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An orthomodular poset which does not
admit a normed orthovaluation

Peter D. Meyer

It is of relevance to studies in the logic of quantum mechanics

whether or not every separable completely orthomodular poset

admits a normed 0-ortho-valuation. A finite orthomodular

poset is constructed which is a counter-example to this

proposition.

We review some standard notions: An orthocomplemented poset P is

an orthoposet if x V y exists for any orthogonal x, y € P . An

orthocomplemented poset P is a oompZete orthoposet if every orthogonal

subset of P has a least upper bound in P . An orthoposet (P, 5, J_)

is orthomodular if for any x, y £ P , x = yx if i s / and

x v y = 1 . A complete orthoposet is completely orthomodular if it is

orthomodular. A poset P is separable if every orthogonal subset of P

is countable (that is, is finite or countably infinite).

Let (P, 5, J_) be an orthoposet, then a real-valued function p on

P is a normed orthovaluation if:

(i) p(x) i 0 for all x € P ;

(ii) p(l) = 1 , and

(iii) if x + y and x 5 yx then p(x v y) = p{x) + p{y) .

It can be shown that a normed orthovaluation maps P into [0, 1] , and

in general behaves like a probability function.
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164 Peter D. Meyer

Let (F, 5, J_) be a separable complete orthoposet, then a normed

orthovaluation p on P is a normed a-orthovaluation if (as well as

(iii)) p(vX) = £ p(x) for any orthogonal subset X of P (X must be

countable since P is separable). The requirement in (iii) that x t y

is for practical purposes without significance, but is imposed solely so

that

(a) the boolean lattice of all subsets of the empty set (a lattice

of one element only) behaves itself (as befits its triviality)

by admitting a normed orthovaluation, and

(b) the notion of a normed a-orthovaluation is (as it is supposed

to be) a restriction of the notion of a normed orthovaluation.

In this paper we assume familiarity with Section 1 of Finch [7],

which is concerned mainly with the notions of a logical structure and of

a logical a-structure. A logical structure is a set of boolean lattices

with a common O-element and a common 1-element, satisfying a number of

conditions, among which is that the partial orderings,

orthocomplementations, and v-functions of any two lattices 'coincide' for

the elements in their intersection. 'Combining' the boolean lattices in a

logical structure produces an orthomodular poset. For the details the

original paper should be consulted. If L = {B : y (. V} is a logical

structure then the partial ordering, the orthocomplementation, and the

V-function of B will be denoted by S , if and v respectively.
Y Y Y Y

Proofs will be terminated by the sign // .

Finch [2] introduces the notion of a state of a physical system

associated with a separable logical O-structure L , and remarks that any

normed a-orthovaluation on the logic L associated with L (L is

always a separable completely orthomodular poset) determines a state of

the physical system (although not all of its states arise in this way).

In the concluding section of his paper, Finch raised four questions, one

of which is: Does every separable completely orthomodular poset admit at

least one normed a-orthovaluation? It is the purpose of this paper to

provide a negative answer to this question.

We define a set L of seven boolean lattices as follows: Let
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Bl> B2> 53 € L where, for 1 < i £ 3 , (fl., £., ff.) is the boolean
%f If 1r

lattice of all subsets of the set {a ., b., a., d-} . We identify the
If If "t If

1-elements of each of these lattices, and denote it by J , so that I is

the common 1-element of B\, B2 and S3 .

Hereinafter i, and j will denote arbitrary elements of

{l, 2, 3} , and s and t will denote arbitrary elements of

{a, b, a, d} . The remaining four boolean lattices making up L are

defined as follows: Let

{*!>, {t2}, {£3}, NiitO, N2{t2),

(where D denotes the empty set). The complement of {t.}, N,{t.} , is
If U 1*

defined to be N.{t.} , and the partial ordering £. is defined so as to

make fiS, , 5,, N.) a boolean lattice with the following structure:
U "0 U

I

{*3>
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Thus L = {B1S B2, B^, B Q , B^, Bfl, B^} is a set of boolean lattices. Let

B3 = {B1, B2, £3} and 8^ = {B , B, , B , B,} .

LEMMA 1.

(i) If i t j then B. n B. = {D, 1} ;

Ci-i; if a * t then B n B = {D, 1} ;

f-iii; B. n B = -In, {*.}, N.{t.}, l\ .1 c (. ^ v % J

Proof. Apparent. //

LEMMA 2. L is a logical structure.

Proof. We must show that L satisfies conditions (i) - (vi) in the

definition of a logical structure given on p. 276 of Finch [/]. In this

proof, occurrences of small Roman numerals will correspond to the

conditions so numbered in the definition. Let {B : y i T} be an

enumeration of L .

(i) Each B has the same 0-element, namely, • .

Let x, y d B n Bo . If a = 3 then:
a p

(1) (ii) x S y if and only if x < y ;
O. p

(2) (iv) Nax = N^x ;

(3) (v) x va y = x vg y .

Suppose a # B . If S , B. f B, or B , B. t B, then (by Lemma l)
ot p j ct p 4

x,-y € {•, J} , so (1) - (3) hold.

If B = B. and BQ = B, then (by Lemma l)
Cl % p V

x, y d \n, {t.}, N.{t.}, l\ , so again (l) - (3) hold.

Similarly if B = B and Bo = B. . Hence for any x, y i B <~\ B ,
Ot V p X- Ot p

(1) - (3) hold.

(iii) Suppose x S y and y 5 2 . We must show that for some
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Y € T , x £ 3 .
Y

If a = 6 then x £ z . Suppose a + & . If B , BD € 8_ or
Ot Ot p j

B , 5 . f Bi. then x , y, z £ {•, J} , so x £ s . If B = B. and
01 p ^ Ot • 01 u

B = B then y £ B. n B = {•, {t.}, M * - } , -Z"i • If J E \O, it.)]

then x < 3 , and if y € <#.{£.}, J> then x 5 s . Similarly if

p [ "L 1* J &
B = B and B = B. . Hence for some y £ V , x £ s .

(vi) Suppose y £ N x , x £ 3 ., and w £ 3 . We must show that
oc ot p "y

for some 6 £ T , x, y, z £ B, .

If & = Y then x, y, 3 £ B . Suppose g * Y • If 5 , B € B3

or ^ , B € Bĵ  then 3 € {D, J} (by Lemma l),so x, y, z £ B .

If x € {D, 1} then x, z/, 3 € B . Suppose x f {•, J} . Suppose

B = B̂ . and B = B then 3 € JQ, {t.}, ̂ .{t^}, li (by Lemma l). If
M l ^ J

z £ {a, 1} then x, y, z £ Bn ; and if z = {£„.} then

f }
x € -JD, {^}| , so x, y,

Suppose 3 = N.{t.} , then since B = B , either !/ € <D, W.{t.}\
1r 1r y U \ J

. . ! , r 1 r ,1 fr 1
(in which case x, y, z £ B J or y £ •« it-. j, ttgJ» {^o/r \ •{{£•}? .

Suppose the latter, then y = {t .} for some 3 t i , and so y £ B ., B
3 3 c

only. Now x f {Q, J} , x 6 B = B. and i t 3 , so x \ B. . Since

x, y £ B , x € B. or x € B . Thus x € B , so
a j £ t

x £ \U, {t.}, N.{t.}, I) (by Lemma l ) , x < z = N.{t.} , and x # D , so

x = N .{t.} = 3 . Thus x, y, z £ B

Similarly if B = B and B = B. . Hence for some 6 € T ,

x, j/, 3 € B . Since L satisfies the required conditions, L is a

logical structure. //

B
OC

z 6
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We now define our poset, which will consist of Uk elements. Let

P = Bx u B2 u B3 , then P =UL . For x, y 6 P let x < y if and only

if for some y t T , x S y . For x t P let xX = N x for any y i T

such that x i B . In the terminology of Finch [/], (P, £, J_) is the

logic associated with the logical structure L .

PROPOSITION 3. P is an orthomodular poset.

Proof. By the previous lemma, L is a logical structure.

P =\J{B : y £ T} so by the remarks on p. 276 of Finch [/], (P, 5, J_)

is an orthocomplemented poset. By Theorem 1.1 of the same paper,

(P, <, J_) is orthomodular. //

Let S be an orthocomplemented poset, then (following Finch [7,

p. 280]) a frame of S is a maximal orthogonal subset of S \ {0} .

LEMMA 4. Let (S, 5, J_) be an orthoposet, and let p : S -*• [0, l]

be a normed orthovaluation on S . Then for any finite frame F of S ,

I p(w) = 1 .

Proof. By induction on \F\ . Suppose \F\ = 1 , then F = {l} , so

p(w) = p(l) = 1 .

Suppose the lemma holds for all n-element frames of 5 (with

n i l ) . Let F be a frame of S such that |F| = n + 1 . Let

x, y € F such that x + y . Now x is orthogonal to y and 5 is an

orthoposet, so x v y exists in S . Let G = [F \ {x, y}) u {a; V y} ,

then \G\ = n . It is easily shown that G is a frame of S .

Since p is a normed orthovaluation on S , p(i v j) = p(i) + p(j) ,

so

I p(u) = I p(w) - p(x v y) + p(x) + p(z/)

= I P(W)

= 1

by the inductive hypothesis.
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Thus, by induction, the lemma holds for all finite frames of 5 . //

PROPOSITION 5. V is an orthomodular poset which does not admit a

normed orthovaluation.

Proof. P is orthomodular by Proposition 3. The atoms of P are

the following 12 unit sets:

{ai} {&!> {cO {drf
{a2} ib2) ic2} id2}
{a3} {b3} {c3} {d3} .

Let Fi = {{t^}, {Z^}, {cj, W ^ } , and let F t =

then clearly each F. and each F, is a frame of P .

Suppose now that P admits a normed orthovaluation p . P is an

orthoposet, so by the previous lemma,

I p(u) = 1 and I p(u) = 1 .

Now the F. are pairwise disjoint, as are the F , so

3
lip(.w) : w € Fi u F2 u F3} = I I p(u) = 3

^

and

d
lipiw) : w € F u F, u Fn u F,} = £ £ p(u) = h .

a ° ° a t=a weF,

But F u F u F = F u F, u F u f • , so if P admits a normed

orthovaluation then 3 = h . Hence P does not admit a normed

orthovaluation. //

COROLLARY 6. P is a completely orthomodular poset which does not

admit a normed a-orthovaluation.

Proof. P is orthomodular by Proposition 3, so P is an orthoposet.

Since P is finite, P is a complete orthoposet, and so P is

completely orthomodular. Any normed a-orthovaluation on a complete
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orthoposet is a normed orthovaluat ion, so by Proposition 5, P does not

admit a normed a-orthovaluation. //
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