.E{t)) is the Newtonian potential of all solar system bodies apart from the 
Earth evaluated at the geocenter. 

In the fourth recommendation another time coordinate, Terrestrial Time 
(TT), is defined for the GRS. It differs from TCG by a constant rate only 

TCG -TT = LGx (JD - 2443144.5) x 86400, LG « 6.969291 x 10- 1 0 , (3) 

so that the unit of measurement of TT agrees with the SI second on the geoid. 
TT represents an ideal form of TAI, the divergence between them being a con­
sequence of the physical defects of atomic clocks. It is also recognized that the 
TT is nothing else than a rescaling of the GRS coordinate time TCG. 

The fifth recommendation states that the old barycentric time TDB may 
still be used where discontinuity with previous work is deemed to be undesirable. 
In the notes to the third recommendation the relation of the TCB with TDB 
given as 

TCB-TDB = LBx(JD- 2443144.5) x 86400, LB « 1.550505 x 10- 8 . (4) 

3. General framework for new conventions 

3.1. New conventions for the Barycentric Celestial Reference System 

The metric tensor of the Barycentric Celestial Reference System (BCRS) in the 
first post-Newtonian approximation should be written in the form 

„ 2w 2w2 ,n. _B. 
5oo = - l + - r - - ? - + 0(c 5 ) , 

flfW = - ! « ; , • + 0 (c - 5 ) , (5) 

9ii = 6ij(l + lw}+0(c-*). 
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Here, the post-Newtonian gravitational potential w generalizes the usual New­
tonian potential U and w* is the vector potential related with gravito-magnetic 
type effects. The best reason for writing the metric in that form is a simplic­
ity argument. This is the most compact form to write the metric tensor to 
first post-Newtonian order. Let us also note here that the potential w contains 
also explicit post-Newtonian terms and, therefore, does not coincide with the 
Newtonian potential. As is well known it makes no sense to distinguish be­
tween the Newtonian potential and explicit post-Newtonian terms. It is the 
post-Newtonian potential w as a whole that plays a role in observations. 

Note that this form (5) of the barycentric metric tensor implies the barycen-
tric spatial coordinates x' to satisfy the harmonic gauge condition. We- rec­
ommend also to use the harmonic gauge for the barycentric coordinate time 
t = TCB. The main arguments in favour of the harmonic gauge are: 

• tremendous work on General Relativity has been done with the harmonic 
gauge that was found to be a useful and simplifying gauge for all kinds of 
applications; 

• in contrast to the standard PN-gauge the harmonic gauge can be defined 
to higher PN-orders, and in fact for the exact Einstein theory of gravity. 

Assuming space-time to be asymptotically flat (no gravitational fields far 
from the system), i.e., 

lim flr^ = d i a g ( - l , + l , + l , + l ) 

in the standard harmonic gauge, the post-Newtonian field equations of General 
Relativity are solved by 

»( t ,x) = G / d V ^ ^ + ^ ^ / d V ^ , x ' ) | x - x ' | , 

w%x) = Gfd3x'P^, (6) 
J |x - x'| 

where 

<j(t, X) = j » ff'(*»X) = • 

c c 
y/ij/ _ T^^f^x*) are the components of the energy-momentum tensor in the 
barycentric coordinate system and Tss = Tn+T22+T33. For many applications 
explicit expressions for the gravitational mass and mass-current density, o and 
a*, will not be needed. 

Since the integrations in eqs. (6) have to be taken over all the massive solar 
system bodies A, the metric potentials, w and w', can be written as a sum of 
the form 

A A 
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Here the potentials with index A are obtained from relations (6) with integrals 
taken over the support of body A only. In the following we will use 

Wext = J2 WA> Wext = £ U>A > 
A+E A?E 

where E stands for the Earth. 

3.2. New conventions for the Geocentric Celestial Reference System 

The metric tensor of the Geocentric Celestial Reference System (GCRS) (T, X1) 
should be written in the same form as that of the BCRS: 

, 2W 2W2
 /nl _5N Goo = - l + - r - - ? - + 0(c 5 ) , 

G0a = ~^w«, (?) 

Gab = 6ab (l + | w ) + 0 ( c " 4 ) . 

Here W = W(T, X) is the post-Newtonian gravitational potential in the geo­
centric system and Wa(T,X) is the corresponding vector potential. These geo­
centric potentials should be split into two parts: potentials WE and WE arising 
from the gravitational action of the Earth and external parts Wext and W£xt due 
to tidal and inertial effects. The external parts are assumed to vanish at the 
geocenter and admit an expansion into positive powers of X. Explicitly, 

W(T,X) = WE(T,X) + Wext(T,X), 

Wa(T,X) = WE(T,X) + WUT,X). (8) 

The Earth's potentials WE and WE are defined in the same way as WE and wE 

but with quantities calculated in the GCRS. We may write 

Wext = Winer + Wtfdal , 

^ e x t = ^ n e r + ^ t i d a l - ( 9 ) 

Here, W|ner and W£er are inertial contributions that are linear in Xa 

" iner = tya •**• i 

WCer = \ C* Bahci^ - ! & . ) ** + 0(c~2) . (10) 

Qa characterizes the deviation of the actual worldline of the origin of the GCRS 
from geodesic motion in the external gravitational field that is determined mainly 
by the coupling of the Earth's nonsphericity to the external potential. To New­
tonian order Qa is given by 

g ° = j R a ' ( ^ W e X t " ^ ) + 0 ( c ~ 2 ) - ( U ) 
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Here, x'E(t),vE(t) = dxE/dt and aE — dvE/dt are the barycentric coordinate 
position, velocity and acceleration of the origin of the GCRS (geocenter). R? 
is a rotation matrix that determines the relative orientation of barycentric and 
geocentric spatial coordinate lines. ft0 is a slowly varying function of time related 
to Rf by 

eabcn
b = Ra

kR
c
k , (12) 

and fifner mainly describes the geodetic precession of inertia! axes with respect 
to remote objects. One sees that for fia = fifner the vector potential W£er 

vanishes. This implies that dynamical equations of motion, e.g., for a satellite 
around the Earth, do not contain Coriolis and centrifugal terms, i.e., the local 
geocentric spatial coordinates Xa are dynamically non-rotating. Recommended, 
however, is the use of kinematically non-rotating geocentric coordinates defined 
by fia = 0, i.e., by R\ = 6ai. 

jytidal j s a generalization of the Newtonian tidal potential 

^ N e v j t o n ^ x ) = ^ ^ + x ) _ ^ ( ^ _ X
a-^Wext(^E) . (13) 

Full post-Newtonian expressions for Wtidal and W ^ ^ can be found in DSX.II, 
IV. 

Finally, the local gravitational potentials WE and WE of the Earth are 
related to the barycentric gravitational potentials wE and wE by 

WE(T, X) = wE(t, x) ( l + 1 2t ; | ) - ^ vE wE(t, x) + 0(c~4), 

WE(T, X) = Rf (wE{t, x) - vE wE(t, x)) + 0(c~2). (14) 

3.3. Transformations between the reference systems 

The coordinate transformations between the BCRS and GCRS can be written 

as 

T = t - I ^ O + rferfe) 

+ i (j9(t) + B\t) rE + B^(t) rE rj
E + C(t, x)) 

+0(c~5), (15) 

Xa = 6ai rE + -^ i2VEvErE + wext(^E)rE + rl
EaErE - 2aErEj 

+0(c~4), (16) 

where 

J 1 

— A(t) = - v\ + wext(xE), 
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J 1 Q 1 

Jt B ^ = ~ 8 VE ~ 2 V*E Wext(XE^> + 4v'E w « x t + 2 W « * ( X B ) ' 

£ ' (*) = ~ 2 U£ V^ + 4 <xt(x£;) - 3 4 Wext(XB), 

Let us remark that the harmonic gauge condition does not fix the function C 
uniquely. Here we have indicated the simplest solution. Though the theoretical 
domain of validity of the GCRS coordinates is quite large (larger than the size 
of the solar system) the spatial region where the GCRS coordinates are to be 
used in practice, should be restricted to the immediate vicinity of the Earth. We 
suggest here that the GCRS coordinates be used only to about the geostationary 
orbit, that is, for |X| < 50000 km. The size of this region allows one to estimate 
the terms in the transformations and to neglect those terms which are smaller 
than the targeted accuracy. Thus, it is easy to see that in the transformations 
between coordinate times c - 4 C < 0.1 ps for |X| < 0.1 AU and can be neglected 
for most applications. In the same way, one can show that c~4B^ rErE < 0.1 
ps for |X| < 0.01 AU and also can be neglected for most purposes. However, to 
avoid ambiguities one should remember that the terms 0(rE) are fixed in the 
time transfromations and neglected only because of their small numerical values 
in the considered region of space. 

3.4. Multipole expansions of the local gravitational potentials 

For many problems it is advantageous to present the local gravitational poten­
tials of the Earth as multipole series that usually converge everywhere outside 
the Earth. The definition of corresponding post-Newtonian multipole moments 
or potential coefficients is not obvious from the very beginning. However, a cer­
tain set of potential coefficients, called Blanchet-Damour moments, defined to 
first post-Newtonian order has especially attractive features. Moreover, by using 
such Blanchet-Damour potential coefficients we get the simplest possible form 
of the multipole expansion of the post-Newtonian potentials (these expansions 
take an almost Newtonian form). Basically two sets of BD-moments occur in 
the formalism: mass-multipole moments and (mass) current multipole moments. 
Expressed in terms of (symmetric and trace-free) Cartesian tensors they are de­
noted by ML and SL- Here L stands for a Cartesian multi-index, L = i\.. .i\ 
and each index i runs over the three spatial indices. The set ML is equivalent to 
a set of potential coefficients C\m and S\m that appear in a spherical harmonic 
expansion of the potentials. The first spin-moment of a body agrees with its spin 
or total angular momentum. The multipole expansion of WE and WE reads (a 
dot indicates the time derivative): 
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WE = GJttf 
1=0 ' • 

MLdL^- + ^MLdL\X\ + ^A<T + 0(c-4), 

W% = 
1=1 ' • 

+0(c~2), 

1 / 1 
MaL-ldL-17Trj + J—T^abcScL-ldbL-lT^; - A ,a 

where 

(17) 

c£ 
( -1) ' 2 / + 1 

^ ( / + 1 ) ! 2 / + 3 7 ? Z ' ^ | X | ' 

7 > L = / Y,aXaLdzX, 
Jv 

and 

S(T,X) = T°0 + ^ 7 " " , E 0 ( T , X ) = i T ° 0 , 

q-nv _ 7"M"^a;») a r e the components of the energy-momentum tensor in the 
GRS. 

The function A does not enter the post-Newtonian equations of motion. The 
latter contains only the BD multipole moments ML and SL- The only place 
where the function A should be accounted for is the transformation between the 
proper time of an observer and the coordinate time of the GRS. First estimates 
indicate that the A-terms will be negligible in the foreseeable future. For these 
reasons the gauge function A will not be mentioned in the recommendations. 

A spherical harmonic expansion of WE reads (R = |X|) 

WE(T,X) = ^ [ i + f^Y/{^)lPim(coS9)(Cim(T,R)coSm<j> 

+Sim(T, R) smm<f>j\ + -^ 0TA + 0{c~4) (18) 

with 

C?m{T,R) = Cfm{T)-

Sfm(T,R) = Sfm(T)-

R2 d2 

2(2/ - 1) c2 dT2 

1 R2 d2 

2(2/ - 1) c2 dT2 

CL(T), 

SfL(T) 
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Here the relativistic time derivative terms are not expected to play some inter­
esting role in the near future; they will not be mentioned in the corresponding 
recommendation. The gravitomagnetic vector potential of the Earth, Wjj, is 
dominated by the Earth's spin-vector S E (total angular momentum), i.e., to a 
good approximation 

Wf(T,X)~ g ( X x S E ) ° 
2 R3 -A,a-

Note that this representation of the geocentric metric correctly yields the Schwarz-
schild and Lense-Thirring accelerations in satellite motion to first PN-order as 
recommended e.g., by the IERS Conventions 2000. 

3.5. The barycentric metric in the mass-monopole approximation 

For many applications it is sufficient to keep the mass-monopoles of the various 
bodies only, i.e. to put 

Mi 0 for I > 1, 5 L = 0 for / > ! 

for all bodies and to keep the masses MA = MA only. Furthermore, we will 
assume all moments VL to vanish. From the transformation rules for the metric 
potentials one derives the metric in the barycentric coordinate system in the 
form 

2 2 
5oo = - l + - j to 0 ( t ,x) - - j (wj j ( t ,x) + A(t,x)), 

9oi = —^Wi{t,x), (19) 

9ij = 1 + H«U,, 
where 

te0(t,x) = 53 GMA 

TA 
(20) 

and 

with 

A(*,x) = £Af l ( i ,x) , 
B 

(21) 

AB(«,x) = 
GMB 

TB 

GMB 

TB 

3 2 ^ GMC 

C#B rcB 
- ^GMB TB,tt 

n 2 v ^ GMC 1 

C#fl fCB 
'%^w .(22) 
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Futhermore, in our approximation 

„,,.(!, x) = £ ^ 4 . (23) 

Note, that the post-Newtonian Einstein-Infeld-Hoffmann equations of motion 
for a system of mass-monopoles that form the basis of modern solar system 
ephemerides can be derived from that form of the barycentric metric. Thus, 
the barycentric mass-monopole metric given above is already in use for the 
description of solar system dynamics. 
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