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Abstract

Reuse has long been a major goal of the knowledge engineering community. We present a case study of the reuse of con-
straint knowledge acquired for one problem solver, by two further problem solvers. For our analysis, we chose a well-known
benchmark knowledge base (KB) system written in CLIPS, which was based on the propose and revise problem-solving
method and which had a lift/elevator KB. The KB contained four components, including constraints and data tables, ex-
pressed in an ontology that reflects the propose and revise task structure. Sufficient trial data was extracted manually to dem-
onstrate the approach on two alternative problem solvers: a spreadsheet (Excel) and a constraint logic solver (ECLiPSe).
The next phase was to implement ExtrAKTor, which automated the process for the whole KB. Each KB that is processed
results in a working system that is able to solve the corresponding configuration task (and not only for elevators). This is in
contrast to earlier work, which produced abstract formulations of the problem-solving methods but which were unable to
perform reuse of actual KBs. We subsequently used the ECLiPSe solver on some more demanding vertical transport con-
figuration tasks. We found that we had to use a little-known propagation technique described by Le Provost and Wallace
(1991). Further, our techniques did not use any heuristic “fix”’ information, yet we successfully dealt with a “thrashing”
problem that had been a key issue in the original vertical transit work. Consequently, we believe we have developed a widely
usable approach for solving this class of parametric design problem, by applying novel constraint-based problem solvers to
data and formulae stored in existing KBs.

Keywords: Code Generation; Configuration; Constraint Solver; Knowledge Reuse; Propose and Revise Problem-Solving
Method

1. INTRODUCTION

A vision of knowledge engineering is that, having built at
considerable cost a knowledge base (KB) that is able to de-
sign, say, an elevator, it is highly desirable to reuse most of
the domain knowledge, when developing a further KB system
(KBS) in the same domain using a similar (perhaps more
powerful) problem solver. Further, this process should be rel-
atively straightforward and handled by a domain expert rather
than by a highly specialized programmer.

In this paper, we report a case study where we have reused
domain knowledge that was originally implemented for use
with a configuration problem-solving method (PSM) called
propose-and-revise (P þ R). The initial problem solver
(PS), called VT (short for vertical transportation), was pro-
vided with a KB, which enabled it to create lift (elevator) con-

figurations from requirements provided by the end user (Mar-
cus et al., 1988), and it subsequently became a benchmark
problem for the KA community (Schreiber & Birmingham,
1996). We then generated from the KB, almost automatically,
knowledge structures that could be directly used by two fur-
ther PSs: a Spreadsheet (Excel) and a constraint logic solver
(ECLiPSe).1 The tool we developed to automate this is called
ExtrAKTor.

We have been able to make progress in this because our KB
only contains variable declarations, constraints, and equa-
tions for use in solving a parametric configuration problem,
and these can be entered in any order. Thus, we are storing
mathematical objects in our KB, namely, well-formed alge-
braic expressions using standard operators (and some condi-
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1 A PSM is effectively an abstract specification of an algorithm, which is
associated with a number of data sources and is usually realized as a (generic)
problem solver (PS). For example, the P + R PSM was implemented as part of
the vertical transport (VT) KBS that comprises a generic P + R PS and the VT
KB (Corsar & Sleeman, 2007; Runcie, 2008).
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tional expressions), instead of rules or program fragments
whose semantics depends on the interpreter used. This makes
the whole process of reuse much easier; as a result, we have
been able to accomplish in the constraint domain what
many of the early KB pioneers hoped for (Hayes-Roth
et al., 1983). This has become possible through advances in
the theory and practice of constraint solving (Van Henten-
ryck, 1989; Apt & Wallace, 2007), and particularly in using
constraint propagation through tabular data structures (Le
Provost & Wallace, 1991), without which our automatically
generated code would have run far too slowly.

Thus, we took a KB developed for a production-rule PSM, ex-
tracted the essential mathematical information, and then code-
generated it for use by a contemporary constraint-based PS
that did not require any of the heuristics, hints, or fixes that are
usually used by expert systems. This PS found solutions, and
what is more, it gave an efficient way of finding solutions
when constants, parameters, orcomponent details were changed.
This is an example of practical reuse in an engineering context.

We are not attempting to develop novel configuration algo-
rithms or new constraint-solving techniques. Instead, we have
concentrated on a generator that works unaltered not only on
VT but also across a range of different parametric configura-
tion problems. It enables engineers to reuse data and specifi-
cations stored in an existing KB without having to master an
unfamiliar programming language or mathematical notation.
Our aim is to make a powerful, but little-used, constraint-
based PS available to designers and implementers of artificial
intelligence engineering applications.

Section 2 describes the VT design task and the Sisyphus-
VT challenge, outlines related work, and gives an overview
of relevant constraint satisfaction techniques. Section 3 pro-
vides a description of the ontological structure of a Sisy-
phus-VT KB built for use with a CLIPS P þ R algorithm
for the lift domain and an overview of how it was reused by
the tool ExtrAKTor (Sleeman et al., 2006). Section 4
describes how we automatically generated a KB for a con-
straint logic programming (CLP) PSM that reuses tabular
knowledge efficiently, so overcoming serious performance
problems (Runcie et al., 2008). Section 5 shows how we ex-
plored solutions with the CLP PS and systematically investi-
gated the solution space. Finally, Section 6 summarizes our
work, reflects on it, and discusses planned future work
(some readers may wish to skip to this on first reading).

2. LITERATURE REVIEW AND BACKGROUND

This work combines research from four different areas, which
we review in the following sections: PSMs and the P þ R
PSM, configuration problems, SISYPHUS challenges, and
constraint satisfaction techniques.

2.1. PSMs and their reuse

PSMs describe the principal reasoning processes of KBSs.
For a useful summary of PSM-related research up to 1998,

see Fensel and Motta (1998). It was appreciated that consider-
able benefits would accrue from a PSM library, because the
construction of KBSs using proven components should re-
duce development time and improve reliability. This area of
research has been most notably investigated through the
KADS/CommonKADS Expertise Modeling Library and
also through the Protégé PSM Library. These are examined
in more detail below. Part of the KADS project (1983–
1994) involved the creation of a PSM library; by the mid-
1990s, the CommonKADS library contained hundreds of
PSMs (Breuker & Van de Velde, 1994; Schreiber et al.,
1994).

A parallel development happened in the context of Stan-
ford’s Protégé-2000 system, which includes a widely used
ontology editor. Here, the PSM Librarian and associated
methodology provide an ontology-based KB development
model that enables reuse of PSMs. There are three distinct
ontologies: a domain ontology, a method ontology, and a
mapping ontology. The domain ontology is self-explanatory.
The method ontology is a domain-independent characteriza-
tion of a PSM’s inputs and outputs. The mapping ontology is
a mediator that defines explicit relationships between a par-
ticular domain and a particular method without compromis-
ing the independence of these distinct components.

This journal has recently published a special issue on
PSMs. In the editorial, Brown (2009) summarizes the devel-
opments in KBSs that led to the initial concept (namely, re-
usable procedural “building blocks”), asks whether the
PSMs identified earlier are at the right level of granularity,
and then discusses the potential roles for PSMs in the world
of the semantic web. He also discusses the difficulties posed
for engineers by the formal notation used in PSMs and pleads
for “‘PSM light’ versions available as well, that is, versions
using less intimidating languages.” We believe we have met
this challenge by generating, from one PSM, code that is
readable and editable for two further PSs.

The paper in the Special Issue on PSMs that is closest to
our activity is that by O’Connor et al. (2009). This paper dis-
cusses the (software engineering) challenges of implementing
systems to process complex and diverse data sets that relate to
the detection of outbreaks of infectious diseases. The first sys-
tem described, BioSTORM-1, focuses on taking data from
many data sources and storing it in a common data repository.
The various PSMs or PSM-like agents that are then run over
the data effectively extract the necessary data from the repos-
itory. That is, each PSM is associated with a mediator that
converts the data in the repository to the format required by
the individual PSM agent. In this system, the data transforma-
tion process is driven by an ontology that describes the data
requirements of the particular PSM. The BioSTORM-1 ap-
proach has been further generalized by MAKTab (Corsar &
Sleeman, 2007), which additionally acquires from the user,
in a guided way, information needed by the target PS that is
not available in the source KBS.

A major issue with both the CommonKADS library and the
Protégé PSM Librarian is that neither supports the execution
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of a KBS. Having stated that CommonKADS has hundreds of
PSMs, Fensel and Motta (1998) state, “None of these
methods is implemented.” A contemporary critique of Com-
monKADS (Menzies, 1998) makes a similar point about lack
of “operationalization.” There is a similar issue with the Pro-
tégé-2000 PSM Library. The PSM librarian webpage (SMI,
2010) states: “The current version of the PSM Librarian tab
does not support actual activation.” By contrast, progress
has been made by a few groups in the constraint solving
area, who have taken steps to generate working code from
formal descriptions in Essence (Frisch et al., 2008) or Num-
berjack (Hebrard et al., 2010). However, their starting point is
a piece of discrete mathematics, rather than a KBS.

In summary, successive enhancements of PSM libraries
have led to a largely unused set of PSMs. This is disappoint-
ing because the central purpose of the exercise was to support
reuse. Currently, PSM libraries state how to solve KB tasks in
formal terms, but they do not help with the actual solution of
such tasks.

2.2. The VT task

The VT domain is a complex configuration task involving a
sizable number of components required to design a lift (ele-
vator) system. These components are shown in Figure 1.
The parameters, such as physical dimensions and weight,
and also the choice of certain components, are regulated by
physical constraints. The VT domain (Marcus et al., 1988)
was initially used to design lifts by the Westinghouse Eleva-
tor Company. This original VT domain knowledge was sim-
plified by removing some antagonistic constraints (which we
restored in our own studies; see Section 2.3.1) to form the
knowledge acquisition Sisyphus-VT challenge. The Sisyphus
version of the VT domain was created so that researchers
would have a common KB for experimentation. It thus be-
came a valuable benchmark (Schreiber & Birmingham,
1996). It is the Protégé (v3.0) version of the VT system that
has been the KB used in this project.2 This project has en-
abled us to test some constraint-solving PSMs (i.e.,
ECLIPSe) that were not available at the time of the Sisyphus
challenge. We have also tackled a parametric design problem
in configuration that is still a topic of industrial interest.

2.2.1. Types of configuration problems

The VT system falls into the category of configuration re-
search involving constraints. This is currently an active area
of research; there has been a recent Special Issue on it in
this journal (Felfernig et al., 2011). The editorial says that
“Configuration can be defined as the composition of a com-
plex product from instances of a set of component types, tak-
ing into account restrictions on the compatibility of those
component types.” Much of the published research is about
how to support designers in formulating constraints that ex-

press these restrictions, in various styles and formats. How-
ever, we are assuming this has already been done and that
the constraints are available in a KB (which is usually popu-
lated using a user-friendly tool or graphic front end).

Furthermore, we are not concerned with assembling from
parts, where the end user can add in extra assemblies at will
or fill a shopping basket with desired components that are
to be assembled somehow. An example of such a system is
a “product configurator,” which is a type of expert system
used to automate the creation of quote prices, sales prices,
bills of materials, and other product specifications. Such sys-
tems are widely used in industry, and their advantages are
evaluated in a recent review by Haug et al. (2011). However,
we are dealing with solvers, not configurators.

Instead, the VT design constraints describe a lift with a
fixed number of components of given types, in a fixed rela-
tionship to one another. Ours is a parametric design problem,
where the variables (which must be solved for) represent
physical parameters, such as component weight and size or
geometric distance. Some of the variable values must be cho-
sen from tabular structures, as is very common in engineering
(and is central to our solving methodology). Configurators, of
course, also use tabular data and extract values from it, but
mainly for a kind of “synthetic” computation that calculates
total costs and lead times, rather than an “analytic” computa-
tion that searches for solutions. This synthetic computation is
similar to the “spreadsheet calculation” used by one of our
generated PSs; it checks a given solution against the con-
straints, computes certain aggregates, and shows variable de-
pendencies, but it cannot actually search for solutions.

O’Sullivan (2002) describes how systems for interactive
constraint-aided conceptual design start by establishing broad
solutions and proceed in phases maybe as far as detailed
physical design. It is this last stage we are concerned with, be-
cause we wish to reuse or modify an existing design. Early
systems for constraint design, such as IDIOM (Lottaz et al.,
1998), did find solutions (for geometric parameters in floor
planning). Currently, papers on solving for such parameters
in existing designs are less common, probably because the
main mathematical techniques are now well known. In our
case, these techniques are available in solver libraries within
the ECLiPSe CLP system (see below). However, many of
them lie unused because most engineers learn to calculate
with procedural languages, and they are not familiar with
logic languages or constraint-based problem solving.

There has been surprisingly little interest in code genera-
tion by the constraint-solving community. Martin et al.
(2011) discuss how it can be used to compile specifications
from a formal algebraic language (Rules2CP or Zinc or Es-
sence) into procedural code, but as is common, the evaluation
is mainly in terms of performance gains. We think this under-
rates the value, for engineers, of being able to read and check
generated declarations and calculations, even though they
would be unwilling to formulate such expressions them-
selves. Checking of both equations and constraints is surpris-
ingly easy in the ECLiPSe notation (Section 3.3).

2 Protege VT Sisyphus ontology acquired at ftp://ftp-smi.stanford.edu/
pub/protege/S2-WFW.ZIP, August 2004 Version.
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In summary, we are concerned with end users who have al-
ready built engineering KBs of constraint-based designs that
they wish to reuse, maybe by changing certain key parameters
and then solving the task again. We have worked on the VT
KB because it is an established benchmark, but we believe the
technique is applicable to parametric design problems that in-
volve numerical or relational constraints expressed using
standard algebraic operators. Furthermore, we report the
case where the constraints in the KB were originally formu-
lated for solving by one PSM, but we extracted and restruc-
tured them for use by different more powerful PSs.

2.2.2. The P þ R PSM

The P þ R method (McDermott, 1998) initially used to
solve the VT configuration problem was very dependent on
codified expert advice. This PSM requires three types of in-
formation:

† a list of domain variables and tables (nowadays usually
provided as part of a domain ontology),

† a set of constraints between these variables that needs to
be satisfied for a configuration to be acceptable, and

† a series of fixes associated with each constraint that
might be violated.

In the VT domain, the fixes, provided by the experts, were
generally quite straightforward. For example,

IF: the lift’s load (weight of cabin & maximum passen-
ger load) . power output of the motor,

THEN: use a more powerful motor.

When the VT system is activated, it asks the end user to inter-
actively provide values for particular features of the lift to be
designed (e.g., the size of the lift shaft, the size of the door
aperture, and the number of passengers to be carried).

Fig. 1. Vertical transport system components.
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When searching for a solution, if a constraint is not satisfied,
then the P þ R PSM considers each of the fixes in the order
given in the KB. If a fix resolves a constraint violation, then
no other fixes are considered (but this fix may then trigger
violations to other constraints which need fixing in turn; see
Section 2.3.1). If none of the fixes is able to resolve the con-
straint violation, then the PS cannot find a solution. Note that
the Pþ R PSM does not attempt to try alternative fixes in or-
der to produce an improved or optimal solution.

Section 2.3.1 discusses a basic weakness of the methodol-
ogy, in that a fix for one constraint can undo the fix for a sec-
ond constraint, and worse still, a fix for this constraint may
then undo the fix for the first one (such pairs are called “an-
tagonistic constraints”); it clearly leads to looping (thrashing).
This problem was recognized in the original VT paper (Mar-
cus et al., 1988), and a preprocessor was developed to detect
such cases and modify the actions (Section 2.3.1). A key
question in our research was whether a different (CLP) PS
would suffer from the same difficulties.

There is also some discussion about the nature of the “fix”
information provided by domain experts. Some suggestions
include: the fix is intended to satisfy the constraint in a way
that tends to reduce cost or some other metric; the fix might
help guide a search in a very large search space or in a highly
constrained situation; and the fix might decide to ignore
“soft” constraints with low priority. The way in which end
users provide this information is a topic for future research
(see Section 6.1).

2.3. The SISYPHUS-VT challenge

In many areas of computer science and artificial intelligence,
benchmarks are set to evaluate the performance of a number
of systems against a common set of tasks. The results of these
tests are then used to identify the strengths and weaknesses of
the several systems, and this in turn helps to set the future re-
search agenda for the subfield. Therefore, the knowledge ac-
quisition/modeling subfield set itself a number of challenges
in the 1980s to 1990s that it called the Sisyphus challenges.

Seven papers were presented at the 1994 Knowledge Ac-
quisition for Knowledge-Based Systems Workshop, each of
which described a methodology for modeling and solving Si-
syphus-VT; these were Soar/TAQL (Yost, 1996), Protégé II
(Rothenfluh et al., 1996), VITAL (Motta et al., 1996), Com-
monKADS, Domain-Independent Design System, KARL/
CRLM (Poeck et al., 1996), and DESIRE (Brazier et al.,
1996). Of these seven papers, only the VITAL team reported
multiple runs of their implementation (Motta et al., 1996).
Further, Menzies (1998), reviewing the above papers, empha-
sizes that little testing was conducted on the various methods
beyond the one example, which we extended (Section 5.2).

2.3.1. Fix interaction: Antagonistic constraints

The looping behavior caused by interacting fixes is dis-
cussed in the original VT expert system paper (Marcus
et al., 1988). The section called “VT’s Fix Interaction and

Their Special Handling” refers to 37 chains of so-called inter-
acting fixes, including three pairs of “antagonistic con-
straints” that might cause thrashing. One of these pairs con-
cerns the interaction of maximum machine groove pressure
and maximum traction ratio; we have explored this experi-
mentally with our system (Section 5.1).

2.3.2. Simplification of original VT in Sisyphus

In the process of creating the Sisyphus-VT challenge, the
original VT expert system was significantly simplified. We
later realized that certain fixes had been removed, in particu-
lar those for the maximum machine groove pressure con-
straint (C-48 in Sisyphus-VT) considered above. The fixes
would appear to have been removed in order to break the
chains of antagonistic constraints. The Sisyphus documenta-
tion makes no mention of this, and it was not obvious. It is
also worth noting that the P þ R PS in Sisyphus-VT used
the smallest components as a starting point and provided up-
grade options only. Thus, for example, once a large 50HP
motor was selected, there was no way to look for solutions
with a smaller motor. In conjunction with the removal of
fixes just mentioned, this probably avoided loops, but at the
cost of omitting parts of the search space. We decided to ex-
plore improvements using constraint satisfaction.

2.4. An overview of constraint satisfaction techniques

Constraint satisfaction techniques (Van Hentenryck, 1989)
attempt to find solutions to constrained combinatorial prob-
lems, and there are a number of efficient toolkits in a variety
of programming languages. The definition of a constraint sa-
tisfaction problem (CSP) is

† a set of variables, and for each variable Xi, a finite set
Di of possible values (its domain), and

† a set of constraints Cj # Dj1�Dj2� � � � �Djt, restricting
the values that subsets of the variables can take simul-
taneously. These constraints are usually written as alge-
braic expressions over the variables, using the usual re-
lational and arithmetic operators.

A solution to a CSP is a set of assignments to each of the vari-
ables in such a way that all constraints are satisfied. The main
CSP solution technique is consistency enforcement, in which
infeasible values are removed by reasoning about the con-
straints, using algorithms such as node consistency and arc
consistency. CLP systems, such as ECLiPSe (see Section
2.4.1), borrow the syntax and some constructs (e.g., unifica-
tion) from the logic language Prolog, but greatly improve on
its performance; they do this by using CSP techniques to re-
order goals dynamically within conjunctions.

Constraint propagation aims to remove early on those val-
ues that cannot participate in any solution to a CSP/CLP. It is
usually activated (triggered) as soon as a new constraint is en-
countered, and this mechanism attempts to reduce the do-
mains of all related variables (including domains that have
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been filtered by other constraints). If the domain becomes
empty, then the entire subtree of potential solutions can be
pruned. This is the real power of both CLP and CSP, as dem-
onstrated by the classic eight-queens problem (Van Henten-
ryck, 1989). There is also a generalized constraint propaga-
tion technique (Le Provost & Wallace, 1991) for variables
with values given in tabular form. This fits the VT problem
well, because it uses such tables to describe components
and their attributes (Section 4.1). It has been central to this
study, but we believe that others have missed its utility, par-
ticularly when generating code as described in Section 4.

2.4.1. ECLiPSe: Constraint logic programming system

We used ECLiPSe, which is a CLP developed at two lead-
ing academic laboratories (University of Munich and Imper-
ial College, London) supported by industrial and European
funding.3 It contains several constraint solver libraries and
an integrated development environment. Like Prolog, its vari-
ables have fixed but unknown values and rely on a solver to
find them. It also has much less dependence on statement or-
dering than programming languages such as C and Java,
which makes it easier to use for code generation (Section 3.3).

ECLiPSe libraries as PSs. The ECLiPSe system is an ex-
tension of Prolog. The libraries are computational methods
made available as compiled code accessed through named
predicates, such as “locate().” They also introduce special-
ized data types. Effectively, they make available some of
the latest research in CLP, as a kind of executable PSM.
The propia library (ICPARC, 2003) provides an effective im-
plementation of generalized constraint propagation that is
important to this approach.

The interval constraints library (ic) is a crucial ECLiPSe li-
brary used to process constraints over simple numeric domains
(e.g., [3, 4, 5, 6]) or more complex ranges (e.g., [2..5, 8, 9..14]).
The symbolic domains library (sd) conveniently extends this to
the domains of symbols (e.g., fx, motor, currentg), which
makes constraints much more readable. There is also a
branch-and-bound library that allows one to repeatedly call a
complex Prolog goal (maybe including constraints) so as to
search systematically for solutions that improve the value of
some metric (given as an expression).

2.4.2. Bounded reals in ECLiPSe

In addition to the basic numeric variable data types (inte-
gers, floats, and rationals), ECLiPSe also supports the nu-
meric data type bounded real. Each bounded real is repre-
sented by a pair of floating point numbers. For example, the
statements X . 3.5 and X , 9.2, assign X the value
f3.5..9.2g. The actual value of the number may not be
known, but it definitely lies between the two bounds. Fortu-
nately, many of the techniques used by the interval con-

straints library for finite domains (lists of values) have been
extended in ECLiPSe (ICPARC, 2003) to apply to bounded
reals, even though these represent potentially infinite sets of
reals. Without this extension, CLP techniques would be too
weak to solve the VT design problem, because many of the
important variables are lengths or weights represented as re-
als. Any attempt to digitize the search space by replacing
each real by a discrete integer variable, for example, XInt ¼
INT(X�1000.0), would dramatically slow performance and
could miss solutions at finer granularity.

Note that ECLiPSe does not coerce integer values into
bounded real values. Instead, it acts as a hybrid solver by
using the appropriate method for each type, according to
whether the domain (whose values are being filtered) is rep-
resented by a list of integers or a pair of real number bounds.

The locate(,) predicate is used to direct search for precise
values of bounded real variables. The predicate works by
nondeterministically splitting the domains of the variables
until they are narrower than a specified precision. For exam-
ple, locate([Cable length], 0.01) can be used to split the do-
main of cable length into a set of discrete values to find a
value to satisfy the constraints. However, where restricting
a value for one variable leads to a large set of small ranges
for another variable, then the technique could give rise to a
combinatorial explosion that could dramatically affect perfor-
mance.

3. EXTRACTION AND REUSE BY ExtrAKTor

Our aim was to see how far we could create a tool that would
automate the process of extracting constraints and variable
definitions from a KBS (based on one PSM) and then output-
ting them as knowledge structures that could be used by fur-
ther PSs, namely, an Excel spreadsheet and the ECLiPSe con-
straint solver. The starting point for the process was the VT
domain KB represented in Protégé, as indicated in Figure 2.
This KB was part of the Stanford solution to the VT-Sisyphus
challenge based on the Pþ R PSM (Yost, 1994). The tool de-
veloped is known as ExtrAKTor. A scientist or an engineer
with a good understanding of the domain should be able to
use ExtrAKTor to solve parametric design problems like
VT. In contrast with existing research, the user should require
neither a high level of computing science expertise nor de-
tailed knowledge of the PS(s). In the following sections, we
consider the design of ExtrAKTor and how it extracts differ-
ent KBs to satisfy the various PSs (i.e., Excel and ECLiPSe);
once the appropriate KB has been extracted, ExtrAKTor then
creates, and subsequently launches, the corresponding, Ex-
cel-based, or ECLiPSe-based, KBS.

3.1. Ontological issues for knowledge extraction

The various knowledge components have to be extracted
from the original KB. ExtrAKTor uses a well-designed ge-
neric ontology, developed at Stanford using Protégé (SMI,
2003). This is the “elvis” ontology that reflects the inherent

3 ECLiPSe is now marketed as open source by Cisco under a Mozilla-style
public licence for applications such as “planning, scheduling, resource allo-
cation, timetabling, transport.” The current official website (ECLiPSe, 2010)
provides links to ongoing developments of the source and updated tutorials.
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structure of parametric design tasks, including P þ R tasks
being considered in this study. Specifically, it describes: the
actual domain ontology, the data tables for component values,
the domain constraints, and the fixes, (see Fig. 3). It repre-
sents this by four main classes: elvis-components, which lists
the problem variable names used in the constraints (or as table
column names), with their types and other metadata; elvis-
constraints, which are subdivided into assign-constraints,
range-constraints, and fix-constraints; elvis-fixes, which are
actions to resolve constraint violations; and elvis-models for
the tables, with elvis-model-slot for their slot metadata. In-
stance data from this ontology is shown in Section 4.2.2
and in Figure 3.

The division of constraints into three types is interesting.
An assign-constraint looks like an equality constraint be-
tween a variable and an algebraic expression, but it is simply
used to calculate a value for the variable by evaluating the ex-
pression. The expression involves other variables, and thus
expands into a directed acyclic graph showing variable de-
pendency independent of the order of the constraints; a
spreadsheet PS obviously computes this graph, as does a
CLP PS. The range-constraints are vital to the workings of
a CLP PS; they give numeric upper and lower bounds for in-
tegers and reals. The fix-constraints look like assign-con-
straints but are usually inequality constraints for which one
or more fix actions are provided. Note that the CLP PS needs
the fix-constraints, but our study shows that it does not need
the fix actions (which are held for the PþR PS as elvis-fixes).

This ontology enables us to describe parametric design
problems for various domains. Thus ExtrAKTor works with-
out alteration with very different sets of variables, tables, and
constraints. We have tested it with the U-HAUL vehicle as-
signment domain (Runcie, 2008). However, it does assume
the KB is in the elvis constraint ontology.

Besides using elvis, the Protégé system used for the VT KB
made extraction very easy, by providing alternative Tabs that
behave like application programmer interfaces. We used the
PrologTab to execute a small piece of Prolog code we had
written to export knowledge from the Protégé environment

into a knowledge interchange format (KIF) suitable for use
in an external Prolog environment such as GNU Prolog.
Thus ExtrAKTor assumes the abstract knowledge structures
of elvis, and its inputs must be formatted as Prolog lists.
Hence, in order to use a KB not in Protégé, one would
need to implement a mediator to output the relevant parts
of the KB in this KIF. Unfortunately, this is a well-known
problem with KB reuse. The long-term solution is for con-
straint researchers to adopt a common ontology for their prob-
lems, which should be largely independent of the PSM/PS, as
discussed in Section 6.

3.2. Extraction and creation of KBS for a spreadsheet
solver

Initially we started with the Sisyphus-VT code for the P þ R
PSM, which consisted of 20,000 lines (421 pages) of CLIPS
code, including both the domain KB and a version of the P þ
R algorithm. We found that this original KB covered only one
VT test case and was very hard to change. Instead, we wanted
a system that would check whetherany changes to the configura-
tion would still satisfy the constraints (or maybe updated ones).
It was therefore decided to implement a constraint checker that
would check constraints for various data sets. Microsoft Excel
was the spreadsheet tool chosen because it is widely available
and because it provides excellent interactive facilities for data
presentation. Spreadsheets are a very widely used and indus-
trially important PS, though not recognized as such.

The entire set of variables, their associated values, and con-
straints in the VT CLIPS code were extracted, and an Excel
spreadsheet for the task was created (Sleeman et al., 2006).
Initially this was done as an experiment, using various text
editing tools. Later the process was automated, as an exten-
sion to ExtrAKTor, by taking data from a Protégé tab (as de-
scribed above) and processing it with Excel macros. All the
variables in the CLIPS code were assigned to cells in col-
umn 1, and the corresponding Excel formula was placed in
the corresponding cell in column 2 (see Fig. 4). To make
the formulae more readable, Excel’s define name function

Fig. 2. An overview of ExtrAKTor and the stages needed to create both ECLiPSe and Excel knowledge bases (KBs).
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was used to name the cells in column 1 with descriptive
names such as “car.misc.weight,” instead of the usual
“X99.” These names were also used in the formulae in the
second column, for example,

¼door.operator.weightþ (4�carguideshoes_weight)þ � � �

Note that this has been transformed from CLIPS’s prefix
notation into the infix notation used by Excel. This was easily
done with Excel macros. For further details see Runcie (2008)
and Sleeman et al. (2006).

Tables such as Figure 5, containing component information
in the original VT-Sisyphus code, were implemented as sepa-
rate named Excel worksheets; these could be searched via the
“LOOKUP” function. Note that the spreadsheet columns have
to be named with the appropriate variable names (e.g., max.
current), as discussed for the CLP version (Section 4.1.3).

The spreadsheet algorithm was then able to take the values
of independent variables given to it, to use the formulae (in
any order) to calculate all the other dependent variables,
and also to check that the constraint formulae all evaluated
to “True.” In the course of this, we discovered that there
were comparatively few independent variables in the VT
problem (only about 12 out of over 300). Note that Excel can-

not find which independent variable values would lead to de-
pendent variables satisfying the constraints (this is why we
need ECLiPSe). Nevertheless (Section 2.2.1), a spreadsheet
PSM is still a very useful way to investigate such dependen-
cies, to check constraints, and to calculate and check aggre-
gate values such as costs and other metrics. This shows the
clear advantage of generating PSs for spreadsheets as well
as CLP (Sleeman et al., 2006).

3.3. Code generation of a KB for use with ECLiPSe

Having shown that we could reuse the VT KB with a spread-
sheet PS, we wanted to use a much more powerful PS based
on the ECLiPSe solver (described in Section 2.4). Once again,
we used the elvis ontology (Section 3.1), which describes the
problem in terms of variables and various types of constraints.
This fits well with the way problems are presented to CLP
solvers (Section 2.4), and most important, makes our solution
very general and not specific to VT. Therefore, we carried out
an experiment to manually transform a subset of the VT KB
into ECLiPSe syntax and to solve it with the ECLiPSe toolkit.
This was very promising, so the next stage was to take the
elvis data from the intermediate KIF file imported into
ExtrAKTor and to transform it automatically into the

Fig. 3. Elvis: vertical transport (VT) domain ontology in Protégé.
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ECLiPSe notation. We used GNU Prolog to do this, because it
has very general pattern matching facilities and is excellent
for transforming and generating program text.

A major advantage of ECLiPSe notation is that someone
with an engineering training can read it and check that indi-
vidual constraints are what is wanted. The person just needs
familiarity with basic algebraic equations and Boolean ex-
pressions. This provides the vital reassurance that is often
missing with large integrated packages. Remember that, with-
out code generation, it is tedious to write out constraints and
avoid errors, because the slightest error in a single variable
name or an operator, among thousands, can render the con-
straint set insoluble. Our goal was to reassure anyone with
an understanding of the domain ontology that they could
use our tool to define a configuration problem precisely
enough for a computer to generate good solutions; but he or
she would NOT have to labor long and hard with unfamiliar

mathematical notation. This is a crucial point, often over-
looked by those devising PSMs, who forget how easily users
are deterred by unfamiliar notation or concepts, so that the
PSMs remain published but unused.

3.3.1. Example constraints

Our tool generates constraints that are syntactically well-
formed formulae; they are algebraic expressions with the
usual infix operators:

ic:(Hoist_cable_traction _ ratio

. (Groove_multiplier �Machine_angle_of_contact)

þ Groove_offset):

The “ic:” indicates to ECLiPSe that a hybrid integer/real
arithmetic constraint solver is to be used (Section 2.4.1).
The identifiers have underscores as separators, as is normal
in Prolog, instead of the dots used in CLIPS. More important,
the names have been meaningfully constructed in this domain
ontology. Table components start with a class name, such as
Hoist_cable, which greatly aids readability.

Sometimes we need to generate a conditional constraint:

(Compensation_cable_quantity . 0�.
ic:(Counterweight_to_platform_rear .¼ 1);

ic:(Counterweight_to_platform_rear .¼ 0:75þ 1:5)):

This is used as a kind of “case” construct to select a constraint.
It should not be read as a kind of production rule. These are
the most complicated expressions in the entire ECLiPSe
KB, as can be seen in Section 4.2.1. Note that this KB is
just a sequence of declarations in a simple grammar; thus,

Fig. 4. The vertical transport (VT)-Excel emulator calculating dependent values (244 rows in spreadsheet).

Fig. 5. A component table accessed as an Excel worksheet.
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the usual text processing tools for finding names work very
well for both searching and cross-checking.

The constraint information from the VT KB has been trans-
formed, but this is not the usual syntax-directed translation
done by many compiler packages; this transformation soft-
ware understands the semantics of the constraint solver and
reorders and restructures information to make good use of
it. The major transformations involved 18 or so stored tables
of component values that needed to be integrated with the con-
straint solver in an efficient fashion, as detailed in Section 4.
Once this has been done, the KB is ready for the execution
phase (Section 4.2.6 and Fig. 6).

4. GENERATING A CLP FOR THE EFFICIENT
SOLUTION OF CONFIGURATION PROBLEMS

4.1. Role of tables in the solving process

A significant innovation of our approach, as will become
clear, is the use of the elvis-models component of the Protégé
KB; these are structured tables of data values as in Figure 5.
In a relational database, these are usually seen as tuples that
group attribute values for a given entity or that represent rela-
tionships between linked entities. However, in constraint
solving, they have another purpose, which is to propagate
constraints. This is because the values in a column of the ta-
ble implicitly define a restricted finite domain for one of the
problem variables. In a simple one-column table, it does noth-
ing else, but in a multicolumn table, there may be implicit re-

strictions on values in related columns that propagate to other
problem variables. When the constraint solver makes good
use of this information, it can speed up processing by an order
of magnitude or more, which can save literally hours of pro-
cessing time. The theory of this generalized constraint propa-
gation technique was developed by Le Provost and Wallace
(1991), but without a sophisticated code generator to make
use of it, in practice it seems to have been little used. We
give below more details on its use than may be considered
normal, but this is to enable others to repeat our experiments.
This is partly because it is not described in the ECLiPSe ref-
erence book (Apt & Wallace, 2007) and there are very few ex-
amples online. In addition, one needs to understand the form
of the declarations in order to see that they can easily be ex-
tracted from any KB using elvis, and code systematically gen-
erated.

4.1.1. Declarations referring to variables in tables

Consider the motor table below in Prolog notation corre-
sponding to the Excel worksheet in Figure 5, which we shall
use as a repeated example. It is one of 18 such tables in the VT
KB. The rows contain data for the following descriptors:
Motor_model, Motor_max_power, Motor_weight, and
Motor_max_current.

motor(‘‘motor_10HP’’, 10, 374, 150):

motor(‘‘motor_15HP’’, 15, 473, 250):

motor(‘‘motor_20HP’’, 20, 539, 250):

Fig. 6. The ECLiPSe solution to the vertical transport (VT) problem with bounded reals (see Section 4.2.6).
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The first column contains strings that are possible values of
Motor_model, identifying a type of engine with a certain
horsepower. We know this is a key or identifying attribute,
and the other values in the same row refer to this specific en-
gine type. However, the solver needs to be told this, as ex-
plained below.

The solver is told to associate each column with a particular
Prolog variable (actually by an “infers most” statement, as in
Section 4.1.3). Thus the variable “Motor_max_current” has
to take one of the values in the fourth and last column, in
this case 150 or 250. Now the solver can use this for constraint
propagation in one of two ways. If it has found that the vari-
able Motor_model has the value motor_20HP, then it knows
that “Motor_max_current” depends on this and must take the
value in the same row, namely, 250. However, suppose in-
stead it has found that “Motor_max_current” has value
250, but doesn’t know Motor_model. It can only deduce
that its value is “motor_15HP” or “motor_20HP,” because
they both have 250 in the fourth column. This fits very well
with the finite domain reduction technique (an alternative
value or range of values is carried forward and used to elim-
inate possibilities; for example, it may only match one item in
a compatible column in another table, thus eliminating other
alternatives). This style of reasoning is fairly easy to grasp,
but it has been implemented remarkably well in ECLiPSe
Propia library (ICPARC, 2003), leading to great practical
benefit.

In the course of this analysis, we realized that tables need
not just contain attributes of physical objects; they may in-
stead contain numerical values for coefficients and constants
used in a complex conditional formula. As long as the for-
mula is a conjunction of repetitive disjunctions (or vice
versa), the technique will work as shown in Section 4.2.5.
Once again it leads to significant speedups.

4.1.2. Declaration for column types: Local domain

A local domain declaration for our motor table example
looks like this:

:-local domain(motor_model(‘‘motor_10HP’’,

‘‘motor_15HP’’, ‘‘motor_20HP’’)):

This tells the solver that motor_model (the domain of the first
column in the motor table) can only contain some or all of
certain disjoint values, which can be strings or integers (but
not a mixture).

One restriction is that different local domain sets cannot
overlap, thus “motor_15HP” cannot also appear in another
local domain declaration. In consequence, it is useful to spec-
ify all the anticipated values together, including some that are
not currently being used, such as “motor_90HP”.

We can associate the same local domain with columns in
other tables. In a relational database, these columns would
usually be key columns that are then matched by a relational
join operator, maybe in order to pick up values of extra attri-

butes. It is clearly useful. We do this with the assignments:

Motor_model &:: motor_model, Motor_modelA &:: motor_model

Here Motor_model and Motor_modelA are two Prolog vari-
ables matched to separate columns in different tables that
share the same local domain. Their names start with a capital
letter to fit Prolog conventions.

4.1.3. Table declarations making use of propagation
(Propia)

The generalized constraint propagation technique (Le Pro-
vost & Wallace, 1991) introduced the “infers most” declara-
tion. In ECLiPSe it is implemented remarkably efficiently
by the Propia library (ICPARC, 2003). As noted above, this
important construct tells the solver which Prolog variables
(each with a local domain) to associate with which column.
In our motor example this would be

motor(Motor_model, Motor_max_Power,

Motor_weight, Motor_max_current) infers most:

The variables are listed in the same order as the columns, and
so where a column has no solver variable, one uses the name-
less Prolog variable “_”. One infers most declaration is gen-
erated for each table, in a separate division following those
for the local domains and their assignments.

The annotation infers most controls the extent of constraint
propagation. An alternative with less propagation is infers
unique. Technically (ICPARC, 2003), these turn any goal
into a constraint. We only use it for a goal in the form of a
term structure such as motor(,..,) where some of the variables
have assigned local domains. Propia is told to extract the most
information it can from the constraint before processing the
Prolog goal. This information is then passed to the solver
(by a kind of incremental compilation) so that it can explore
alternative domain values efficiently in conjunction with
other solver techniques without having to break off and do in-
efficient backtracking. The theory ensures that the new con-
straint accepts and rejects the same symbolic values as when
using standard backtracking techniques, but with much faster
processing (in our case, reducing hours to minutes).

An early use of this construct was in a previous project
(Hui & Gray, 2000) to instantiate variables in “data table
functions” without backtracking. We hope our results will en-
courage others to appreciate its real value, especially when
used in combination with code generation.

4.2. ExtrAKTor upgrade: Automatic generation

We now consider the details of the process for systematically
generating ECLiPSe code and how we have been able to au-
tomate it almost completely, in a fashion that others can adapt
or emulate.
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4.2.1. Structure of generated CLP

The text of the generated code has to be acceptable to the
ECLiPSe parser. Thus, there need to be: type definitions, table
type definitions, named constants, variable definitions giving
domain ranges, equations defining some derived variables,
then constraint formulae, and finally various Prolog clauses
listing various goals to be satisfied and variables to be printed.

Divisions. We grouped declarations of each type into
separate “divisions”; the order of divisions is significant be-
cause each potentially makes use of items declared in pre-
vious divisions (Section 4.2.3). The divisions are not marked
specially for the Prolog parser, but they usually start with an
underlined comment. Where a division is empty, just the
comment is left in. The partial ordering is designed so that
the order of declarations or definitions within a division is im-
material. This is allowed by the declarative style of CLP, and
it makes code generation much easier. It avoids the problems
of generating procedural code where reordering can produce
different results when executed. The declarative form is also
much easier for an engineer to read and check, because each
definition can usually be checked independently of others.

Likewise, our tool can ensure that all the variables are de-
fined somewhere and that only such variables are referenced.
This overcomes a major problem in early Prolog systems
where a misspelled variable name was often not detected
and assumed to be just another working variable.

Initial code generation. The ExtrAKTor system was de-
veloped and tested in two stages. We generated code for el-
vis-components, elvis-constraints, and elvis-models. Execu-
tion of this code was completed in seconds, much faster
than Sisyphus times, even allowing for current faster hard-
ware. Therefore, we decided to relax some variable ranges
and expand the search space, but this had a massive detrimen-
tal effect as execution times increased from seconds to hours.
The performance degradation was traced to excessive back-
tracking through combinations of table values.

Final code structure. We then discovered how to use the
Propia library (Section 2.4.1), which reduced execution times
back to seconds again. To do this, we only needed to generate
extra code corresponding to the “local domain declaration”
(Section 4.1.2) and “infers most” (Section 4.1.3) for each of
the 15 or so tables. The details are given below, and the dec-
larations are easily generated from the Protégé KB, except
where some information is missing (Section 4.2.4). These
declarations must be in separate divisions (ordered as in Section
4.2.3) and must come before the constraints division.

4.2.2. The knowledge interchange format

ExtrAKTor works on files of objects, exported from the
Protégé KB in KIF; this preserves in text form the complex
directed graph connecting the objects in the KB. Sample ex-
tracts are given below for our motor system example. If one
were using a KB not built with Protégé, then, in order to
use ExtrAKTor, one would need to write a mediator to output

the relevant parts of the KB in this KIF. (This implementation
would be easy or hard depending on the differences in the
knowledge representations involved.)

Below we provide an extract of an example data table from
such a KIF. Basically, wherever there is an object class that is
a subclass of elvis_models, with a slot name ending “_specs”,
and that has one or more instances each of which has a value
for the slot “model-name”, then these become a table of Pro-
log tuples named according to the class, with model-name
values stored for convenience in the first column. Thus, the
elvis ontology uses model_name as a kind of reserved word
for a column of key values.

([elvis_INSTANCE _00059] of motor-system

(has-fixconstraints . . . ) (has-rangeconstraints . . . )

(motor-specs

[elvis _ INSTANCE_00060]

[elvis _ INSTANCE_00061])

. . . . . .

([elvis_INSTANCE_00060] of motors

(max.current 150) (weight 374:0)

(model-name ‘‘motor_10HP’’)

(max.power 10))

([elvis_INSTANCE_00061] of motors

(max.current 250) (weight 473:0)

(model-name ‘‘motor_15HP’’)

(max.power 15))

These instances are generated as Prolog tuples (as in Section
4.1.1).

motor(‘‘motor_10HP’’, 10, 374, 150):

motor(‘‘motor_15HP’’, 15, 473, 250):

For each table, we generate an infers most statement (Sec-
tion 4.1.3) giving the variable names holding each column
value; these are Motor_model, Motor_max_power, Motor_
weight, and Motor_max_current. Note that the keyword mod-
el_name referred to above is mapped onto variable Motor_
model, holding an instance identifier of the motor type. For
each variable such as Motor_model, we generate (once
only) a local_domain declaration (Section 4.1.2) and a do-
main assignment. In all, 18 tables were generated. Once
again, Prolog pattern matching makes this very straightfor-
ward, working on the generic Prolog term structure output
from Protégé’s Prolog tab.

4.2.3. Declaring variable names and types

The types and constraints are in 11 divisions (Section
4.2.1), which must be in this order:

† Local domains such as :- motor_model(. . . ,).
† Tables of data tuples such as motor(“motor_10HP”,

10, 374, 150).
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† Assignments such as Motor_model &:: motor_model.
† Integers with enumerated values such as Compensa-

tion_cable_quantity :: [0, 2].
† Integers with range constraints such as [Sling_under-

beam] :: 108..190 or [Platform_width] :: 60..1.0Inf
(with no upper bound).

† Reals with range constraints such as [Car_supple-
ment_weight] :: 0.0..800.0
(Remember that each real is manipulated as a [lower
bound, upper bound] pair; the closer the bounds, the
more precise the number.)

† Nonnegative reals such as [Groove_offset, Groove_
pressuremax] :: 0.0..1.0Inf.

† Real, Integer, or String Constants such as Door_ope-
ning_type ¼ “side.”

† Assign-Constraints: equality constraints that derive
fixed values such as
ic:(Car_return_left ¼:¼ Platform_width - Opening_
width - 3.0) or conditional expressions as (Platform_
width¼,128 and Platform_depth ¼ ,108) -. ZZ ¼
1; ZZ ¼ 5.

† Infers Most statements for each table such as motor
(Motor_model, . . .) infers most.

† Constraints such as ic:(Car_buffer_load ¼, Car_buf-
fer_loadmax) or ic:(Car_overtravel ¼ ,(Counterweight_
runby þ 1.5) � (Counterweight_buffer_stroke þ 24))
(Note that they could even be nonlinear.)

Note how the divisions used for generalized propogation
(local domains, assignments, and infers most) interleave
neatly with the other divisions. This concept of divisions
with freedom to reorder declarations only within divisions
is implied by online documents but not spelled out or named
as such.

As noted earlier, having a systematic way to generate the Pro-
log names from their original CLIPS form is important, in order
to match variable names in declarations with those in con-
straints. Dots acting as separators are replaced by underscores,
and the first letter is capitalized to fit Prolog conventions. In
addition, prefixes from class names such as “motors-” become
capitalized without the plural, as “Motor_.” Thus “motors-
max.current” translates to “Motor_max_current.” However,
“machines-model-name” translates to “Machine_model” be-
cause of the special role of “model-name” noted above.

4.2.4. Missing type information

Unfortunately, there are some situations where the elvis VT
ontology does not store enough type information. For exam-
ple, it may declare car.speed as type INTEGER, where we
need exact values:

Car_speed :: [200, 250, 300, 350, 400]:

The values could be taken from the key column, but this
needs confirmation from the designer or user.

A similar problem arises with a table relating pairs of
objects for example, motormachine(“motor_10HP”, “ma-
chine_18”). Only one of the attributes can be called model
name, but we need to associate models with both columns,
as in “motormachine(Motor_model, Machine_model) in-
fers most.” Unfortunately, the domain ontology just records
the Machine column as “(type STRING)” without referenc-
ing its object class. Clearly, the Protégé elvis-models ontol-
ogy needs to evolve to capture this additional type infor-
mation; KB designers will also need to be aware of these
subtleties.

4.2.5. Representing some constraints by extra tables

In a number of cases, we played the role of a skilled knowl-
edge engineer by replacing a repetitive or awkward constraint
expression by an extra table type (or by adding columns to an
existing table).

Consider this long repetitive constraint expression relating
to machine groove pressure:

(or (and (¼ ?car.speed 200)(eq ?machinegrooves-model-name

machine.groove_K3269)

(. ?machine.groove.pressure (� 264?hoistcables-diameter)))

(and (¼ ?car.speed 400)(eq ?machinegrooves-model-name

machine.groove_K3269)

(. ?machine.groove.pressure (�194?hoistcables-diameter)))

(and (¼ ?car.speed 200)(eq ?machinegrooves-model-name

machine.groove_K3140)

(. ?machine.groove.pressure (�196 ?hoistcables-diameter)))

. . . 14 more lines ‘‘)

We significantly improved upon this representation by replac-
ing the expression with a single formula taking its parameters
from the extra table as shown below.

machinegroovepressure(Groove_model, Car_speed,

Groove_pressure_factor)

machinegroovepressure(‘‘machine_groove_K3269’’, 200, 264):

machinegroovepressure(‘‘machine_groove_K3269’’, 400, 194):

machinegroovepressure(‘‘machine_ groove_ K3140’’, 200, 196):

Replacing such expressions speeds up the computation by
putting it in a form that suits the ECLiPSe solver. This
also makes it more readable, and some five tables were
added in this way. The transformation can be applied where
there is a disjunction of conjunctions of repeated expres-
sions of the same type and form, differing only in the values
of some constants that are then tabulated. However, the
transformation does require the analyst to have some basic
competence in both CLIPS and Prolog. In order to avoid
this, one could either try to spot the repetitions by using pat-
tern matching in Prolog or else query the end user through
an elaborate visual interface. This is a direction for future
work (Section 6.1).
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4.2.6. Printing and returning results

The generated code is analogous to a collection of proce-
dures to be called from a main program. Here, at the top level,
the user may want to add certain extra goals as constraints.
These might restrict an overall cost, number of cables, or
some other important quantity. One could further restrict
the design by giving a constant value to a variable, but within
the range specified in the generated code.

Next one needs to call the special locate() predicate with a
list of key bounded real variables to be solved for, together
with the desired precision (see Section 2.4.2). Finally, one
needs to specify the names of the output variables. An illus-
trative example of such a main program is

ic:(Power_min ¼, 12), locate([Car_supplement_weight], 0:01),

write(‘‘CSW is’’), write(Car_supplement_weight), nl, write

(‘‘Motor_model is’’), write(Motor_model), nl:

This would print the solution as a range of symbolic or nu-
meric values as below:

CSW is 500:00_500:01

Motor_model is Motor_model{[motor_10HP, motor_15HP]}

Note that, if a real variable cannot be precisely determined, a
range will be reported, as for CSW above, and throughout the
solver output, as shown in Figure 6. This is a major benefit,
because it gives the user feedback about the precision of
the solution; the user can then adjust parameters and rerun.

A tool in regular use would need the usual kind of graphic
front end with pull-down menus giving lists of variables with
hyperlinks to their descriptions and so on. Conveniently, the
generated Prolog code can call out to such a graphic user in-
terface (even to one written in C or Java).

Currently, we print the first solution that is found, but a fu-
ture direction is to call a branch and bound package to explore a
range of solutions, looking for a variable value below some de-
sired bound. The ECLiPSe branch_and_bound library (Sec-
tion 2.4.1) actually provides a predicate minimize(,) for doing
this, which takes an expression for a utility function as a cost
parameter. For example, one could replace the call to locate by

Utility ¼ Car_supplement_weight,

minimize(locate([Utility], 0:01), Utility):

5. EXPERIMENTATION: EXPLORING THE
SOLUTION SPACE

5.1. Key parameters

A key parameter in the Sisyphus-VT KB is the car weight, be-
cause this affects the two most important values in the solution
space, namely, machine groove pressure (MGP) and hoist
cable traction ratio (HCTR), as described in the original paper
(Marcus et al., 1988) and in Section 2.3.1. Car weight is calcu-

lated as the sum of several variables, as described in the follow-
ing equation:

Car_weight = Car_cab_weightþ Platform_weight þ
Sling _weightþ Safetybeam _weightþ Car_fixture_weight þ
Car_supplement_weightþ Car_misc_weight

All these variables have dependencies, except Car_supple-
ment_weight (CSW), which is defined in the Sisyphus-VT
documentation as being either 0 or 500.

We decided to iterate CSW over a larger range of values,
but our initial experiments did not show the expected relation-
ship among CSW, MGP, and HCTR; this led to the discovery
of a small but crucial error in a constraint stored in the elvis
ontology. Constraint C-48 was initially generated as

ic: (Hoist _ cable_traction_ratio . (Groove_multiplier �
Machine_angle_of_contact)þ Groove_offset)

However, on further investigation we found that the full Sisy-
phus-VT documentation states, “The HOIST CABLE TRAC-
TION RATIO is constrained to be at most 0.007888 Q þ
0.675 fwhere Q¼machine angle of contactg.” This suggests
that the “.” should be a “,¼.” Once corrected, we then ob-
served the expected behavior. We report this error because it
shows that the modeler should never take information on
trust, even if it is in an ontology and copied digitally. One
needs to carry out experiments to see if the modeled behavior
matches one’s intuition and, if not, to explore why. This was
also a practical test of the intelligibility and searchability of
our generated code, when looking for constraints on variables
such as HCTR and comparing them with a specification.

5.2. Comparison with published Sisyphus VT results

We provide a comparison of the experimental results of this
study with the earlier results obtained by the Sisyphus-VT
study reviewed in Section 2.3. We made the tasks harder by
restoring the antagonistic constraints. Our results confirmed
that the constant CSW was critical and had to be within cer-
tain bounds, which we determined more precisely. The speed
of our system allowed us to search for solutions for a wide
range of values of CSW, from 0 to 1000 in steps of 1, auto-
matically running the KBS for each new value. Figure 7
shows the outcome of this test. We verified that, as in the
original VT paper, when CSW increases, MGP increases
and HCTR decreases. With steps of 50, both variables appear
to change in linear fashion, but using steps of 1, we see that
HCTR actually behaves in a sawtooth fashion.

Prior to this experiment, we did not know whether some vi-
tal information was contained in the fixes, without which the
computation might not terminate. However, even after in-
cluding antagonistic constraints, the computations all termi-
nated. Even when some constraints disallowed all the solu-
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tions outside certain ranges of CSW, the system still termi-
nated correctly, reporting there were no solutions.

On reflection, we realized that antagonistic fixes are an arti-
fact of the P þ R PSM and not inherent in the VT constraint
problem. Modern constraint solvers have their own generic
mechanism for deciding which goals to try, and in what se-
quence, and so they do not rely on ad hoc fixes from domain ex-
perts. Furthermore, they work by incrementally removing val-
ues from domains, which is a one-way process. They do not
add and remove values for variables in the way that a fix can;
the latter may lead to “thrashing.” The successive pruning of
domains may get steadily slower (especially for bounded reals;
see Section 6.1), but it will not create a loop. Hence, constraints
that had antagonistic fixes gave us no special difficulties.

Note that there is always provision for a programmer to direct
the solver’s behavior by use of a “labeling()” predicate, which
chooses the goals to try first and whether to try smaller variable
values first (if values can be ordered). This does not alter what
solutions are found, only the time to find them. We did not need
to use this, which made generation simpler (Section 6).

We also repeated the tasks tried by VITAL (Section 2.3).
These showed that for each of five given car speeds, we
agreed on the value of car weight above which there were
no solutions. However, VITAL could sometimes fail at lower
weights when CLP did not. This showed the reliability of the
CLP technique.

6. CONCLUSIONS, DISCUSSION, AND FUTURE
WORK

In reviewing this project, we have arrived at the general
conclusions listed below, and we hope this discussion will

make it easier for others to apply these ideas in different
contexts.

† clear conceptual model and constraint ontology

It is now clear that constraint logic fits well with the elvis on-
tology used in our Protégé KB, because they both view the
world in terms of entities, attributes, relationships, and con-
straints. Similar kinds of ontology appear in tools used widely
for object-oriented program design and database schema de-
sign. Thus the knowledge engineer has a well-understood
way to conceptualize and then represent the problem, and a
wide choice of graphic tools to capture the information (in-
cluding Protégé graphic editors).

The elvis ontology (Section 3.1) lists all the variables used
in the constraints, together with their types and in many cases
their numerical ranges. The constraint formulae may use
LISP syntax, but it is the syntax of well-formed algebraic ex-
pressions. Their semantics is not dependent on the working of
a production rule interpreter. Thus, we have returned to some
of the fundamental tenets of early KB pioneers, that a KB
should be capable of reuse by a wide variety of different ap-
plications, even using different programming languages and
running on different machines.

† transforming components for different solvers

As Figure 2 indicates, we have developed an approach that
has enabled the several components of the elvis ontology
for the Pþ R PSM to be transformed, so that they can be exe-
cuted by alternative PSs. To date, we have generated and
tested methods based on a spreadsheet (Excel) and a con-

Fig. 7. Vertical transport (VT) solutions for supplement weight car supplment weight (CSW) from 0 to 1000. Step 1: the decreasing
sawtooth values are for the hoist cable traction ratio (HCTR), and the increasing straight line values are for the machine groove
pressure (MGP).
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straint solver (ECLiPSe). In hindsight, the elvis ontology did
two crucial things to help us: it kept the constraints and tables
independent of the fix information used by P þ R and it kept
them independent of the specific VT lift domain. In conse-
quence, we were able to build a tool (ExtrAKTor) that works
unchanged across a range of parametric design problems, in-
cluding the U-HAUL transport problem.

† using a spreadsheet as a problem solver

ExtrAKTor was easily adapted (Section 3.2) to generate a
KBS for use with a spreadsheet PS. This PS is a very useful
way to investigate dependencies. It showed that there were
comparatively few independent variables in the VT problem
(about 12 out of over 300). It was also useful to check con-
straints, and to calculate and check aggregate values such
as costs and other metrics. Such calculations are very useful
at early stages of configuration design, and have widespread
industrial application.

† CLP for nonexperts

All that the CLP solver needs to determine solutions is the
readable ECLiPSe specification of the constraints, variables,
and tables, as generated, together with the top-level goals.
Unfortunately, many PSs rely on significant human expertise
to read the formal description, often in unfamiliar symbols,
and to create the input the solver needs (Section 3.3). Thus,
there is a gap between formal specification and getting actual
results, but the generation of an executable CLP (or a spread-
sheet) bridges that gap. Although NumberJack (Hebrard
et al., 2010) also generates executable code for a range of con-
straint solvers, it is only in a machine-readable representation
(like object code), which helps constraint programming ex-
perts but not domain experts wishing to cross-check it.

In the case of VT, we did not even have to ask the design
engineer for additional control information, such as “fixes”
needed for P þ R, or heuristics, or hints to the constraint
solver. This made the knowledge acquisition in elvis very
straightforward. In consequence, an engineer can now use
these powerful theoretical techniques to solve constraint
problems, without having to master the theory or an unfamil-
iar language. We hope to encourage the capture of more con-
straint-based KB.

The generated code is also much easier to maintain, be-
cause one can usually just edit the KB through a tool and
then regenerate it; this also eases the difficulty of an industrial
shortage of maintenance programmers for logic programming
languages.

† integration of structured tables with CLP variables

Tables of tuples (Section 4.3) provide a familiar way to show
sets of alternative structured values. Table column names are
related to variables in the mathematical formulae for con-

straints. This, in turn, makes the problem description easier
to read by an engineer, which increases confidence.

The application of generalized constraint propagation to the
values in tables has been crucial to finding solutions speedily,
and so making our approach viable. The ECLiPSe toolkit with
the Propia library made it very easy to do, by generating certain
additional declarations automatically (Section 4.2.2). It is
applicable across the whole range of problems describable in
elvis. The theory may not be novel, but its practical value for
efficient code generation seems to have been overlooked.

† completely automating generation

We believe we have given enough information to enable our
approach to be applied straightforwardly to KBs for paramet-
ric design problems. We are very close to making the code
generation process completely automatic, so let us consider
the remaining obstacles. Foremost is the need for a standard
ontology for constraints and a shared constraint interchange
format (even in RDF) to be used across many different appli-
cations. Obviously, the Protégé elvis ontology is a good start-
ing point for parametric design problems, but it has some
shortcomings such as the restrictive use of model_name (Sec-
tion 4.2.4). Another rich way of specifying constraints is to
capture both constraints and executable methods in an object
model using the Colan language (Embury & Gray, 1995; Ajit
et al., 2008). Others argue for a more web-based kind of
knowledge representation (Felfernig et. al., 2003).

There is the ongoing problem of educating KB designers in
data modeling issues and systematic naming of variables and
classes (Section 4.2.4). Often, we have to clean up this infor-
mation in the elvis ontology before we can generate the CLP.
Finally, conditional expressions with a repetitive pattern may
need to be converted automatically, as proposed in Section
4.2.5.

6.1. Future work

† Interactive “sketch-and-refine” improvement process:
This approach has been tried in the earlier stages of con-
straint-based design, in conjunction with an expert hu-
man designer (O’Sullivan, 2002; Felfernig et al.,
2011). Instead, we wish to use a branch-and-bound
solver to improve on the initial solution values returned
(Section 4.2.6). It needs a utility function to measure the
improvement, and this could itself be adapted interac-
tively by a designer, by changing weights or altering a
readable formula. This very much suits the flexibility
of our readable and editable code-generation approach.

† Recognizing repetitive patterns in if-then-else rules:
This would replace a group of if-then-else rules by a
simpler parametrized rule that takes its values from a ta-
ble (Section 4.2.5). It would enable the ECLiPSe solver
to work much faster and also make the generated code
more readable. In order to automate these transforma-
tions, one could try spotting the repetitions by sophisti-
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cated pattern matching in Prolog. However, it might be
better to involve the end user more directly in designing
the tables through a more elaborate visual interface, such
as that used for capturing integrity rules for scientific da-
tabases (Gray & Kemp, 2006). This approach uses vi-
sual cues to generate a combination of AND and OR op-
erators. Thus, the engineer would not have to compose
Boolean expressions in a language such as CLIPS or
Prolog.

† A web service for ExtrAKTor: This would support the
extraction of constraint knowledge from web sources.
Tools like MUSKRAT (Graner & Sleeman, 1993)
would allow one to select knowledge sources that suit
the preselected PS, in our case CLP. However, it still re-
quires agreement on a common ontology and a KIF as
discussed above, which would then make it possible to
write mediators so that ExtrAKTor could extract knowl-
edge from such KBs.

† Issues with more complex search spaces: Because of its
linear geometry and hence mostly linear constraints, VT
is not a computationally “hard” problem. As described
in Section 5, we deliberately made it harder by reintro-
ducing antagonistic constraints and by exploring ex-
treme ranges of the parameter CSW, but we met no ob-
stacles. Nevertheless, other problems might include
more complex nonlinear constraints, which could be
generated by our code generator. This could well slow
down finding solutions or even cause nontermination,
because the CSP is NP-complete.

A related issue is the use of bounded reals (Section 2.4.2) to
represent numerical values in ECLiPSe. Constraint propagation
can be used to reduce these bounds as usual, but when precise
values are sought (e.g., by the ECLiPSe locate function), the
propagation mechanism can reduce the bounds for variables
to large sets of subranges, which might fragment the search
space and so become very slow to compute. One of the review-
ers has suggested that “problem-specific fixes (or hints to the
solver) derived from expert knowledge could be used to guide
the search into areas of the space where solutions are expected,
or they could be used to limit the search (and so sacrifice com-
pleteness in favor of efficiency).” These are challenges to CLP
theorists and configuration problem researchers. Moreover, by
making it possible for more engineers to use the CLP technique
in a disciplined fashion, we hope that our approach will stimu-
late another set of benchmark problems like VT.
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