An orthomodular poset which does not admit a normed orthovaluation

Peter D. Meyer

It is of relevance to studies in the logic of quantum mechanics whether or not every separable completely orthomodular poset admits a normed σ -ortho-valuation. A finite orthomodular poset is constructed which is a counter-example to this proposition.

We review some standard notions: An orthocomplemented poset P is an orthoposet if $x \lor y$ exists for any orthogonal $x, y \in P$. An orthocomplemented poset P is a complete orthoposet if every orthogonal subset of P has a least upper bound in P. An orthoposet (P, \leq, \perp) is orthomodular if for any $x, y \in P$, $x = y^{\perp}$ if $x \leq y^{\perp}$ and $x \lor y = 1$. A complete orthoposet is completely orthomodular if it is orthomodular. A poset P is separable if every orthogonal subset of Pis countable (that is, is finite or countably infinite).

Let (P, \leq, \perp) be an orthoposet, then a real-valued function p on P is a normed orthovaluation if:

(i) $p(x) \ge 0$ for all $x \in P$;

(ii) p(1) = 1, and

(iii) if $x \neq y$ and $x \leq y^{\perp}$ then $p(x \vee y) = p(x) + p(y)$.

It can be shown that a normed orthovaluation maps P into [0, 1], and in general behaves like a probability function.

Received 14 May 1970. Communicated by P.D. Finch. 163 Let (P, \leq, \perp) be a separable complete orthoposet, then a normed orthovaluation p on P is a normed σ -orthovaluation if (as well as (iii)) $p(vX) = \sum_{x \in X} p(x)$ for any orthogonal subset X of P (X must be $x \in X$ countable since P is separable). The requirement in (iii) that $x \neq y$ is for practical purposes without significance, but is imposed solely so that

- (a) the boolean lattice of all subsets of the empty set (a lattice of one element only) behaves itself (as befits its triviality) by admitting a normed orthovaluation, and
- (b) the notion of a normed σ -orthovaluation is (as it is supposed to be) a restriction of the notion of a normed orthovaluation.

In this paper we assume familiarity with Section 1 of Finch [1], which is concerned mainly with the notions of a logical structure and of a logical σ -structure. A logical structure is a set of boolean lattices with a common 0-element and a common 1-element, satisfying a number of conditions, among which is that the partial orderings, orthocomplementations, and v-functions of any two lattices 'coincide' for the elements in their intersection. 'Combining' the boolean lattices in a logical structure produces an orthomodular poset. For the details the original paper should be consulted. If $L = \{B_{\gamma} : \gamma \in \Gamma\}$ is a logical structure then the partial ordering, the orthocomplementation, and the v-function of B_{γ} will be denoted by \leq_{γ} , N_{γ} and v_{γ} respectively. Proofs will be terminated by the sign // .

Finch [2] introduces the notion of a state of a physical system associated with a separable logical σ -structure L, and remarks that any normed σ -orthovaluation on the logic L associated with L (L is always a separable completely orthomodular poset) determines a state of the physical system (although not all of its states arise in this way). In the concluding section of his paper, Finch raised four questions, one of which is: Does every separable completely orthomodular poset admit at least one normed σ -orthovaluation? It is the purpose of this paper to provide a negative answer to this question.

We define a set L of seven boolean lattices as follows: Let

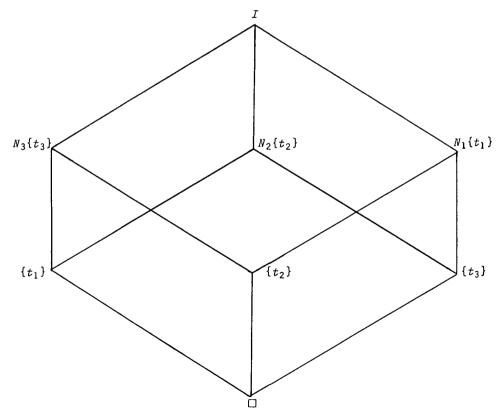
164

 $B_1, B_2, B_3 \in L$ where, for $1 \le i \le 3$, (B_i, \le_i, N_i) is the boolean lattice of all subsets of the set $\{a_i, b_i, c_i, d_i\}$. We identify the l-elements of each of these lattices, and denote it by I, so that I is the common l-element of B_1, B_2 and B_3 .

Hereinafter i and j will denote arbitrary elements of $\{1, 2, 3\}$, and s and t will denote arbitrary elements of $\{a, b, c, d\}$. The remaining four boolean lattices making up L are defined as follows: Let

$$B_{t} = \left\{ \Box, \{t_{1}\}, \{t_{2}\}, \{t_{3}\}, N_{1}\{t_{1}\}, N_{2}\{t_{2}\}, N_{3}\{t_{3}\}, I \right\}$$

(where \Box denotes the empty set). The complement of $\{t_i\}$, $N_t\{t_i\}$, is defined to be $N_i\{t_i\}$, and the partial ordering \leq_t is defined so as to make (B_t, \leq_t, N_t) a boolean lattice with the following structure:



Thus $L = \{B_1, B_2, B_3, B_a, B_b, B_c, B_d\}$ is a set of boolean lattices. Let $B_3 = \{B_1, B_2, B_3\}$ and $B_4 = \{B_a, B_b, B_c, B_d\}$.

LEMMA 1.

(i) If $i \neq j$ then $B_i \cap B_j = \{\Box, I\}$; (ii) if $s \neq t$ then $B_s \cap B_t = \{\Box, I\}$; (iii) $B_i \cap B_t = \{\Box, \{t_i\}, N_i\{t_i\}, I\}$. Proof. Apparent. // LEMMA 2. L is a logical structure.

Proof. We must show that L satisfies conditions (i) - (vi) in the definition of a logical structure given on p. 276 of Finch [1]. In this proof, occurrences of small Roman numerals will correspond to the conditions so numbered in the definition. Let $\{B_{\gamma} : \gamma \in \Gamma\}$ be an enumeration of L.

(i) Each B_{γ} has the same O-element, namely, \Box .

Let $x, y \in B_{\alpha} \cap B_{\beta}$. If $\alpha = \beta$ then:

- (1) (ii) $x \leq_{\alpha} y$ if and only if $x \leq_{\beta} y$;
- (2) (iv) $N_{\alpha}x = N_{\beta}x$;
- (3) (v) $x v_{\alpha} y = x v_{\beta} y$.

Suppose $\alpha \neq \beta$. If $B_{\alpha}, B_{\beta} \in B_{3}$ or $B_{\alpha}, B_{\beta} \in B_{4}$ then (by Lemma 1) $x, y \in \{\Box, I\}$, so (1) - (3) hold.

If $B_{\alpha} = B_{i}$ and $B_{\beta} = B_{t}$ then (by Lemma 1) $x, y \in \{\Box, \{t_{i}\}, N_{i}\{t_{i}\}, I\}$, so again (1) - (3) hold. Similarly if $B_{\alpha} = B_{t}$ and $B_{\beta} = B_{i}$. Hence for any $x, y \in B_{\alpha} \cap B_{\beta}$, (1) - (3) hold.

(iii) Suppose $x \leq_{\alpha} y$ and $y \leq_{\beta} z$. We must show that for some

 $\gamma \in \Gamma$, $x \leq_{v} z$.

If $\alpha = \beta$ then $x \leq_{\alpha} z$. Suppose $\alpha \neq \beta$. If $B_{\alpha}, B_{\beta} \in B_{3}$ or $B_{\alpha}, B_{\beta} \in B_{4}$ then $x, y, z \in \{\Box, I\}$, so $x \leq_{\alpha} z$. If $B_{\alpha} = B_{i}$ and $B_{\beta} = B_{t}$ then $y \in B_{i} \cap B_{t} = \{\Box, \{t_{i}\}, N_{i}\{t_{i}\}, I\}$. If $y \in \{\Box, \{t_{i}\}\}$ then $x \leq_{\beta} z$, and if $y \in \{N_{i}\{t_{i}\}, I\}$ then $x \leq_{\alpha} z$. Similarly if $B_{\alpha} = B_{t}$ and $B_{\beta} = B_{i}$. Hence for some $\gamma \in \Gamma$, $x \leq_{\gamma} z$.

(vi) Suppose $y \leq_{\alpha} N_{\alpha} x$, $x \leq_{\beta} z$, and $y \leq_{\gamma} z$. We must show that for some $\delta \in \Gamma$, $x, y, z \in B_{\delta}$.

If $\beta = \gamma$ then $x, y, z \in B_{\gamma}$. Suppose $\beta \neq \gamma$. If $B_{\beta}, B_{\gamma} \in B_{3}$ or $B_{\beta}, B_{\gamma} \in B_{4}$ then $z \in \{\Box, I\}$ (by Lemma 1), so $x, y, z \in B_{\alpha}$.

If $x \in \{\Box, I\}$ then $x, y, z \in B_{\gamma}$. Suppose $x \notin \{\Box, I\}$. Suppose $B_{\beta} = B_i$ and $B_{\gamma} = B_t$ then $z \in \{\Box, \{t_i\}, N_i\{t_i\}, I\}$ (by Lemma 1). If $z \in \{\Box, I\}$ then $x, y, z \in B_{\alpha}$; and if $z = \{t_i\}$ then $x \in \{\Box, \{t_i\}\}$, so $x, y, z \in B_{\gamma}$.

Suppose $z = N_i \{t_i\}$, then since $B_\gamma = B_t$, either $y \in \{\Box, N_i \{t_i\}\}$ (in which case $x, y, z \in B_\beta$) or $y \in \{\{t_1\}, \{t_2\}, \{t_3\}\} \setminus \{\{t_i\}\}$. Suppose the latter, then $y = \{t_j\}$ for some $j \neq i$, and so $y \in B_j, B_t$ only. Now $x \notin \{\Box, I\}$, $x \in B_\beta = B_i$ and $i \neq j$, so $x \notin B_j$. Since $x, y \in B_\alpha$, $x \in B_j$ or $x \in B_t$. Thus $x \in B_t$, so $x \in \{\Box, \{t_i\}, N_i \{t_i\}, I\}$ (by Lemma 1), $x \leq_\beta z = N_i \{t_i\}$, and $x \neq \Box$, so $x = N_i \{t_i\} = z$. Thus $x, y, z \in B_\gamma$.

Similarly if $B_{\beta} = B_t$ and $B_{\gamma} = B_t$. Hence for some $\delta \in \Gamma$, x, y, z $\in B_{\delta}$. Since L satisfies the required conditions, L is a logical structure. // We now define our poset, which will consist of 44 elements. Let $P = B_1 \cup B_2 \cup B_3$, then $P = \bigcup L$. For $x, y \in P$ let $x \leq y$ if and only if for some $\gamma \in \Gamma$, $x \leq_{\gamma} y$. For $x \in P$ let $x^{\perp} = N_{\gamma} x$ for any $\gamma \in \Gamma$ such that $x \in B_{\gamma}$. In the terminology of Finch [1], (P, \leq, \perp) is the logic associated with the logical structure L.

PROPOSITION 3. P is an orthomodular poset.

Proof. By the previous lemma, L is a logical structure. $P = \bigcup \{B_{\gamma} : \gamma \in \Gamma\}$ so by the remarks on p. 276 of Finch [1], (P, \leq, \perp) is an orthocomplemented poset. By Theorem 1.1 of the same paper, (P, \leq, \perp) is orthomodular. //

Let S be an orthocomplemented poset, then (following Finch [1, p. 280]) a frame of S is a maximal orthogonal subset of $S \setminus \{0\}$.

LEMMA 4. Let (S, \leq, \perp) be an orthoposet, and let $p : S \neq [0, 1]$ be a normed orthovaluation on S. Then for any finite frame F of S, $\sum_{w \in F} p(w) = 1$.

Proof. By induction on |F|. Suppose |F| = 1, then $F = \{1\}$, so $\sum_{w \in F} p(w) = p(1) = 1$.

Suppose the lemma holds for all *n*-element frames of S (with $n \ge 1$). Let F be a frame of S such that |F| = n + 1. Let $x, y \in F$ such that $x \ne y$. Now x is orthogonal to y and S is an orthoposet, so $x \lor y$ exists in S. Let $G = (F \setminus \{x, y\}) \cup \{x \lor y\}$, then |G| = n. It is easily shown that G is a frame of S.

Since p is a normed orthovaluation on S , $p(x \lor y) = p(x) + p(y)$, so

$$\sum_{\omega \in F} p(\omega) = \sum_{\omega \in G} p(\omega) - p(x \lor y) + p(x) + p(y)$$
$$= \sum_{\omega \in G} p(\omega)$$
$$= 1$$

by the inductive hypothesis.

168

Thus, by induction, the lemma holds for all finite frames of S . //

PROPOSITION 5. P is an orthomodular poset which does not admit a normed orthovaluation.

Proof. P is orthomodular by Proposition 3. The atoms of P are the following 12 unit sets:

Let $F_i = \left\{ \{a_i\}, \{b_i\}, \{c_i\}, \{d_i\} \right\}$, and let $F_t = \left\{ \{t_1\}, \{t_2\}, \{t_3\} \right\}$, then clearly each F_i and each F_t is a frame of P.

Suppose now that P admits a normed orthovaluation p. P is an orthoposet, so by the previous lemma,

$$\sum_{\substack{\omega \in F_i \\ i}} p(\omega) = 1 \text{ and } \sum_{\substack{\omega \in F_t \\ w \in F_t}} p(\omega) = 1.$$

Now the F_{τ} are pairwise disjoint, as are the F_{τ} , so

$$\sum \{p(\omega) : \omega \in F_1 \cup F_2 \cup F_3\} = \sum_{i=1}^3 \sum_{\omega \in F_i} p(\omega) = 3$$

and

$$\sum \{p(\omega) : \omega \in F_a \cup F_b \cup F_c \cup F_d\} = \sum_{t=a}^d \sum_{\omega \in F_t} p(\omega) = 4$$

But $F_1 \cup F_2 \cup F_3 = F_a \cup F_b \cup F_c \cup F_d$, so if P admits a normed orthovaluation then 3 = 4. Hence P does not admit a normed orthovaluation. //

COROLLARY 6. P is a completely orthomodular poset which does not admit a normed σ -orthovaluation.

Proof. P is orthomodular by Proposition 3, so P is an orthoposet. Since P is finite, P is a complete orthoposet, and so P is completely orthomodular. Any normed σ -orthovaluation on a complete orthoposet is a normed orthovaluation, so by Proposition 5, P does not admit a normed σ -orthovaluation. //

References

- [1] P.D. Finch, "On the structure of quantum logic", J. Symbolic Logic 34 (1969), 275-282.
- [2] P.D. Finch, "Quantum mechanical physical quantities as random variables", Nanta Math. (to appear).

Monash University, Clayton, Victoria.